跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王韶博
研究生(外文):Shao-Po Wang
論文名稱:人工電子耳電刺激誘發複合神經活動電位模擬與訊號處理
論文名稱(外文):Modeling Evoked Compound Action Potential and Signal Processing in Cochlear Implant
指導教授:蔡德明蔡德明引用關係
指導教授(外文):T. M.Choi
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:76
中文關鍵詞:人工電子耳
外文關鍵詞:cochelar implant
相關次數:
  • 被引用被引用:2
  • 點閱點閱:732
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
人工電子耳已發展多年,經由臨床的數據顯示,雖然大部分的重度聽障者都能經由植入電子耳的方法得到幫助,但是,效果因人而異且相差甚大,由此可知電子耳尚需有效的改進方法。改善電子耳的方法主要有兩種,其一是制定新的電流刺激策略,而另外一種則是改變電極的刺激方法。目前而言,當一種新的刺激策略或新型電極被發展出來,評估效果優劣的唯一方法就是直接使用於病人身上,這樣不僅耗費醫療資源並增加了手術的危險,因此希望能藉由建立電腦模擬系統來事先判別新式刺激策略或新式電極的優良與否。目前尚無有效模擬電刺激誘發全神經活化電位(EAP)模擬聽神經之方法,本論文基於三維耳蝸模型,提出有限元素法、GSEF聽神經與等效電路,進而模擬出EAP之結果。
ABSTRACT
A prosthetic device, called the cochlear implant, can be implanted in the inner ear and can restore partial hearing to profoundly deaf people. According to the clinical data, the effect is vary different from individual. Therefore, improved efficacy to cochlear implant is such a important work. There are two ways can ameliorate the situation. One is to find the new stimulation strategy, the other is to design new electrode dimension over again. When new stimulation strategy or new electrode be developed. Apply to patient is only way to distinguish weather the new design fine or inferior. We are going to find some method called modeling evoked compound action potential in cochlear implant that we can know the performance on new design without any surgery. Currently there is no easy ways to model evoked compound action potential (EAP) of the auditory nerve fibers. This thesis presents a method to model the EAP using finite element method, Schwarz-Eikhof nerve fiber model, and equivalent circuit models on a 3D cochlea model. The simulation results are validated by EAP measured in cochlear implant users.
目錄
中文摘要……………………………………………………………………..i
英文摘要…………………………………………………………………….ii
目錄……………………………………………………………………………iv
圖目錄…………………………………………………………………………vi
表目錄……………………………………………………………………..viii
縮寫……………………………………………………………………………ix
第一章 簡介……………………………………………………………….1
1.0 前言……………………………………………….…1
1.1 聽覺系統…………………………………….....1
1-1-1 聽覺的產生…………………………………………1
1-1-2 聽覺障礙…………………………………………..2
1.2 電子耳發展過程……………………………………3
1.3 電子耳結構…………………………………………5
1.4 研究動機與目的………………………………………6
1.5 論文架構………………………………………………7
第二章 聽神經模型……………………………………………………...8
2.1 聽神經模型發展過程…………………8
2.2 GSEF模型介紹……………………………9
第三章 三維耳蝸模型……………………………………………………16
3.1 耳蝸模型…………………………………16
3-1-1 耳蝸的測量………………………………………………………16
3-1-2 耳蝸模型發展過程……………………………………..………..17
3-1-3 三維耳蝸模型………………………………………………..…..18
3.2 聽神經模型配置………………………………………..………….20
3.3 電極類型……………………………………………….…………..21
3.4 三維耳蝸模型、聽神經模型與電極模型……………...…………23
第四章 EAP與模擬結果………………………………………………..……….24
4.1 EAP…………………………………………………………...…….24
4-1-1 選擇EAP之原因…………………………………………..…….25
4.2 EAP於臨床上之應用………………………………………….…..26
4.3 EAP基本架構………………………………………………...……26
4-3-1 EAP介紹……………………………………………………...…..26
4-3-2 Subtraction method for recording the EAP…………………..……28
4.4 模擬系統整體架構……………………………………………..….30
4-4-1 耳蝸上之電位分佈…………………………………………...….30
4-4-2 聽神經之活化電位………………………………………………33
4-4-3 聽神經至測量電極之等效電路…………………………..…….35
4-4-4 完整架構…………………………………………………...……40
4.5 結果………………………………………………………….…….41
第五章 語音訊號處理………………………………………………………..…46
5.1 訊號處理………………………………………………….……….46
5.1.1訊號處理介紹…………………………………………………….46
5.1.2 Compressed-Analog (CA) Approach……………………...………47
5.1.3 Simultaneous Analog Stimulation (SAS) Approach………………48
