跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7fd3:5ffb:7a70:189b) 您好!臺灣時間:2024/12/11 06:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾佳玲
研究生(外文):Chia-Lin Chung
論文名稱:衝擊噴流冷卻平板型鰭片之研究
論文名稱(外文):Jet Impingement Cooling of Plate Heat Sinks
指導教授:李弘毅李弘毅引用關係
指導教授(外文):Hung-Yi Li
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:82
中文關鍵詞:衝擊噴流平板型散熱片計算流體力學紅外線熱影像
外文關鍵詞:Impinging jetPlate heat sinkComputational fluid dynamicsInfrared thermal image
相關次數:
  • 被引用被引用:1
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
衝擊噴流空氣冷卻具有高熱傳遞率與質量傳遞率等特性,因此被廣泛的應用在工業上,如鋼板的冷卻、紙張的乾燥、渦輪機的冷卻等。搭配適當幾何外型的散熱片與衝擊噴流則能夠達到最佳的散熱效果。
本論文藉由實驗與模擬方式分析平板形散熱片外型的最佳化,在固定加熱量下,改變鰭片的長度、寬度與雷諾數等參數,探討各參數對於散熱效益的影響。研究中發現雷諾數大小會影響散熱效益,隨著雷諾數增加,其影響效益會逐漸減緩。在固定底板尺寸的條件下,鰭片寬度會影響流道大小,當鰭片寬度較大時,低速之衝擊流體較難流入散熱片內部散熱,使熱傳效益下降,因此需要更高速的衝擊流流,才能有效地降低溫度。在固定鰭片寬度下,鰭片長度為改變散熱表面積的因素,增加鰭片高度可以有效地增加散熱效益。
研究中發現模擬與實驗結果有相同的趨勢,隨著雷諾數增加,熱阻值會下降。在高雷諾數時,寬度與長度較大的散熱片能夠有效地增加散熱效果。
Because of the characteristic of high heat transfer rate and mass transfer rate, the impinging air cooling is widely utilized on industrial applications including, among others, the cooling of steel plates, the drying of paper, the cooling of turbines. The impinging jet is combined with the appropriate geometrical shape of heat sink for the highest heat transfer rate.
In this thesis, experimental and simulated methods are used to analyze the optimal shape of the plate heat sinks. By changing the height and the width of the fin and the Reynolds number, the effects of the parameters on the heat transfer are investigated for a constant heating rate. The research reveals that the Reynolds number influences the heat transfer and the enhancement decreases gradually as the Reynolds number increases. The width of the fin will influence the size of the flow channel for a constant substrate area. When the width of the fin is bigger, the lower velocity impinging jet is difficult to flow into the heat sink and the heat transfer will decrease. Therefore higher velocity impinging jets are needed to reduce the temperature effectively. The height of the fin is a factor to change the heat transfer area for a constant fin width. The heat transfer can be increased effectively by increasing the fin height.
In the study, it is found that the simulated and the experimental results have the same trend. The thermal resistance decreases as the Reynolds number increases. At high Reynolds numbers, heat sinks with wider and higher fins can increase the heat transfer effectively.
