跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李建鋒
研究生(外文):Jian-Feng Li
論文名稱:紅光有機發光二極體的發光機制及其光電特性之研究
論文名稱(外文):A Study of Luminescent Mechanisms and Photoelectronic Characteristics of Red Organic Light-Emitting Diodes
指導教授:王欽戊陳志良陳志良引用關係
指導教授(外文):C.W. WangC.L. Chen
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:54
中文關鍵詞:有機電激發光元件紅光能量轉移載子捕捉共摻雜
外文關鍵詞:OLEDsred-lightenergy transfercarrier trappingcodoped
相關次數:
  • 被引用被引用:1
  • 點閱點閱:512
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
我們將利用高真空蒸鍍系統,在透明的導電陽極-氧化錫銦玻璃基板上成長有機薄膜與金屬陰極,進而完成有機電激發光元件的製備。在研究過程中,我們將利用多層結構的方法來完成有機電機發光元件的研製,其完整結構為透明陽極/電洞傳導層/紅光發光層/電子傳導層/金屬陰極。而在紅光發光層部份,我們利用不同的紅光摻雜材料搭配主體材料進而完成紅光有機電激發光元件。
經我們研究證實利用不同的紅光摻雜材料可以得到高效率的紅光有機電激發光元件。其中利用紅光摻雜材料DCJTB所製成的紅光有機電激發光元件其發光機制主要是藉由能量轉移的方式將主體材料的發光能量轉移給摻雜材料,進而讓摻雜材料發光,若加入的紅光摻雜材料為NIR,則其主要的發光機制乃是經由載子捕捉的方式來發出紅光。但是,若使用的紅光摻雜材料為DCM2,則能量轉移及載子捕捉兩種發光機制將同時發生,也因此利用DCM2可以得到最亮的紅光有機電激發光元件。
另一方面,我們又進一步證明了利用增感材料Rubrene可得到更亮且發光純度更純的紅光有機電激發光元件。我們主要是利用共摻雜的技術來製作紅光發光層,其中加入增感材料Rubrene可以讓主體材料所發出的光更有效率的提供給紅光摻雜材料DCJTB,也因此我們又更進一步的得到更高亮度與純度的紅光有機電激發光元件。

Organic light emitting devices were deposited on Indium tin oxide (ITO) substrate by high vacuum evaporator system. In our study, the device configurations of red OLEDs using multilayer structure were ITO/ NPB (600 Å)/emitting layer (500 Å)/Alq3 (500 Å)/Mg:Ag (1500 Å) with various red dopant, providing a red-light emission from emitting layer.
We have demonstrated a highly efficient red-light OLED doped with various red dye materials. Evidence showed that the correspondingly dominant emitting mechanisms for both DCJTB and NIR-doped devices are the exciton energy transfer and carrier trapping, respectively. Besides, it is strongly suggested that the co-existence of excition energy transfer and carrier trapping processes in DCM2-doped OLED is the main reason leading the highest luminance occurred in that device.
On the others hand, we have proved a bright red emission of OLED based on an emitting layer codoped with DCJTB and rubrene. The dominant emission mechanism is the exciton energy transfer causing the enhancement of brightness and purity.