5.1.4 Continuous Interleaved Sampling (CIS) Approach…………...…..48
5.1.5 SPEAK…………………………………………………………….49
5.2 程式架構與結果………………………………………………..….49
5.2.1 程式架構………………………………………………………….49
5.2.2結果………………………………………………………………..51
5.3 討論……………………………………………………………..….56
第六章 結論與未來研究方向…………………………………………………...57
6.1 結論………………………………………………………..……….57
6.2 原創性研究貢獻………………………………………………..….57
6.2 未來研究方向……………………………………………..……….57
附錄一……………………………………………………………………………...59
附錄二………………………………………………………………………………62
附錄三………………………………………………………………………………67
參考文獻……………………………………………………………………………73
圖目錄
圖1.1 聽覺系統
圖1.2 人工電子耳完整架構
圖2-1 圖中代表的是GSEF聽覺神經纖維模型的其中三點
圖3-1 Finley利用有限元素法描繪出耳蝸的剖面圖
圖3.2 三維耳蝸側視圖(左)與俯視圖(右)
圖3-3 耳蝸模型側面橫斷面圖
圖3-4 聽神經置於耳蝸中之示意圖
圖3.4 環狀電極之其中一小段
圖3-5 電極置於鼓階中透視圖
圖3-6 完整3-D模型
圖4-1 EAP當中四種刺激形式
圖4-2 3-D耳蝸電位分佈圖
圖4-3 神經節點活化反應圖
圖4-4 等效電路架構圖
圖4-4 三導體之電容系統
圖4-5 双節點(source)對單一電極(sink)之系統
圖4-6 模擬流程圖
圖4-7 EAP波形圖
[1] Simmons F. B., “Electrical stimulation of the auditory nerve in man,” Arch Otolaryng, vol. 84, pp. 24-76, 1996.
[2] Djourno A, and Eyries C, “Prothese Autitive par excitation electrique a distance du nerf sensoriel a l’aide d’un bobinage inclus a demcure,” Presse Med, vol. 35, pp. 14-17, 1957.
[3] House W. F., and Berliner K. I., “Cochlear implant: from idea to clinical practice, in cochlear implants: a practical guide,” H. Cooper, Editor. Singular Publishing Group, Inc.: San Diego, CA, pp. 9-33, 1991.
[4] Chouard C. H., and MacLeod P, “Implantation of multiple intracochlear electrodes for rehabilitation of total deafness: preliminary report,” The Laryngoscope, vol. 36, pp. 1743-1751, 1991.
[5] Schindler R. A., and Merzenich M. M., “Cochlear implants,” Ranven Press, New York, p.601.
[6] Clark G. M., et al., “A multiple-electrode hearing prosthesis for cochlear implantation in deaf patients,” Med Prog Technol, vol. 5, pp. 127-140,1977.
[7] Hochmair E. S., Hochmair-Desoyer I. J., and Burian K., ”Experience with implanted auditory nerve stimulator,” Trans Am Soc Artif Intern Organs, vol. 25, pp. 357-360, 1979.
[8] Hochmair-Desoyer I. J., et al., “Four years of experience with cochlear prostheses,” Med Progr Technol, vol. 8, pp. 107-119, 1981.
[9] Shannon R. V., et al., “Speech recognition with primarily temporal cues,” Science, vol. 270, pp. 303-304, 1995.
[10] Wilson B. S., et al., “Better speech recognition with cochlear implants,” Nature, vol. 352, pp. 236-238, 1991.
[11] Philipos C. L., “Introduction to Cochlear Implants,” IEEE Engineering in Medicine and Biology Magazine, vol. 18, pp. 32-42, 1999.
[12] Francis A. S., “The Past, Present, and Future of Cochlear Prostheses,” IEEE Engineering in Medicine and Biology Magazine, vol. 18, pp. 27-33, 1999.
[13] Frijns J. H. M., de Snoo S. L., and Schoonhoven R., “Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea,” Hearning Research, vol. 95, pp. 93-124, 1995.
[14] Frijns J. H. M., Jaap Mooij, and Jaap H. ten Kate, “A quantitative approach to modeling mammalian myelinated nerve fibers for electrical prosthesis design,” IEEE transactions on biomedical engineering, vol. 41,1994.
[15] Frankenhaeuser B, and Huxley, A. F., “The action potential in the myelinated nerve fiber,” Xenopus laevis as computed on the basis of voltage clamp data, J. Physiol, vol. 171, pp. 302-315, 1964.
[16] Colombo J, and Parkins J. W., “A model of electrical excitation of the mammalian auditory-nerve neuron,” Hear. Res., vol. 31, pp. 287-312, 1987.
