跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 09:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱聖翔
研究生(外文):Sheng-Hsiang Chiu
論文名稱:微電子構裝基板充填銅膠之導電特性研究
論文名稱(外文):A Study on the Conductive Performance of Copper-Filled Pastes for Microelectronic Packaging Substrates
指導教授:宋志剛林永森林永森引用關係
指導教授(外文):Chi-Kang SonngYung-Sen Lin
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:82
中文關鍵詞:導電膠填孔銅粉
外文關鍵詞:conductive pastevia fillingcopper powder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1054
  • 評分評分:
  • 下載下載:152
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨在探討高密度基板充填銅膠之導電特性。本實驗以銅粉與鍍銀銅粉為主要之導電填充粒子與環氧樹脂,經三軸滾筒混鍊備製成導電膠,再利用黏度測試儀量測導電膠黏度,將導電膠加熱硬化後使用多功能導電測試儀(Multimeter)量測電阻率,並根據不同之氧化溫度與導電填充粒子形狀來探討臨界體積百分率之變化與電性之間的關係;而以熱重量損失分析儀(Thermo gravimetric Analyzer)來分析導電填充粒子之氧化溫度;以一壓力製具來探討壓力對於電阻率與接觸面積之關係;並以歐傑電子能譜儀(Auger electron spectrometer)與XRD分析氧化程度與氧化物之成份;將製備完成之導電膠以網印的方式填入基板之微孔中,並量測電性;並利用光學顯微鏡(OM)及掃描式電子顯微鏡(SEM)觀察銅導電膠粒子之填孔後與粒子分佈情形。
實驗及分析結果顯示,以銅粉為導電填充粒子之導電膠在烘烤溫度約100℃時就有嚴重的氧化現象產生,並影響其導電率,以鍍銀銅粉為導電填充粒子之導電膠在烘烤溫度175℃仍可有高的導電性,以鍍銀銅粉可達到抗氧化之效果與較佳之電性;而導電填充粒子在導電膠中之電阻率會隨著其含量的增加而降低,黏度部份也會因為導電填充粒子含量的增加而上升;導電填充粒子在導電膠中之臨界體積百分率則會隨著氧化溫度(175℃至240℃)之提升而增加(由13.1 V%提升至24.7 V%);以歐傑電子能譜儀分析,可明顯看出當溫度提升時,導電填充粒子之氧化程度也越嚴重,其氧化的量也會提升,以XRD分析後當鍍銀銅粉加熱至240℃,會有一新的成份C u2O生成。

The objective of this study is to investigate the conductive performance of copper-filled pastes for microelectronic packaging substrates. This study is to prepare the conductive paste blending the epoxy resin and conductive filler via three rolls. And it discusses the relationship between compressed Cu powders how dependent on powder shape and oxidation on Cu powder at various temperatures. The applied compression pressure and the contact area between Cu powder are also investigated how to affect the conductive behavior of compressed Cu powder. The conductive behavior of conductive paste and compressed Cu powder were monitored by the measurement of resistance of cured conductive paste via four-point probe and the resistivity of samples was calculated for comparison. And it also discuss about the variation of critical volume fraction during the curing process.
The result of this study indicated the conductive behavior of cured conductive paste and compressed Cu powder is strongly dependent on the oxidation on Cu powders and slightly dependent on the powder shape. The conductive behavior of compressed Cu powders strongly dependent on the compressed pressures and slightly dependent on the contact areas between Cu powders. The disadvantage of conductive filler-Cu in conductive pastes is oxidation, and it has enormously influence on the conductive performance. The uncoated-Cu powder is easily oxidized and the Ag coating can improve the oxidation-resistance for Cu powder. The variation of critical volume fraction is increased(from 13.1 V% to 24.7 V%) with the increase of curing temperature(from 175℃ to 240℃ ). According to the analysis of AES,the amounts of oxygen is also increased with increase of curing temperature. It could be observed the production of Cu2O by XRD when the curing raised to 240℃.