Publications and Preprints I
ABSTRACT (in Chinese) II
ABSTRACT (in English) IV
Acknowledgment VI
FIGURE CAPTION VII
CONTENTS IX
Chapter 1. Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Organization of This Thesis 3
Chapter 2. Basic Concepts and Experimental Procedure 4
2.1 Basic Concepts 4
2.1.1 Electroluminescence in Organic Materials 4
2.1.2 Charge Carrier Injection and Transport 4
2.1.3 Luminescent Mechanisms of Organic Materials 5
2.2 Experimental Procedure 6
2.2.1 ITO Substrate Etching and Cleaning 6
2.2.2 Deposition of Organic Thin Films and Electrodes 7
2.2.3 Measurement 8
Chapter 3. Influence of Various Red Doping Materials on the Photoelectric Performance of Highly Efficient Organic
Light-Emitting Devices 9
3.1 Introduction 9
3.2 Experiments 10
3.3 Results and Discussion 10
3.4 Conclusions 13
Chapter 4. Influence of Rubrene on the Optoelectrical Performance of
Red Organic Light-Emitting Diodes 14
4.1 Introduction 14
4.2 Experiments 14
4.3 Results and Discussion 15
4.4 Conclusions 16
Chapter 5. Suggestions for Future Work 17
References
Figures
Biography

[1]. C.Y. Lee et al., “Matrix formalism of electromagnetic wave propagation through multiple layers in the near-field region: Application to the flat panel display,” Phys. Rev. E 67, 046605 (2003).
[2]. S.Z. Deng, K. Wang, J. Chen, Y.Q. Zhang, and N.S. Xu, “Study of a microprocessor-based technique for improving the uniformity of a field-emission flat-panel display,” J. Vac. Sci. Technol. B 21, 523 (2003).
[3]. S.O. Kim, “Protective layer using plasma polymerized thin films in ac-plasma display panel,” J. Vac. Sci. Technol. B 21, 233 (2003).
[4]. T.J. Vink, A.R. Balkenende, R.G. Verbeek, H.A.M. van Hal, and S.T. de Zwart, “Materials with a high secondary-electron yield for use in plasma displays,” Appl. Phys. Lett. 80, 2216 (2002).
[5]. Y.C. Lan, Y. Hu, T.L. Lin, F.Y. Chuang, J.H. Tsai, C.C. Lee, and W.C. Wang, “Simulation Study of Reflective-Type Carbon Nanotube Field Emission Display,” Jpn. J. Appl. Phys., Part 1 41, 657 (2002).
[6]. Y. Asao, H. Yoshinaga, H. Mori, H. Munakata, R. Isobe, H. Mizuno, T. Togano, N. Nishida, and Y. Hanyu, “Dot Inversion Spontaneous Polarization Structure in the Half-V-shaped Switching Ferroelectric Liquid Crystal Mode,” Jpn. J. Appl. Phys., Part 1 42, 554 (2003).
[7]. Y. Iwamoto and Y. Iimura, “Transmitted Light Enhancement of Electric-Field-Controlled Multidomain Vertically Aligned Liquid Crystal Displays Using Circular Polarizers and a Cholesteric Liquid Crystal Film,” Jpn. J. Appl. Phys., Part 2 42, L51 (2003).
[8]. Y. Iwamoto and Y. Iimura, “Transmittance Enhancement for Randomly Aligned Liquid Crystal Displays with Circular Polarizers,” Jpn. J. Appl. Phys., Part 2 41, L1383 (2002).
[9]. T.Y. Yoon, J.H. Park, J.S. Sim, and S.D. Lee, “Self-formation of microdomains by the topographical and fringe field effects in a liquid crystal display with dielectric surface gratings,” Appl. Phys. Lett. 81, 2361 (2002).
[10]. T. Tsujimura and A. Makita, “Molybdenum/aluminum stacked metal taper etching for high-resolution thin-film transistor liquid-crystal display,” J. Vac. Sci. Technol. B 20, 1907 (2002).
[11]. C.W. Tang and S.A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., 51, 913(1987).
[12]. C. W. Tang and S. A. VanSlyke, “Electroluminescence of doped organic thin films,” J. Appl. Phys., 65, 3610 (1989).
[13]. A. Bernanose, “Electroluminescense of organic compounds,” Brit. J. Phys. Suppl. 4, S54 (1955).
[14]. M. Pope, H. Kallmann, P. Magnante, “Electroluminescence in organic crystals,” J. Chem. Phys. 38, 2042 (1963).
[15]. W. helfrich, W.G. Schneider, “Reconbination radiation in anthracene crystals,” Phys. Rev. Lett.140, 229 (1965).