誌 謝 I
摘要 II
ABSTRACT III
目錄 V
表錄 IX
圖錄 X
符號說明 XVI
一、前言 1
二、文獻回顧 2
2.1 各類散熱片之最佳化 3
2.1.1 柱型鰭片 3
2.1.2 平板型鰭片 4
2.2 各類散熱片之性能比較 6
2.3 流場的影響 8
2.4 紅外線熱影像儀之應用 9
三、理論模式 11
3.2 紊流模式 12
3.3 壁面函數 14
3.4 固體熱傳導 16
3.5.1 入口邊界條件 16
3.5.2 壓力邊界條件 17
3.5.3 對稱面邊界條件 17
3.5.4 壁面邊界條件 18
3.5.5 加熱面與熱傳導固體邊界條件 18
3.5.6 固體與流體介面 18
3.6 離散化 19
3.7 整體熱傳效益 19
3. 8 熱阻 19
四、實驗設備與方法 23
4.1 實驗設備 23
4.2 衝擊噴流裝置 23
4.3 實驗模型 23
4.4 實驗環境 24
4.4.1 實驗步驟 24
4.4.2 實驗數據處理 27
五、結果與討論 32
5.1 壓力與速度分布 33
5.2 散熱片外型效益 34
5.2.1 鰭片寬度的效應 34
5.2.2 鰭片長度的效益 36
5.3 實驗結果 36
5.4不同雷諾數下散熱片的熱阻值 38
5.4.1散熱片在衝擊噴流Re=10000下的散熱效益 39
5.4.2散熱片在衝擊噴流Re=20000下的散熱效益 39
5.4.3散熱片在衝擊噴流Re=30000下的散熱效益 39
六、結論與未來展望 75
6.1 結論 75
6.2 未來展望 76
參考資料 77
1. Shaukatullah, H., Gaynes, M. A., and White, L. H. “Thermal Enhancement of Surface Mount Electronic Packages with Heat Sinks,” Proceedings of IEEE 43rd Annual IEEE Electronic Components and Technology Conference, , pp.256-263, 1993.
2. Bejan, A., and Sciubba, E., “The Optimal Spacing of Parallel Plates Cooled by Forced Convection,” International Journal of Heat and Mass Transfer, Vol. 35, No. 12, pp. 3259-3264, 1992.
3. Mereu, S., Sciubba, E., and Bejan, A., “The Optimal Cooling of a Stack of Heat Generating Boards with Fixed Pressure Drop, Flowrate or Pumping Power,” International Journal of Heat and Mass Transfer, Vol. 36, No. 15, pp. 3677-3686, 1993.
4. Morega, A. M., Bejan, A., and Lee, S. W., “Free Stream Cooling of a Stack of Parallel Plates,” International Journal of Heat and Mass Transfer, Vol. 38, No. 3, pp. 519-531, 1995.
5. Hacohen, J., Chiu, T. W., and Wragg, A. A., “Forced and Free Convective Heat Transfer Coefficients for a Model Printed Circuit Board Channel Geometry,” Experimental Thermal and Fluid Science, Vol. 10, No. 3, pp. 327-334, 1995.
6. Floryan, J. M., and Novak, M., “Free Convection Heat Transfer in Multiple Vertical Channels,” International Journal of Heat and Fluid Flow, Vol. 16, No. 4, pp. 244-253, 1995.
7. Ledezma, G., Morega, A. M., and Bejan, A., “Optimal Spacing between Pin Fins with Impinging Flow,” ASME Journal of Heat Transfer, Vol.118, No. 9, pp.570-577, 1996.
8. Sathe, S., Kelkar, K. M., Karki, K. C., Tai, C., Lamb, C., and Patankar, S. V., “Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink,” ASME Journal of Electronic Packaging, Vol. 119, No 1, pp. 58-63, 1997.
9. Maveety, J. G., and Hendricks, J. F., “A Heat Sink Performance Study Considering Material, Geometry, Nozzle Placement, and Reynolds Number with Air Impingement,” ASME Journal of Electronic Packaging, Vol. 121, No. 3, pp. 156-161, 1999.
10. Jung, H. H., and Maveety, J. G., “Pin-Fin Heat Sink Modeling and Characterization,” Proceeding of the 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 260-265, 2000.
11. Maveety, J. G., Jung, H. H., “Design of An Optimal Pin-Fin Heat Sink with Air Impingement Cooling,” International Journal of Heat and Mass Transfer, Vol. 27, No. 2, pp. 229-240, 2000.
12. Sara, O. N., “Performance Analysis of Rectangular Ducts with Staggered Square Pin Fins,” Energy Conversion and Management, Vol.44, No. 11, pp.1787-1803, 2003.
13. Thombre, S. B., and Sukhatme, S. P., “Turbulent Flow Heat Transfer and Friction Factor Characteristics of Shrouded Fin Arrays with Uninterrupted Fins,” Experimental Thermal and Fluid Science, Vol. 10, No. 3, pp. 388-396, 1995.
14. Linton, R. L., and Agonafer, D., “Coarse and Detailed CFD Modeling of a Finned Heat Sink,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol.18, No 3, pp. 517-520, 1995.
