|
[1]. C.Y. Lee et al., “Matrix formalism of electromagnetic wave propagation through multiple layers in the near-field region: Application to the flat panel display,” Phys. Rev. E 67, 046605 (2003). [2]. S.Z. Deng, K. Wang, J. Chen, Y.Q. Zhang, and N.S. Xu, “Study of a microprocessor-based technique for improving the uniformity of a field-emission flat-panel display,” J. Vac. Sci. Technol. B 21, 523 (2003). [3]. S.O. Kim, “Protective layer using plasma polymerized thin films in ac-plasma display panel,” J. Vac. Sci. Technol. B 21, 233 (2003). [4]. T.J. Vink, A.R. Balkenende, R.G. Verbeek, H.A.M. van Hal, and S.T. de Zwart, “Materials with a high secondary-electron yield for use in plasma displays,” Appl. Phys. Lett. 80, 2216 (2002). [5]. Y.C. Lan, Y. Hu, T.L. Lin, F.Y. Chuang, J.H. Tsai, C.C. Lee, and W.C. Wang, “Simulation Study of Reflective-Type Carbon Nanotube Field Emission Display,” Jpn. J. Appl. Phys., Part 1 41, 657 (2002). [6]. Y. Asao, H. Yoshinaga, H. Mori, H. Munakata, R. Isobe, H. Mizuno, T. Togano, N. Nishida, and Y. Hanyu, “Dot Inversion Spontaneous Polarization Structure in the Half-V-shaped Switching Ferroelectric Liquid Crystal Mode,” Jpn. J. Appl. Phys., Part 1 42, 554 (2003). [7]. Y. Iwamoto and Y. Iimura, “Transmitted Light Enhancement of Electric-Field-Controlled Multidomain Vertically Aligned Liquid Crystal Displays Using Circular Polarizers and a Cholesteric Liquid Crystal Film,” Jpn. J. Appl. Phys., Part 2 42, L51 (2003). [8]. Y. Iwamoto and Y. Iimura, “Transmittance Enhancement for Randomly Aligned Liquid Crystal Displays with Circular Polarizers,” Jpn. J. Appl. Phys., Part 2 41, L1383 (2002). [9]. T.Y. Yoon, J.H. Park, J.S. Sim, and S.D. Lee, “Self-formation of microdomains by the topographical and fringe field effects in a liquid crystal display with dielectric surface gratings,” Appl. Phys. Lett. 81, 2361 (2002). [10]. T. Tsujimura and A. Makita, “Molybdenum/aluminum stacked metal taper etching for high-resolution thin-film transistor liquid-crystal display,” J. Vac. Sci. Technol. B 20, 1907 (2002). [11]. C.W. Tang and S.A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., 51, 913(1987). [12]. C. W. Tang and S. A. VanSlyke, “Electroluminescence of doped organic thin films,” J. Appl. Phys., 65, 3610 (1989). [13]. A. Bernanose, “Electroluminescense of organic compounds,” Brit. J. Phys. Suppl. 4, S54 (1955). [14]. M. Pope, H. Kallmann, P. Magnante, “Electroluminescence in organic crystals,” J. Chem. Phys. 38, 2042 (1963). [15]. W. helfrich, W.G. Schneider, “Reconbination radiation in anthracene crystals,” Phys. Rev. Lett.140, 229 (1965). [16]. D.F. Williams, M. Schadt, “A simple organic electroluminescence diode,” Proc. IEEE Lett. 58, 476 (1970). [17]. N.V. Vityuk, V.V. Mikho, Sov. Phys. Semicond. 6, 1479 (1973). [18]. P.S. Vincent, W.A. Barlow, R.A. Hann, G.G. Roberts, “Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films,” Thin Solid Films 94, 476 (1982). [19]. G.G. Roberts, M. McGinnity, P.S. Vincett, W.A. Barlow, “Electroluminescence photoluminescence and electroabsorption of a lightly substituted anthracene langumuir film,” Solid State Commun. 32, 683 (1979). [20]. C. Adachi, M.A. Baldo, S.R. Forrest, and M.E. Thompson, “High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine) iridium doped into electron-transporting materials,” Appl. Phys. Lett. 77, 904 (2000). [21]. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Very high-efficiency green organic light-emitting devices based on electro- phosphorescence,” Appl. Phys. Lett. 75, 4 (1999). [22]. S. Tokito, T. Tsutsui, and Y. Taga, “Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. 