[16]. D.F. Williams, M. Schadt, “A simple organic electroluminescence diode,” Proc. IEEE Lett. 58, 476 (1970).
[17]. N.V. Vityuk, V.V. Mikho, Sov. Phys. Semicond. 6, 1479 (1973).
[18]. P.S. Vincent, W.A. Barlow, R.A. Hann, G.G. Roberts, “Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films,” Thin Solid Films 94, 476 (1982).
[19]. G.G. Roberts, M. McGinnity, P.S. Vincett, W.A. Barlow, “Electroluminescence photoluminescence and electroabsorption of a lightly substituted anthracene langumuir film,” Solid State Commun. 32, 683 (1979).
[20]. C. Adachi, M.A. Baldo, S.R. Forrest, and M.E. Thompson, “High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine) iridium doped into electron-transporting materials,” Appl. Phys. Lett. 77, 904 (2000).
[21]. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electro- phosphorescence,” Appl. Phys. Lett. 75, 4 (1999).
[22]. S. Tokito, T. Tsutsui, and Y. Taga, “Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. 86, 2407 (1999).
[23]. S.E. Shaheen, G.E. Jabbour, M.M. Morrell, Y. Kawabe, B. Kippelen, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode,” J. Appl. Phys., 84, 2324 (1998).
[24]. K.H. Weinfurtner, H. Fujikawa, S. Tokito, and Y. Taga, “Highly efficient pure blue electroluminescence from polyfluorene: Influence of the molecular weight distribution on the aggregation tendency,” Appl. Phys. Lett. 76, 2502 (2000).
[25]. C.C. Wu, Y.T. Lin, H.H. Chiang, T.Y. Cho, C.W. Chen, K.T. Wong, Y. L. Liao, G. H. Lee, and S. M. Peng, “Highly bright blue organic light-emitting devices using spirobifluorene-cored conjugated compounds,” Appl. Phys. Lett. 81, 577 (2002).
[26]. A. Shoustikov, Y. You, P.E. Burrows, “Orange and red organic light emitting devices using aluminum tris (5-hydroxyquinoxaline),” Synthetic Metals 91, 217 (1997).
[27]. J. Lam, T. C. Gorjanc, Y. Tao, and M. D'lorio “Selective doping of multilayer organic light emitting devices,” J. Vac. Sci. Technol. A 18, 593 (2000).
[28]. G.Y. Zhong, J. He, S.T. Zhang, Z. Xu, Z.H. Xiong, H.Z. Shi, and X.M. Ding, “In situ photoluminescence investigation of doped Alq,” Appl. Phys. Lett. 80, 4846 (2002).
[29]. P. Ranke, I. Bleyl, J. Simmerer, and D. Haarer “Electroluminescence and electron transport in a perylene dye,” Appl. Phys. Lett. 71, 1332 (1997).
[30]. T. Mori, H.G. Kim, T. Mizutani, and D.C. Lee “Electroluminescent Properties in Organic Light-Emitting Diode Doped with Two Guest Dyes,” Jpn. J. Appl. Phys., Part 1 40, 5346 (2001).
[31]. R. Banerjee, S. Ray, N. Basu, A.K. Batabyal, and A.K. Barua, “Degradation of tin-doped indium-oxide film in hydrogen and argon plasma,” J. Appl. Phys. 62, 912 (1987).
[32]. S. Major, S. Kumar, M. Bhatnagar, and K.L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,”Appl. Phys. Lett. 49, 394 (1986).
[33]. I.M. Chan, W.C. Cheng, and F.C. Hong, “Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surfaces,” Appl. Phys. Lett. 80, 13 (2002).
[34]. S. Tada, M. Ito, M. Hamagaki, M. Hori, and T. Goto, “Cleaning of Glass Disk in Oxygen Plasma by Using Compact Electron-Beam- Excited Plasma Source,” Jpn. J. Appl. Phys., Part 1 41, 6553 (2002).
