跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/26 00:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃冠偉
研究生(外文):Kuan-Wei Huang
論文名稱:資訊性關聯規則之維護
論文名稱(外文):Maintenance of Discovered Informative Rule Sets
指導教授:王天津王天津引用關係王學亮
指導教授(外文):Tien-Chin WangShyue-Liang Wang
學位類別:碩士
校院名稱:義守大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:55
中文關鍵詞:資料探勘預測資訊性關聯規則漸近發現維護
外文關鍵詞:data miningpredictioninformative rule setincrementalmaintenance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:3
本研究之目的在於探討有效率的維護資訊性關聯規則(Informative Rule Sets, IRS)的方法。以信心度而言,資訊性關聯規則可以和一般的關聯規則做相同的預測,且規則的數量會遠小於關聯規則的數量。預測是指給定一群顧客在某段時間內購物行為之規則以及某一特定顧客之部分購物行為,希望能預測出此一特定顧客之其他購物行為。而資訊性關聯規則之維護是指已知交易資料庫及其資訊性關聯規則,當資料庫發生新增、刪除、或修改時,如何有效率的維護資訊性關聯規則。
根據關聯規則之快速更新(Fast Update, FUP)的方法,本研究提出兩個有效率的維護資訊性關聯規則的演算法。當資料庫發生新增或刪除資料時,漸近新增演算法可有效率的維護資訊性關聯規則。當資料庫發生刪除資料時,漸近刪除演算法可有效率的維護資訊性關聯規則。同時我們並與非漸近演算法作數值比較,結果顯示我們所提出之方法需要較少之資料庫掃瞄次數、候選規則、及執行時間。

The goal of this research is to study the efficient maintenance of discovered Informative Rule Set (IRS) when new transaction data is added to and/or deleted from original transaction database. An informative rule set is the smallest subset of association rule set such that it can make the same prediction sequence according to confidence priority. Prediction is a process, for example, given a set of rules that describe the shopping behavior of the customers in a store over time, and some purchases made by a particular customer, we wish to predict what other purchases will be made by that customer. The problem of maintenance of discovered informative rule set is that, given a transaction database and its informative rule set, when the database receives insertion, deletion, or modification, we wish to maintain the discovered informative rule set as efficiently as possible.
Based on the Fast Updating technique (FUP) for the updating of discovered association rules, we present here two algorithms to maintain the discovered IRS. The proposed incremental insertion algorithm maintains the discovered IRS efficiently under database insertion. The proposed incremental deletion algorithm maintains the discovered IRS efficiently under database deletion. Numerical comparison with the non-incremental informative rule set approach is shown to demonstrate that our proposed techniques require less computation time, in terms of number of database scanning and number of candidate rules generated, to maintain the discovered informative rule set.

ABSTRACT (CHINESE) III
ABSTRACT (ENGLISH) V
ACKNOWLEDGEMENTS VII
LIST OF FIGURES IX
LIST OF TABLES X
CHPATER 1 INTRODUCTION 1
1.1 Background 1
1.2 Motivation 2
1.3 Thesis Organization 3
CHAPTER 2 LITERATURE SURVEY 4
2.1 Association Rules for Prediction 4
2.2 Informative Rule set for Prediction 8
2.3 Maintenance of Association Rules 10
CHAPTER 3 DISCOVERY OF INFORMATIVE RULE SET: INCREMENTALINSERTION 14
3.1 Problem Description 14
3.2 Notations 15
3.3 Algorithm 16
3.4 Example 21
CHAPTER 4 DISCOVERY OF INFORMATIVE RULE SET: INCREMENTALINSERTION 23
4.1 Problem Description 24
4.2 Algorithm 25
4.3 Example 29
CHAPTER 5 EXPERIMENT RESULTS 33
5.1 Incremental Insertion Results.………………………………………………33
5.2 Incremental Deletion Results.………………………………………………37
CHAPTER 6 CONCLUSION 41
REFERENCE 43

