跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴嘉良
研究生(外文):Chia-Liang Dai
論文名稱:以DSP為架構的直流馬達反覆學習控制系統
論文名稱(外文):A DSP Based Iterative Learning Control System for DC Motor
指導教授:簡江儒
指導教授(外文):Chiang-Ju Chien
學位類別:碩士
校院名稱:華梵大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:75
中文關鍵詞:反覆學習控制即時誤差遺忘因子數位訊號運動控制卡直流馬達
外文關鍵詞:Iterative learning controlCurrent errorForgetting factorDigital signal processor motion control cardDC motor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:305
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:1
本論文探討取樣時間線性非時變系統的反覆學習控制器之設計。在考慮初始誤差、輸入干擾及輸出雜訊的影響下,我們提出一個使用結合即時誤差與遺忘因子的取樣時間P型反覆學習控制器,在數位化的實做考量下,詳細分析整個系統的收斂性與強健性。除了完整的理論證明之外,論文中並經由電腦模擬與實際硬體實驗證實其理論結果。
反覆學習系統的性能改善一直是這個領域非常重要的問題,在實做上的應用也是不可忽視的課題。本論文以最實務導向的取樣時間系統架構來設計並分析學習控制器,研究證明利用即時誤差的P型反覆學習控制器,不需要回授輸出訊號的微分,且學習增益矩陣的設計簡單,若學習增益矩陣的最小特徵值增加,則追蹤速度和追蹤效能都能顯著的提升。當所有的不確定性和遺忘因子都趨近於零,在最終的反覆學習輸出誤差也將趨近於零。另外,本論文的學習控制系統在收斂速度上也較傳統P型反覆學習控制器為佳。
最後,本文除了使用Matlab在電腦上做數值模擬以及驗證理論之外,並使用數位訊號運動控制卡和直流馬達模組來實際實現本文所使用的控制法則,由模擬與實驗結果均證實本論文的理論是可行的。
This thesis discusses the design of sampled-time iterative learning controller for linear time-invariant systems. A P-type iterative learning controller combining the concept of current error and forgetting factor is proposed for systems with initial state errors, input disturbance and output measurement noise. The convergence and robustness of the iterative learning system are studied extensively. In addition to a complete theoretical analysis, the computer simulations and hardware experiments are given to demonstrate the effect of the iterative learning controller.
The performance improvement and practical realization of iterative learning systems are important issues in this field. It is shown that the differentiation of output error is not needed and the design of learning gain matrix is simple in the proposed iterative learning controller. If the smallest eigenvalue of the learning gain matrix increases, the learning rate and tracking performance can be improved significantly. When all the uncertainties and forgetting factor tend to zero, the tracking error will converge to zero in the final iterate.
Finally, in addition to numerical simulations by Matlab program, a digital signal processor motion control card and a DC motor are also used to implement the controller. The experiments validate all the theoretical results given in the thesis.
誌謝…………………………………………………………………………I
摘要…………………………………………………………………………II
ABSTRACT……………………………………………………………………III
目錄…………………………………………………………………………IV
圖錄…………………………………………………………………………VI
表錄…………………………………………………………………………VIII
第一章 緒論………………………………………………………………1
1.1 緣由……………………………………………………………………1
1.2 基本觀念………………………………………………………………2
1.3 反覆學習控制器的形式………………………………………………3
1.4 硬體架構………………………………………………………………5
1.5 本文架構………………………………………………………………6
第二章 取樣時間反覆學習控制系統……………………………………8
2.1 取樣時間反覆學習控制系統的設計與分析…………………………8
2.2 模擬範例………………………………………………………………18
第三章 硬體架構與實驗結果……………………………………………29
3.1 直流馬達運動控制系統架構說明……………………………………29
3.2 DSP 運動控制卡介紹…………………………………………………32
3.2.1 DSP運動控制卡I/O介紹……………………………………………32
3.2.2 TMS320F243…………………………………………………………33
3.2.3 波寬調變驅動器……………………………………………………33
3.3 直流無刷馬達工作原理………………………………………………34
3.3.1 霍爾元件(Hall Effect Sensor)…………………………………36
3.3.2 光學編碼器(Photo Encoder Sensor)……………………………37
3.3.3 功率放大器…………………………………………………………40
3.4 伺服馬達控制迴路架構………………………………………………41
3.5 軟體操作與實驗結果…………………………………………………44
3.5.1 DSP 控制器的軟體說明……………………………………………44
3.5.2 Matlab程式設計……………………………………………………46
3.5.3 實驗結果與討論……………………………………………………52
第四章 結論與建議………………………………………………………65
參考文獻……………………………………………………………………66
【1】M. Uchiyama, “Formation of high-speed motion pattern of a mechanical arm by trial”, Trans. SICE(Society for Implementation and Control Engineers(in Japanese)), Vol. 14, pp. 706-712,1978.