[17] Reilly J. P., Freeman V. T., and Larkin W. D., “Sensory effects of transient electrical stimulation: evolution with a neuroelectrical model,” IEEE Trans. Biomed. Eng., vol. 32, pp. 1001-1011, 1985.
[18] Motz H., and Rattay F., “A study of the application of the Hodgkin-Huxley and the Frankenhaeuser-Huxley model for electrostimulation of the acoustic nerve,” Neuroscience, vol. 18, pp. 699-712, 1986.
[19] Rattey F., and Aberham M., “Modeling axon membranes for functional electrical stimulation,” IEEE Trans. Biomed. Eng., vol. 40, pp. 1201-1209, 1993.
[20] Schwarz J. R., and Eikhof G., “Na current and action potentials in rat myelinated nerve fibers at 20 and 37℃,” Pflugers Arch., vol. 409, pp. 569-577, 1987.
[21] Tania Hanekom, “Modelling of the electrode-auditory nerve fiber interface in cochlear prostheses,” submitted as partial fulfillment of the requirements for the degree Philosophiae Doctor in the Faculty of Engineering, Built Environment and Information Technology University of Pretoria, Pretoria.
[22] 陳郁斌,”以有限元素法與計算神經模型模擬分析人工電子耳電極與聽神經”,義守大學電機工程學系碩士論文,2003。
[23] Shin-Ichi Hatsushika, Robert K. Shepherd, Yit C. Tong, Geaeme M. Clark, and Sotaro Funasaka, “Dimensions of the scala tympani in the human and cat with reference to cochlear implants,” Annals of Otology, Rhinology and Laryngology, vol. 99, pp. 261-266.
[24] Finly C. C., Wilson B. S., and White M. W., “Models of neural responsiveness to electrical stimulation,” In: J.M. Miller and F.A. Spelman (Eds). Cochlear Implants: Model of the Electrically Stimulated Ear. Springer, New York, pp. 55-96, 1990.
[25] Suesserman M. F. and Spelman F. A., “Lumped-parameter model for in vivo cochlear stimulation,” IEEE Trans. Biomed. Eng., vol. 40, pp. 237-245, 1993.
[26] Nucleus Cochlear Implant System, http://www.cochlear.com/, Cochlear Company.
[27] Miller C. A., Abbas P. J., Rubinstein J. T., “An empirically based model of the electrically evoked compound action potential,” Hearing Research, vol. 135, pp. 1-18, 1999.
[28] Shepherd R. K., Hatsushika S., and Clark G. M., “Electrical stimulation of the auditory nerve: The effect of electrode position on neural excitation,” Hearing Research, vol. 66, pp. 108-120, 1993.
[29] van den Honert C., Stypulkowski P. H., “Temporal response patterns of single auditory nerve fibers elicited by periodic electrical stimuli,” Hearing Research, vol. 29, pp. 207-222, 1987.
[30] Franck K. H., “The electrically evoked whole-nerve action potential: fitting applications for cochlear implant users,” Ph. D Thesis, University of Washington, 1999.
[31] Siu-Ling Chi, “Correlating loudness and EAP measures,” Ph. D Thesis, University of Iowa, 2001.
[32] Clayton R. Paul, “Analysis of Multiconductor Transmission Lines.”
[33] David K. Cheng, “Field and Wave Electromagnetics.”
[34] Philipos C. L., “Signal-Processing Techniques for Cochlear Implants,” IEEE Engineering in Medicine and Biology Magazine, vol. 18, pp. 34-46, 1999.
[35] Francis A. S., “The Past, Present, and Future of Cochlear Prostheses,” IEEE Engineering in Medicine and Biology Magazine, vol. 18, pp. 27-33, 1999.
[36] Donald K. E., William M. R., and Lorraine A. D., “Sound processing for cochlear implants,” Proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6, pp. 3449 —3452, 2001.
[37] Kaibao Nie, Ning Lan, Shangkai Gao, “Wavelet-based feature extraction of speech signal for cochlear implants,” BMES/EMBS Conference, Proceedings of the First Joint, vol. 1, 1999, pp. 654.
[38] Kaibao Nie, Ning Lan, Shangkai Gao, “Implementation of CIS speech processing strategy for cochlear implants by using wavelet transform,” Signal Processing Proceedings, ICSP ''98. 1998 Fourth International Conference on, vol. 2, pp. 1395 -1398.
[39] Behrenbruch, C.P., Lithgow, B.J., “SNR improvement, filtering and spectral equalisation in cochlear implants using wavelet techniques,” Bioelectromagnetism, Proceedings of the 2nd International Conference on, pp. 61 -62, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top