中文摘要............................................. Ⅰ
英文摘要 .............................................Ⅲ
誌謝.................................................. V
總目錄................................................ VI
圖目錄.................................................IX
表目錄.................................................XII
第一章 緒論............................................1
1-1研究背景與動機..................................... 1
第二章 原理與文獻回顧..................................3
2-1導電膠的介紹........................................3
2-1-1導電膠之分類......................................3
2-1-1-1等向型導電膠...................................3
2-1-1-2異方向型導電膠 (Anisotropic Conductive Paste).. 3
2-1-1-2不導電型導電膠 (Non- Conductive Paste)......... 4
2-1-2導電膠之種類與基本性質 ...........................5
2-1-2-1常溫硬化型導電膠............................... 5
2-1-2-2熱硬化型導電膠................................. 6
2-1-3導電膠之成份..................................... 6
2-1-3-1導電填充粒子................................... 6
2-1-3-2高分子材料..................................... 8
2-1-3-3環氧樹脂....................................... 8
2-1-3-3其它添加劑..................................... 11
2-1-4臨界體積分率(Vc)................................. 11
2-1-5導電膠之導電機構................................. 12
2-1-6電阻率之定義..................................... 14
2-1-6-1歐姆定律....................................... 15
2-1-6-2電阻值與電阻率................................. 15
2-2以導電膠填孔之高密度基板介紹....................... 15
2-2-1 ALIVH基板....................................... 16
2-2-2 B2it............................................ 17
2-2-3其他 ..............................................18
2-4導電膠充填之方法................................... 18
2-4-1網印............................................. 18
2-4-2黏度對網印之影響................................. 19
2-4-3抗垂流指數(thixotropic index-Ti)之介紹........... 20
第三章 實驗........................................... 22
3-1實驗藥品與材料..................................... 22
3-2儀器與設備......................................... 23
3-3實驗內容........................................... 27
3-3-1實驗流程......................................... 27
3-3-2網印流程......................................... 28
3-4實驗方法........................................... 29
3-4-1導電膠之配置..................................... 29
3-4-2導電膠烘烤溫度之決定............................. 29
3-4-3銅粉氧化程度分析................................. 29
3-4-4導電膠電阻率量測樣品之備置....................... 30
3-4-5導電膠體積電阻率量測............................. 30
3-4-6導電膠黏度量測................................... 33
3-4-7壓力與電阻率量測................................. 33
3-4-8歐傑電子表面與縱深成份分析....................... 34
3-4-9 XRD分析......................................... 35
3-4-10光學顯微鏡(OM)................................ 36
3-4-11掃描式電子顯微鏡SEM分析......................... 36
3-4-12 EDS(energy dispersive spectrometer)分析........ 36
第四章 結果與討論..................................... 37
4-1導電膠烘烤溫度之決定............................... 37
4-2導電填充粒子於不同溫度下之體積電阻率............... 37
4-3導電填充粒子之TGA分析.............................. 39
4-4導電填充粒子分析................................... 41
4-4-1導電填充粒子經加熱衰敗後之分析................... 45
4-5導電填充粒子在加壓製程中之電性分析................. 46
4-6導電填充粒子填孔後之分析........................... 50
4-6-1填孔後外觀分析................................... 50
4-6-2填孔後之電性分析................................. 51
4-7氧化程度分析........................................52
4-8 XRD分析............................................55
4-9臨界體積百分率之變化................................57
4-10鍍銀銅粉體積分率及形狀對黏度的影響.................52
第五章 結論........................................... 60
第六章 參考文獻....................................... 62
第七章 附錄........................................... 67
附錄一 鍍銀銅粉107,經不同烘烤溫度後,以SEM之外觀分析. 67
附錄二 銀銅粉800,經不同烘烤溫度後,以SEM之外觀分析... 68
附錄三 鍍銀銅粉Cu-106之粒徑分佈圖..................... 69
附錄四 銅粉Cu-107之粒徑分佈圖......................... 70
附錄五 鍍銀銅粉Cu-800之粒徑分佈圖..................... 71
附錄六 導電填充粒子之歐傑電子分析圖................... 72
附錄七 鍍銀銅粉106在不同衰敗溫度下之XRD分析........... 80
附錄八 鍍銀銅粉107在不同衰敗溫度下之XRD分析........... 81
附錄九 鍍銀銅粉800在不同衰敗溫度下之XRD分析........... 82

[1]本多進,高見澤裕,堀也直治,高密度組裝技術,1999年,十月。
[2]萩本英二, CSP技術,1998年,九月。
[3]陳允潔,工業材料, no.99, pp.113-120,1995年,三月。
[4]萩本英二, CSP技術Π,1998年,十一月。
[5]雀部博之,導電高分子材料,1981年,七月。
[6]Johan Liu, “Conductive Adhesives for Electronics Packaging,” pp.2-10, 1998.