15. Iwasaki H., Sasaki T., and Ishizuka M. “Cooling Performance of Plate Fins For Multichip Modules,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol.18, No 3, pp. 592-595, 1995.
16. Rao, R.V., and Venkateshan, S. P., “Experimental Study of Free Convection and Radiation in Horizontal Fin Arrays,” International Journal of Heat and Mass Transfer, Vol. 39, No. 4, pp. 779-789, 1996.
17. Kondo, Y., Behnia, M., Nakayama, W., and Matsushima, H., “Optimization of Fin Heat Sinks for Impingement Cooling of Electronic Packages,” ASME Journal of Electronic Packaging, Vol. 120, No 3, pp. 259-266, 1998.
18. Andrea, L. V., Stefano, G., and Franco, G., “Optimum Design of Vertical Rectangular Fin Arrays,” International Journal of Thermal Sciences, Vol. 38, No. 6, pp. 525-529, 1999.
19. Teertstra, P., Yovanovich, M. M., Culham, J. R., and Lemczyk, T., “Analytical Forced Convection Modeling of Plate Fin Heat Sinks,” Proceeding of the 15th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 34-41, 1999.
20. Harahap, F., and Setio, D., “Correlations for Heat Dissipation and Natural Convection Heat-Transfer from Horizontally-Based, Vertically-Finned Arrays,” Applied Energy, Vol. 69, No 1, pp. 29-38, 2001.
21. Giri, A., Narasimham, G. S. V. L., and Krishna Murthy, M. V, “Combined Natural Convection Heat and Mass Transfer from Vertical Fin Arrays,” International Journal of Heat and Fluid Flow, Vol.24, No.1, pp.100-113, 2003.
22. Bazydola, S. M., and Taslim, M., “An Experimental Investigation of a Staggered Array of Heatsinks in the Hydrodynamic and Thermal Entrance Regions of a Duct,” Proceeding of 3rd intersociety Conference on Thermal Phenomena in Electronic Systems, pp. 213-218, 1992.
23. Tanda, G., “Experiments on Natural Convection from Two Staggered Vertical Plates,” International Journal of Heat and Mass Transfer, Vol. 38, No. 3, pp. 533-543, 1995.
24. Babus’Haq, R. F., Akintunde, K., and Probert, S. D., “Thermal Performance of a Pin-Fin Assembly,” International Journal of Heat and Fluid Flow, Vol. 16, No. 1, pp. 50-55, 1995.
25. Sathyamurthy, P., Runstadler, P. W., and Lee, S., “Numerical and Experimental Evaluation of Planar and Staggered Heat Sinks,” Proceeding of 5th intersociety Conference on Thermal Phenomena in Electronic Systems, pp. 132-139, 1996.
26. Tahat, M., Kodah, Z. H., Jarrah, B. A., and Probert, S. D., “Heat Transfer from Pin-Fin Arrays Experiencing Forced Convection,” Applied Energy, Vol. 67, No. 4, pp. 419-442, 2000.
27. Bilen, K., Akyol, U., and Yapici, S., “Heat Transfer and Friction Correlations and Thermal Performance Analysis for a Finned Surface,” Energy Conversion and Management, Vol.42, No. 9, pp. 1071-1083, 2001.
28. Chapman, C. L., Lee, S., and Schmidt, B. L., “Thermal Performance of an Elliptical Pin Fin Heat Sink,” Proceeding of the 10th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 24-31, 1994.
29. Behnia, M., Copeland, D., and Soodphakdee, D., “A Comparison of Heat Sink Geometries for Laminar Forced Convection: Numerical Simulation of Periodically Developed Flow,” Proceeding of 6th intersociety Conference on Thermal Phenomena in Electronic Systems, No. 1, pp.310-315, 1998.
30. Tasaka, M., Shinohara, K., Hayashi, C., Kashima S., and Koyama K., “Cooling Performance of Heat Sinks with Corrugated-Fins,” Proceeding of the 6th InterSociety Conference on Thermal Phenomena in Electronic Systems, pp.104-111, 1998.