[35]. Y. Hashimoto, Y. Osato, M. Tanaka, M. Hamagaki, and T. Sakakibara, “Effect of Oxygen Plasma Treatment of Indium Tin Oxide for Organic Light-Emitting Devices with Iodogallium Phthalocyanine Layer,” Jpn. J. Appl. Phys., Part 1 41, 2249 (2002).
[36]. S.F. Chen, C.W. Wang, K.T. Kuo, and J.J. Wuu, “Effects of Hole-Injecting Materials on the Charge Injection and Luminous Properties of Highly Efficient Organic Light-Emitting Diodes,”in 2001 Electron Devices and Materials Symposia, Symposium WD2, Dec. 12-13, 2001, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C., 341, (2001).
[37]. H.B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys, 48, 4729 (1977).
[38]. T.M. Brown, R.H. Friend, I.S. Millard, D.J. Lacey, J. H. Burroughes, and F. Cacialli, “Efficient electron injection in blue-emitting polymer light-emitting diodes with LiF/Ca/Al cathodes,” Appl. Phys. Lett., 79, 174 (2001).
[39]. T.M. Brown and F. Cacialli, “Energy level line-up in polymer light-emitting diodes via electroabsorption spectroscopy,” in IEE Proc. Optoelectron., 148, 74 (2001).
[40]. T.M. Brown, R.H. Friend, I.S. Millard, D.J. Lacey, J.H. Burroughes, and F. Cacialli, “LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes,” Appl. Phys. Lett., 77, 3096 (2001).
[41]. J. Yoon, J. Kim, T. Lee, and O. Park, “Evidence of band bending observed by electroabsorption studies in polymer light emitting device with ionomer/Al or LiF/Al cathode,” Appl. Phys. Lett., 76, 2152 (2000).
[42]. L.S. Hung, C.W. Tang, and M.G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Appl. Phys. Lett., 70, 152 (1997).
[43]. M. Stobel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, and A.Winnacker, “Space-charge-limited electron currents in 8-hydroxyquinoline aluminum,” Appl. Phys. Lett., 76, 115 (2000).
[44]. S.E. Shaheen, G.E. Jabbour, M.M. Morelli, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.F. Nabor, R. Schlaf, E.A. Mash, and N.R. Armstrong, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode,” J. Appl. Phys, 84, 2324 (1998).
[45]. T. Mori, H. Fujikawa, S. Tokito, and Y. Yaga, “Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy,” Appl. Phys. Lett., 73, 2763 (1998).
[46]. G.E. Jabbour, Y. Kawabe, S.E. Shaheen, J.F. Wang, M. M. Morelli, B. Kippelen, and N. Peyghambarian, “Highly efficient and bright organic electroluminescent devices with an aluminum cathode,” Appl. Phys. Lett., 71, 1762 (1997).
[47]. P. Piromreun, H. Oh, Y. Shen, G.G. Malliaras, J.C. Scott, and P.J. Brock, “Role of CsF on electron injection into a conjugated polymer,” Appl. Phys. Lett., 77, 2403 (2000).
[48]. G.E. Jabbour, B. Kippelen, N.R. Armstrong, and N. Peyghambarian, “Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices,” Appl. Phys. Lett., 73, 1185 (1998).
[49]. H. Fujikawa, T. Mori, K. Noda, M. Ishii, S. Tokito, andY. Taga, “Organic electroluminescent devices using alkaline-earth fluorides as an electron injection layer,” J. of Lumin., 87, 1177 (2000).
[50]. S.P. Sibley, M.E. Thompson, P.E. Burrows, and S.R. Forrest, “Electroluminescence in molecular materials,” in Optoelectronic Properties of Inorganic Compounds, D. M. Roundhill, and J. Fackler, Eds. New York: Plenum, in press.
[51]. L.J. Rothberg and A.J. Lovinger, “Status of and prospects for organic electroluminescence,” J. Mater. Res., 11, 3174 (1996).