[7]郭光明,微電子導電接著劑之發展與應用,新新季刊,第29卷,第4期,pp.59-66,2001年。
[8]路慶華, 和田宏,新型導電膠的研究,功能材料,第28卷,第5期, pp.546-549,1997年。
[9]Henry Lee, Kris Neville, HANDBOOK OF EPOXY RESINS, pp.1-5, 1967.
[10]郭嘉龍,半導體封裝工程, 2001年,七月。
[11]G. R. Ruschau, R.E. Newnham, “Critical Volume Fractions in Conductive Composites,” Journal of Composite Material, vol.26, no.18, pp.2727-2735 1992.
[12]Daoqiang Lu, C.P. Wong, “Isotropic Conductive Adhesives Filled with low-melting-point alloy fillers, ” Transactions on electronics packaging manufacturing, vol.23, no.3, pp.185-190, Jul. 2002.
[13]Etemad, S., X. Quan and N. A. Sanders, “Geometry-Defined Electrical Interconnection by a Homogeneous Medium,” Appl. Phys. Lett., vol. 48, no. 9, pp.607-609, 1986.
[14]陳信文,陳立軒,林永森,陳志銘,微系統構裝基礎原理,2002年,十二月。
[15]賴耿陽,IC厚膜化技術微系統構裝基礎原理,2002年,十二月。
[16]邱以泰,胡應強,塑膠高分子流變學,電子與材料, 第八期,2001年,十二月。
[17]陳力俊,Microelectronics Materials and Processing,2000年,十一月。
[18]Johan LiuDonal L.Wise, Gary E. Wnek, Debra J. Trantolo, Thomas M. Copper, Joseph D. Gresser, “Electrical and Optical Polymer Systems,” pp.114-122, 1998.
[19]Silvia Liong, C.P. Wong, “An Alternative to Epoxy Resin for Application in Isotropically Conductive Adhesive,”International Symposium on Advanced Packaging Materials, pp.13-18, 2001.
[20]Takeo Kawahara, Tomomi Okamoto and Yuko Furugori, “INSULATION RELIABILITY OF FINE PITCH COPPER PASTE FILLED VIA HOLES”, IEMT/IMC Proceeding, pp.308-311, 1997.
[21]Justin C. Bolger, Silvio L. Morano, “Conductive Adhesives: How and Where They Work,” Adhesives Age, pp.17-20, Jun. 1984.
[22]Alan M. Lyons, “Electrically Conductive Adhesives: Effect of Particle Composition and Size Distribution,”Polymer engineering and Science, vol. 31, no. 6, pp.445-450, Mar. 1991.
[23]Takeo Kawahara, Tomomi Okamoto and Yuko Furugori, “Insulation Reliability of Fine Pitch Copper Paste Filled Via Hole,”IEMT/IMC Proceeding, pp.308-311, 1997.
[24]Andrew J. Lovinger, “Development of Electrical Conduction in Silver filled Epoxy Adhesives,” J. Adhesion, vol.10, pp.1-15, 1979.
[25]M. Schneider, J. Claverie, C. Graillat, T. F. Mckenna, “High Solids Content Emulsions. I. A Study of the Influence of the Particle Size Distribution and Polymer Concentration on Viscosity,”Journal of Applied Polymer Science, vol.84, pp.1878-1896, 2002.
[26]Shinnosuke Miyauchi, Takamitsu Kondo, Kenji Oshima, Takeshi Yamauchi, Masato Shimomura, Hiroshi Mitomo, “Electrical and Mechanical Characteristics of Composites Consisting of Fractionated Poly(3-hexylthiophene) and Conducting Particles,”Journal of Applied Polymer Science, vol.85, pp.1429-1433, 2002.
[27]Dilhan M. Kalyon. Elvan Birinci, Rahmi Yazici, Bahadir Karuv, Shawn Walshi,“Electrical Properties of Composites as Affected by the Degree of Mixedness of the Conductive Filler in the Polymer Matrix,”Polymer Engineering and Science, vol.42, no.7, pp.1015-1024, 2002.