31. Naik, S., Probert, S. D., and Bryden I. G., “Heat Transfer Characteristics of Shrouded Longitudinal Ribs in Turbulent Forced Convection,” International Journal of Heat and Fluid Flow, Vol. 20, No. 4, pp. 374-384, 1999.
32. Jonsson, H., and Palm, B., “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions,” IEEE Transactions on Components and Packaging Technologies, Vol.23, No.1, pp.47-54, 2000.
33. Sikka, K. K., Torrance, K. E., Scholler, C. U., and Salanova P. I., “Heat Sinks with Fluted and Wavy Plate Fins in Natural and Low-Velocity Forced Convection,” IEEE Transactions on Components and Packaging, Vol. 25, No. 2, Jun 2002, pp.283-292, 2002.
34. Lee, R. S., Huang, H. C., and Chen, W. Y., “A Thermal Characteristic Study of Extruded — Type Heat Sinks in Considering Air flow Bypass Phenomenon,” Proceeding of the 6th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 95-102, 1990.
35. Yuan, T. D., “Computation Modelling of Flow Bypass Effects on Straight Fin Heat Sink in Rectangular Duct,” Proceedings of 12th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 164-168, 1996.
36. Wirtz, R. A., and Zheng, N. “Methodology for Predicting Pin-Fin Fan-Sink Performance,” Proceeding of the 6th InterSociety Conference on Thermal Phenomena in Electronic System, pp.303-309, 1998.
37. Behnia M., Parneix S., Shabany Y., and Durbin P.A., “Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets,” International Journal of Heat and Fluid Flow, Vol. 20, No. 1, pp. 1-9, 1999.
38. Brignoni L. A., and Garimella, S. V. ,“Experimental Optimization of Confined Air Jet Impingement on a Pin Fin Heat Sink,” IEEE Transactions on Components and Packaging Technology, Vol. 22, No. 3, Sept. 1999, pp. 399-404.
39. Meinders, E. R., Meer, Th. H. van der, Hanjalić K., and Lasance, C. J. M., “Application of Infrared Thermography to the Evaluation of Local Convective Heat Transfer on Arrays of Cubical Protrusions,” International Journal of Heat and Fluid Flow, Vol. 18, No. 1, pp. 152-159, 1997.
40. Gennaro, C., Tommaso, A., and Giovanni, M. C. “Wall Heat Transfer in Static and Rotating Turn Channels by Quantitative Infrared Thermography,” International Journal of Thermal Sciences, Vol. 37, pp. 644-652, 1998.
41. Meinders, E. R., and Hanjalić, K. “Vortex Structure and Heat Transfer in Turbulent Flow over a Wall-Mounted Matrix of Cubes,” International Journal of Heat and Fluid Flow, Vol. 20, No. 3, pp. 255-267, 1999.
42. Meinders, E. R., Hanjalić, K., “Experimental Study of the Convective Heat Transfer from In-line and Staggered Configurations of Two Wall-mounted Cubes, ”International Journal of heat and mass transfer, Vol.45, No.3, pp465-482, 2002.
43. Cuccurullo, G., and Berardi, P. G., “Radiative Filed and Radiometric Temperature Measurements in Semi-Transparent Films,” International Journal of Thermal Sciences, Vol.41, No.5, pp.412-421, 2001
44. Cuccurullo, G., Berardi, P. G., Carfagna, R., and Pierro, V., “IR Temperature Measurements in Microwave Heating, ” Infrared Physics & Technology, Vol.43, No.3-5, pp.145-150, 2002.
45. Eto, M., Ishii, T., Inagaki, T., and Okamoto, Y., “Infrared Radiation Properties of The Carbon-Carbon Composite and Their Application Nondestructive Detection of its defects,” Carbon, Vol.40, No.3, pp. 285-294, 2002.
46. CFX 4.4 User’s Maunal, AEA Technoloth Plc, Oxfordshire, U. K., 2001.
47. 陳謙邑,「衝擊噴流對散熱片熱傳效應影響之研究」,華梵大學機電所碩士論文 ,民國九十一年六月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top