[52]. C.W. Tang, “Organic electroluminescent materials and devices,” in Dig. 1996 SID Int. Symp., SID, San Diego, CA, 1996, p. 181., “Organic electroluminescent materials and devices,”
[53]. E. Aminaka, T. Tsutsui, and S. Saito, “Effect of layered structures on the location of emissive regions in organic electroluminescent devices,” J. Appl. Phys., 79, 8808 (1996).
[54]. P.E. Burrows, G. Gu, V. Bulovic, S.R. Forrest, and M.E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron Devices 44, 1188 (1997).
[55]. C. Giebeler, H. Antoniadis, D.D.C. Bradley, et al., “Influence of the hole transport layer on the performance of organic light-emitting diodes,” J. Appl. Phys., 85, 608 (1999).
[56]. G. Gu and S.R. Forrest, “Design of flat-panel displays based on organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 4, 83 (1998).
[57]. J. Shi and C. W. Tang, “Doped organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 70, 1665 (1997).
[58]. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, “Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant,” Appl. Phys.Lett. 67, 3853 (1995).
[59]. B.J. Jung, C.B. Yoon, H.K. shim, et al., Adv. Funct. Mater. 11, 430 (2001).
[60]. G. Gu, G. Parthasarathy, P. Tian, et al., “Transparent stacked organic light emitting devices. I. Design principles and transparent compound electrodes,” J. Appl. Phys., 86, 4067 (1999).
[61]. T. Forster, Discuss. Faraday Soc. 7, 27 (1959).
[62]. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Chap. 10 (Plenum, New York, 1983).
[63]. N.J. Turro, Modern Molecular Photochemistry, Chap. 9 (Benjamin/Cummings, Menlo Park, CA, 1978).
[64]. Y. Hamada, H. Kanno, T. Tsujioka, H. Tadahashi, and T. Usuki. “Red Organic Light-Emitting Diodes Using an Emitting Assist Dopant,” Appl. Phys. Lett. 75, 1682 (1999).
[65]. O.B. Garcia and C.W. Struck, “Monte Carlo Treatment of the Nonradiative Energy Transfer Process for Nonrandom Placements of Dopants in Solids,” J. Chem. Phys. 100, 4554 (1994).
[66]. Z.Y. Xie, L.S. Hung, and S.T. Lee, “High-efficiency Red Electroluminescence from a Narrow Recombination Zone Confined by an Organic Double Heterostructure,” Appl. Phys. Lett. 79, 1048 (2001).
[67]. A.A. Shoustikov, Y. You, and M.E. Thompson, “Electroluminescence color tuning by dye doping in organic light-emitting diodes,” IEEE Journal of Selected Topics in Quamtum Electronics, 4, 3 (1998).
[68]. H. Liu, W. Gao, K. Yang, B. Chen, S. Liu, and Y. Bai, “Effect of Rubrene on Characteristic of Red Organic Electroluminescent Device Doped with Rubrene,” Chem. Phys. Lett. 352, 353 (2002).
[69]. T. Wakimoto, Y. Yonemoto, J. Funaki, M. Tsuchida, R. Murayama, H. Nakada, H.Matsumoto, and M. Nomura, “Stability Characteristics of Quinacridone and Coumarin Molecules as Quest Dopants in the Organic LEDs,” Synth. Met. 91, 15 (1997).
[70]. C.H. Chen, C.W. Tang, J. Shi, and K.P. Klubek, “Recent Developments in the Synthesis of Red Dopants for Alq3 Hosted Electroluminescence,” Thin Solid Films363, 327 (2000).
[71]. Z.L. Zhang, X.Y. Jiang, S.H. Xu, et al., “The Effect of Rubrene as a Dopant on the Efficiency and Stability of Organic Thin Film Electroluminescent Device,” J. Phys. D: Appl. Phys. 31, 32 (1998).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top