[1] R. Agrawal, T. Imielinksi and A. Swami, “Mining Association Rules between Sets of Items in Large Database”, Proc. of the ACM SIGMOD Conference on Management of Data, Washington DC, May 1993, 207-216.
[2] R. Agrawal, R. Srikant, “Fast Algorithms for Mining Association Rules”, Proc. of the 20th Int’l Conference on Very Large Databases, Santiago, Chile, September 1994, 487-499.
[3] Necip Fazil Ayan, “An Efficient Algorithm to Update Large Itemsets with early Pruning”, In Proc. 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CAUSA, August 1999, 287-291.
[4] Yves Bastide, Nicolas Pasquier, Rafik Taouil, Gerd Stumme, Lot Lakhal, “Mining Minimal Non-Redundant Association Rules Using Frequent Closed Itemsets”, Proc. DOOD'2000 conference, LNCS, Springer-Verlag, July 2000, 972-986.
[5] L.P. Cheng, “Efficient Graph-Based Algorithms for Discovering and Maintaining Association Rules in Large Databases”, In Proceedings of Knowledge and Information Systems, Lonton, 2001, 338-355.
[6] David W. Cheung, Vincent T. Ng, Benjamin W. Tam, “Maintenance of Discovered Knowledge: A Case in Multi-level Association Rules”, In Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta Canada, 1996, 307-310.
[7] David W. Cheung, Jiawei Han, Vincent T. Ng, C.Y. Wong, “Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique”, In Proceedings of the International Conference on Data Engineering, New Orleans, Louisiana, 1996, 106-114.
[8] David W. Cheung, S.D. Lee, Benjamin Kao, “A General Incremental Technique for Maintaining Discovered Association Rules”, In Proceedings of International Conference on Database Systems for Advanced Applications, Melbourne, 1-4 April 1997, pp 185-194.
[9] Jun-Hui Her, Sung-Hae Jun, Jun-Heyog Choi, Jung-Hyun Lee, “A Bayesian Neural Network Model for Dynamic Web Document Clustering”, Proceedings of the IEEE Region 10 Conference , Volume: 2 , Dec 1999 Page(s): 1415-1418.
[10] T.P. Hong, “Incremental Data Mining Using Pre-large Itemsets”, Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi City December 2002, Japan, 9-12.
[11] Guanling Lee, K.L. Lee, Arbee L.P. Chen, “Efficient Graph-Based Algorithms for Discovering and Maintaining Association Rules in Large Databases”, Knowledge and Information Systems 3, 2001, 338-355.
[12] Jiuyong Li, Hong Shen, Rodney Topor, “Mining the Smallest Association Rule Set for Predictions”, Proceedings of the 2001 IEEE International Conference on Data Mining, California, USA, December, 2001.
[13] G. Piategsky-Shapiro, “Discovery, Analysis and Presentation of Strong Rules”, Knowledge Discovery in Databases, AAAI/MIT press, 1991, 229-248.
[14] Mei-Ling Shyu, Shu-Ching Chen, Chi-Min Shu, “Affinity-Based Probabilistic Reasoning and Document Clustering on the WWW”, The Twenty-Fourth Annual International Computer Software and Applications Conference October 25 - 28, 2000, Taipei, Taiwan, 149.
[15] Chunhua Wahg, Houkuan Huang, Honglian Li, “A Fast Distributed Mining Algorithm for Association Rules With Item Constraints”, 2000 IEEE International Conference on System, Man & Cybernetics, 2000, Vol 1-5, 1900-1905.
[16] G. I. Webb, “Efficient Search for Association Rules”, Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-00), N.Y., Aug 20-23 2000. , 99-107
[17] Show-Jane Yen, Arbee L.P. Chen, “An Efficient Approach to Discovering Knowledge from Large Databases”, In Proceedings of the IEEE/ACM International Conference on Parallel and Distributed Information Systems, Berlin, 1996, 8-18.
[18] Mohammed J. Zaki, Ching-Jui Hsiao, “An Efficient Algorithm for Closed Association Rule Mining”, 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, August 2000, 34-43.
[19] M.J. Zaki, “Generating Non-Redundant Association Rules”, Proc. of the 6th ACM International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta Canada, 2000.
[20] Tian Zhang, Raghu Ramakrishnan, Miron Livny, “BIRCH: An Efficient Data Clustering Method for Very Large Databases”, In Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Ouebec, Canada, 1996, pp 103-114.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top