[28]Pin Yang, Mark A. Rodriguez, Paul Kotula, Brandon K. Miera, Duane Dimos, “Processing, Microstructure, and Electric Properties of Buried Resistors in Low-Temperature Co-Fired Ceramics,”Journal Of Applied Physics, vol.89, no.7, pp.4175-4182, 2001.
[29]N. G. Baranov, Yu. N. Ivashchenko, I. A. Kossko,“The Structure and Chemical Composition of the Surface Layers of Powder Metallurgy Copper After Friction,”1991 Plenum Publishing Corporation, no.12, pp.69-74, Dec. 1990.
[30]T. Jesionowski, J. Zurawska, A. Krysztafkiewicz, “Surface Properties and Dispersion Behaviour of Precipitated Silicas,”Journal of Materials Science vol.37, pp.1621-1633, 2002.
[31]. Avrom I. Medalia, “Electrical Conduction in Carbon Black Composites,”Meeting of the Rubber Division, American Chemical Society, Los Angeles, California, pp.23-26, 1985.
[32]S. Hasegawa. F. Grey,“Surface-State Bands, Electrical Conduction,” Surface Science, pp.84-104, 2002.
[33]Martin Mundlein, Gernot Hanreich, Johann, “Simulation of Aging Behavior of Isotropic Conductive Adhesives,” IEEE Polytronic 2002 Conference, pp.68-72, 1986.
[34]A. Cattaneo, M. Cocito, F. Forlani, M. Prudenziati,“Influence of the Metal Migration From Screen-and-Fired Terminations on the Electrical Characteristics of Thick-Film Resistors,” Electrocomponent Science and Technology, vol.4, pp.205-211, 1977.
[35]G. E. Pike, C. H. Seager,“Electrical Conduction Mechanisms in Thick Film Resistors,” U.S. Energy Research and Development Administration under Contract, vol.29, no.1, p.789, 1998.
[36]J.-H. Park, K. Natesan,“Oxidation of Copper and Electronic Transport in Copper Oxides,” Oxidation of Metals, vol.39, pp.411-435, Jan. 1993.
[37]D. M. Bigg, Battelle,“An Investigation of the Effect of Carbon Black Structure, Polymer Morphology, and Processing History on the Electrical Conductivity of Carbon-Black-Filled Thermoplastics,”The Society of Rheology, Inc. journal of Rheology, vol.28. no.5, pp.501-516, 1984.
[38]Alan M. Lyons, “Electrically Conductive Adhesives: Effect of Particle Composition and Size Distribution,”Polymer Engineering and Science, vol.31, no.6, pp.779-793 Mar. 1991.
[39]F. Bueche,“Electrical Resistivity of Conducting Particles in an Insulating Matrix,”J. Appl. Phys., vol.43, no.11, pp.4837-4838, Nov. 1972.
[40]Barbara L. Roos-Kozel, Frances M. Casavecchia,“Parameters Affecting Silver Flake and Powder Performance in Silver Filled Polymers,”Solid State Technology, pp.167-170, Aug. 1984.
[41]Samir M. Pandiri,“The Behavior of Silver Flakes in Conductive Epoxy Adhesives,”Adhesives Age,” Adhesive Age, pp.31-35,Oct. 1987.
[42]D. M. Bigg, D. E. Stutz, “Plastic Composites for Electromagnetic Interference Shielding Applications,” Polymer Composites, vol.4, no.1, pp.40-46, Jan. 1983.
[43]I. J. Youngs, “Dielectric Measurements and Analysis for the Design of Conductor/Insulator Artificial Dielectrics,”Iee Proc.-Sei. Meas. Teclmol., vol.147, no.4, pp.202-208, Jul. 2000.
[44]Avrom I. Medalia,“Electrical Conduction in Carbon Black Composites,” Rubber Chemistry and Technology, vol.59, pp.23-26, Apr. 1985.
[45]解方,梁浩,高保嬌,微米及鍍銀銅粉常溫抗氧化性能之表徵方法,太原理工大學學報,第一期,pp.109-111,2002年,十二月。
[46]黃宏立,導電性碳黑,塑膠資訊,第9卷,pp.79-85, 1997年,一月。
[47]李巡天,黃淑禎,陳凱琪,田運宜,覆晶構裝用異方性導電膠膜材料技術與發展趨勢,工業材料雜誌,pp.104-111,2002年,十二月。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top