跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 01:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭銘斌
研究生(外文):Ming Bing Kuo
論文名稱:線性系統之巢式迭代解法
論文名稱(外文):On Nested Iterative Methods
指導教授:李天佑李天佑引用關係
指導教授(外文):Daniel Lee
學位類別:碩士
校院名稱:輔仁大學
系所名稱:數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:108
中文關鍵詞:巢式迭代法Conjugate Gradient MethodConjugate Residual MethodGMR_star Method
外文關鍵詞:Nested Iterative MethodConjugate Gradient MethodConjugate Residual MethodGMR_star Method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的主要目的是研究CG類迭代方法的性質,並且推廣至CR類迭代方法,接著探討GMR_star巢式迭代法的性質,再發展出GCR_star巢式迭代法,最後以Poisson方程式及Navier-Stokes方程式來作為測試的題目。
The primary object of this thesis is to investigate the properties of the CG family, and use the same way to develop the CR family. Next, we investigate the properties od nested iterative method, GMR_star, and develop the different nested iterative method, named GCR_star. Finally, we test these iterative methods by the Poisson equation and Navier-Stokes equation.
1 Introduction 8
2 The CG Family 9
2.1 The Conjugate Gradient(CG) Method...................9
2.2 The Bi-Conjugate Gradient(BCG) Method..............11
2.3 The Conjugate Gradient Squared(CGS) Method.........13
2.4 The Bi-Conjugate Gradient Stabilized(BCGs) Method..15
3 The Preconditioned CG Family 17
4 The CR Family 21
4.1 The Conjugate Residuak(CR) Method...................9
4.2 The Bi-Conjugate Residual(BCR) Method..............11
4.3 The Conjugate Residual Squared(CRS) Method.........13
4.4 The Bi-Conjugate Residual Stabilized(BCRs) Method..15
5 The Preconditioned CR Family 29
6 Nested Iterative Methods 34
6.1 The General Minimum Residual(GMRes) Method.........34
6.2 The GMR_star Method................................36
6.3 The GCR_star Method................................39
7 Basic Test 42
7.1 Two-Dimensional Poisson Problem....................42
7.2 Three-Dimensional Poisson Problem..................74
8 Application Test 103
9 Conclusions 108
1 YOUSEF SAAD,Iterative Methods for Square Linear System, PWSPublishing Co.,Boston, 1996
2 Henk A. van Vorst, Iterative Methods for Large Linear System, Mathematrical Istitute Utrecht University Utrecht, The Netherlands,2001
3 M. T. Vespucci, C. G. Broyden, Implementation oF Different Computional Varations of Biconjugate Residual Methods, Computers and Mathematrics with Applications 42 (2001) 1239-1253
4 E. de Syurler, Nested Krylov methods based on GCR, Journal of Computational nad Applied Mathematrics 67(1996) 15-41
5 H. A. Van der Vorst, C. Vulk, GMRESR:a Family of Nested GMRES Methods, Munerical Linear Algebra with Applications, Vol. 1(4),369-386(1994)
6 John C. Tannehill, Dale A. Anderson and Richard H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Second Edition, Taylor Francis, (1997)
7 Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz, Variational Iterative Methods for Nonsymmetric Systems of Linear Equtions, SIAM J. NUMER. ANAL. Vol.20 NO.2 April 1983
8 Valeria Simoncini and Daniel B. Szyld, Flexible Inner-Outer Krylov Subspace methods, SIAM. NUMER. ANAL. Vol.40, No.6 99.2219-2239 (2003)
9 Daniel Lee and M. B. Kuo, On conjugate residual related methods, in preparation.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top