【2】S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering operation of robots by learning”, J. of Robotic System, Vol. 1, pp. 123-140, 1984.
【3】J.E. Hauser, “Learning control for a class of nonlinear systems”. Proc. of IEEE 26th Conference on Decision and Control, Los Angeles, CA, pp.859-860, 1987.
【4】T. Sugie, and T. Ono, “An iterative learning control law for dynamic systems”, Automatica, Vol. 27, pp. 729-732, 1991.
【5】G. Heinzinger, D. Fenwick, B. Paden and F. Miyazaki, “Stability of learning control with disturbances and uncertain initial conditions”, IEEE Transactions on Automatic Control, Vol. 37, No. 1, pp. 110-114, 1992.
【6】H. S. Ahn, C. H. Choi, and K. B. Kim, “Iterative learning control for a class of nonlinear systems”, Automatica, Vol. 29, pp. 1575-1578, 1993.
【7】T. J. Jang, C. H. Choi and H. S. Ahn, “Iterative learning control in feedback systems”, Automatica, Vol. 31, No. 2, pp. 243-248, 1995.
【8】H. S. Lee, and Z. Bien, “Study on robustness of iterative control with non-zero initial error”, International Journal of Control, Vol. 64, No. 3, pp. 345-359, 1996.
【9】S. Kawamura, F. Miyazaki and S. Arimoto, “Realization of robot motion based on learning method”. IEEE Transactions on System, Main, and Cybernetics, Vol. 18, pp.126-134, 1988.
【10】S. Arimoto, “Robustness of learning control for robot manipulators”, Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, Ohio, U.S.A., pp. 1528-1533, 1990.
【11】T. Y. Kuc, J. S. Lee and K. Nam, “An iterative learning control theory for a class of nonlinear dynamic systems”, Automatica, Vol. 28, No. 6, pp. 1215-1221, 1992.
【12】S. S. Saab, “On the P-type learning control”, IEEE Transactions on Automatic Control, Vol. 39, pp. 2298-2302, 1994.
【13】C. J. Chien, and J. S. Liu, “A P-type iterative learning controller for robust output tracking of nonlinear time-varying systems”, International Journal of control, Vol. 64, No. 2, pp. 319-334, 1996.
【14】T. Ishihara, K. Abe and T. Takeda, “A discrete-time design of robust iterative learning controller”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 22, No. 1, pp. 74-84, 1992.
【15】J. Kurek and M. Zaremba, “Iterative learning control synthesis based on 2-D system theory”, IEEE Transactions on Automatic Control, Vol. 38, pp. 121-125, 1993.
【16】S. S. Saab, “A discrete-time learning control algorithm for a class of linear time-invariant systems”, IEEE Transactions on Automatic Control, Vol. 40, No. 6, pp. 1138-1141, 1995.
【17】J. X. Xu, “Analysis of iterative learning control for a class of nonlinear discrete-time systems”, Automatica, Vol. 33, pp. 1905-1907, 1997.
【18】C. J. Chien, “A discrete iterative learning control for a class of nonlinear time-varying systems”, IEEE Transactions on Automatic Control, Vol. 43, pp. 748-752, 1998.
【19】S. K. Tso and L.Y.X. Ma, “Discrete learning control for robots: strategy, convergence and robustness”, International Journal of Control, Vol. 57, pp. 273-291, 1993.
【20】C. J. Chien, “On the iterative learning control of sampled-data systems,” Kluwer Academic Publishers, Chapter 5 of Iterative Learning Control - Analysis, Design Integration and Application, pp. 71-82, Editors : Z. Bien and J-X. Xu, 1998.
【21】C. J. Chien, “A sampled-data iterative learning control using fuzzy network design” International Journal of Control, Vol. 73, No. 10, pp. 902-913, 2000.
【22】M. Sun and D. Wang, “Sampled-data iterative learning control for nonlinear systems with arbitrary relative degree”, Automatica, Vol. 37, pp. 283-289, 2001.
【23】“全數位化馬達控制參數自調適技術應用報告”,俊原科技。
【24】曾世峰, “線性直流無刷馬達-自調式DSP控制器之設計” 大葉大學電機工程學系碩士班碩士論文, 民國九十年六月。
【25】黃英哲,董勝源,“TMS320C240原理與C語言控制應用實習”,長高圖書。
【26】張智星,“Matlab程式設計與應用”,清蔚科技。
【27】“視覺化建模環境Simulink入門與進階”,鈦思科技。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top