86, 2407 (1999). [23]. S.E. Shaheen, G.E. Jabbour, M.M. Morrell, Y. Kawabe, B. Kippelen, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode,” J. Appl. Phys., 84, 2324 (1998). [24]. K.H. Weinfurtner, H. Fujikawa, S. Tokito, and Y. Taga, “Highly efficient pure blue electroluminescence from polyfluorene: Influence of the molecular weight distribution on the aggregation tendency,” Appl. Phys. Lett. 76, 2502 (2000). [25]. C.C. Wu, Y.T. Lin, H.H. Chiang, T.Y. Cho, C.W. Chen, K.T. Wong, Y. L. Liao, G. H. Lee, and S. M. Peng, “Highly bright blue organic light-emitting devices using spirobifluorene-cored conjugated compounds,” Appl. Phys. Lett. 81, 577 (2002). [26]. A. Shoustikov, Y. You, P.E. Burrows, “Orange and red organic light emitting devices using aluminum tris (5-hydroxyquinoxaline),” Synthetic Metals 91, 217 (1997). [27]. J. Lam, T. C. Gorjanc, Y. Tao, and M. D'lorio “Selective doping of multilayer organic light emitting devices,” J. Vac. Sci. Technol. A 18, 593 (2000). [28]. G.Y. Zhong, J. He, S.T. Zhang, Z. Xu, Z.H. Xiong, H.Z. Shi, and X.M. Ding, “In situ photoluminescence investigation of doped Alq,” Appl. Phys. Lett. 80, 4846 (2002). [29]. P. Ranke, I. Bleyl, J. Simmerer, and D. Haarer “Electroluminescence and electron transport in a perylene dye,” Appl. Phys. Lett. 71, 1332 (1997). [30]. T. Mori, H.G. Kim, T. Mizutani, and D.C. Lee “Electroluminescent Properties in Organic Light-Emitting Diode Doped with Two Guest Dyes,” Jpn. J. Appl. Phys., Part 1 40, 5346 (2001). [31]. R. Banerjee, S. Ray, N. Basu, A.K. Batabyal, and A.K. Barua, “Degradation of tin-doped indium-oxide film in hydrogen and argon plasma,” J. Appl. Phys. 62, 912 (1987). [32]. S. Major, S. Kumar, M. Bhatnagar, and K.L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides,”Appl. Phys. Lett. 49, 394 (1986). [33]. I.M. Chan, W.C. Cheng, and F.C. Hong, “Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surfaces,” Appl. Phys. Lett. 80, 13 (2002). [34]. S. Tada, M. Ito, M. Hamagaki, M. Hori, and T. Goto, “Cleaning of Glass Disk in Oxygen Plasma by Using Compact Electron-Beam- Excited Plasma Source,” Jpn. J. Appl. Phys., Part 1 41, 6553 (2002). [35]. Y. Hashimoto, Y. Osato, M. Tanaka, M. Hamagaki, and T. Sakakibara, “Effect of Oxygen Plasma Treatment of Indium Tin Oxide for Organic Light-Emitting Devices with Iodogallium Phthalocyanine Layer,” Jpn. J. Appl. Phys., Part 1 41, 2249 (2002). [36]. S.F. Chen, C.W. Wang, K.T. Kuo, and J.J. Wuu, “Effects of Hole-Injecting Materials on the Charge Injection and Luminous Properties of Highly Efficient Organic Light-Emitting Diodes,”in 2001 Electron Devices and Materials Symposia, Symposium WD2, Dec. 12-13, 2001, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C., 341, (2001). [37]. H.B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys, 48, 4729 (1977). [38]. T.M. Brown, R.H. Friend, I.S. Millard, D.J. Lacey, J. H. Burroughes, and F. Cacialli, “Efficient electron injection in blue-emitting polymer light-emitting diodes with LiF/Ca/Al cathodes,” Appl. Phys. Lett., 79, 174 (2001). [39]. T.M. Brown and F. Cacialli, “Energy level line-up in polymer light-emitting diodes via electroabsorption spectroscopy,” in IEE Proc. Optoelectron., 148, 74 (2001). [40]. T.M. Brown, R.H. Friend, I.S. Millard, D.J. Lacey, J.H. Burroughes, and F. Cacialli, “LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes,” Appl. Phys. Lett., 77, 3096 (2001). [41]. J. Yoon, J. Kim, T. Lee, and O. Park, “Evidence of band bending observed by electroabsorption studies in polymer light emitting device with ionomer/Al or LiF/Al cathode,” Appl. Phys. Lett., 76, 2152 (2000). [42]. L.S. Hung, C.W. Tang, and M.G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Appl. Phys. Lett., 70, 152 (1997). [43]. M. Stobel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, and A.Winnacker, “Space-charge-limited electron currents in 8-hydroxyquinoline aluminum,” Appl. Phys. Lett., 76, 115 (2000). [44]. S.E. Shaheen, G.E. Jabbour, M.M. Morelli, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.F. Nabor, R. Schlaf, E.A. Mash, and N.R. Armstrong, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode,” J. Appl. Phys, 84, 2324 (1998). [45]. T. Mori, H. Fujikawa, S. Tokito, and Y. Yaga, “Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy,” Appl. Phys. Lett., 73, 2763 (1998). [46]. G.E. Jabbour, Y. Kawabe, S.E. Shaheen, J.F. Wang, M. M. Morelli, B. Kippelen, and N. Peyghambarian, “Highly efficient and bright organic electroluminescent devices with an aluminum cathode,” Appl. Phys. Lett., 71, 1762 (1997). [47]. P. Piromreun, H. Oh, Y. Shen, G.G. Malliaras, J.C. Scott, and P.J. Brock, “Role of CsF on electron injection into a conjugated polymer,” Appl. Phys. Lett., 77, 2403 (2000). [48]. G.E. Jabbour, B. Kippelen, N.R. Armstrong, and N. Peyghambarian, “Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices,” Appl. Phys. Lett., 73, 1185 (1998). [49]. H. Fujikawa, T. Mori, K. Noda, M. Ishii, S. Tokito, andY. Taga, “Organic electroluminescent devices using alkaline-earth fluorides as an electron injection layer,” J. of Lumin., 87, 1177 (2000). [50]. S.P. Sibley, M.E. Thompson, P.E. Burrows, and S.R. Forrest, “Electroluminescence in molecular materials,” in Optoelectronic Properties of Inorganic Compounds, D. M. Roundhill, and J. Fackler, Eds. New York: Plenum, in press. [51]. L.J. Rothberg and A.J. Lovinger, “Status of and prospects for organic electroluminescence,” J. Mater. Res., 11, 3174 (1996). [52]. C.W. Tang, “Organic electroluminescent materials and devices,” in Dig. 1996 SID Int. Symp., SID, San Diego, CA, 1996, p. 181., “Organic electroluminescent materials and devices,” [53]. E. Aminaka, T. Tsutsui, and S. Saito, “Effect of layered structures on the location of emissive regions in organic electroluminescent devices,” J. Appl. Phys., 79, 8808 (1996). [54]. P.E. Burrows, G. Gu, V. Bulovic, S.R. Forrest, and M.E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. Electron Devices 44, 1188 (1997). [55]. C. Giebeler, H. Antoniadis, D.D.C. Bradley, et al., “Influence of the hole transport layer on the performance of organic light-emitting diodes,” J. Appl. Phys., 85, 608 (1999). [56]. G. Gu and S.R. Forrest, “Design of flat-panel displays based on organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 4, 83 (1998). [57]. J. Shi and C. W. Tang, “Doped organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 70, 1665 (1997). [58]. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, “Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant,” Appl. Phys.Lett. 67, 3853 (1995). [59]. B.J. Jung, C.B. Yoon, H.K. shim, et al., Adv. Funct. Mater. 11, 430 (2001). [60]. G. Gu, G. Parthasarathy, P. Tian, et al., “Transparent stacked organic light emitting devices. I. Design principles and transparent compound electrodes,” J. Appl. Phys., 86, 4067 (1999). [61]. T. Forster, Discuss. Faraday Soc. 7, 27 (1959). [62]. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Chap. 10 (Plenum, New York, 1983). [63]. N.J. Turro, Modern Molecular Photochemistry, Chap. 9 (Benjamin/Cummings, Menlo Park, CA, 1978). [64]. Y. Hamada, H. Kanno, T. Tsujioka, H. Tadahashi, and T. Usuki. “Red Organic Light-Emitting Diodes Using an Emitting Assist Dopant,” Appl. Phys. Lett. 75, 1682 (1999). [65]. O.B. Garcia and C.W. Struck, “Monte Carlo Treatment of the Nonradiative Energy Transfer Process for Nonrandom Placements of Dopants in Solids,” J. Chem. Phys. 100, 4554 (1994). [66]. Z.Y. Xie, L.S. Hung, and S.T. Lee, “High-efficiency Red Electroluminescence from a Narrow Recombination Zone Confined by an Organic Double Heterostructure,” Appl. Phys. Lett. 79, 1048 (2001). [67]. A.A. Shoustikov, Y. You, and M.E. Thompson, “Electroluminescence color tuning by dye doping in organic light-emitting diodes,” IEEE Journal of Selected Topics in Quamtum Electronics, 4, 3 (1998). [68]. H. Liu, W. Gao, K. Yang, B. Chen, S. Liu, and Y. Bai, “Effect of Rubrene on Characteristic of Red Organic Electroluminescent Device Doped with Rubrene,” Chem. Phys. Lett. 352, 353 (2002). [69]. T. Wakimoto, Y. Yonemoto, J. Funaki, M. Tsuchida, R. Murayama, H. Nakada, H.Matsumoto, and M. Nomura, “Stability Characteristics of Quinacridone and Coumarin Molecules as Quest Dopants in the Organic LEDs,” Synth. Met. 91, 15 (1997). [70]. C.H. Chen, C.W. Tang, J. Shi, and K.P. Klubek, “Recent Developments in the Synthesis of Red Dopants for Alq3 Hosted Electroluminescence,” Thin Solid Films363, 327 (2000). [71]. Z.L. Zhang, X.Y. Jiang, S.H. Xu, et al., “The Effect of Rubrene as a Dopant on the Efficiency and Stability of Organic Thin Film Electroluminescent Device,” J. Phys. D: Appl. Phys. 31, 32 (1998).
|