跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉益昌
研究生(外文):Yi-Chang Liu
論文名稱:慢性骨髓性白血病病人以Imatinib治療其JunB與BCR-ABL之基因表現及臨床反應
論文名稱(外文):Evaluating the effect of imatinib mesylate in chronic myeloid leukemia patients in the expression of JunB and BCR-ABL gene
指導教授:林勝豐林勝豐引用關係
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:imatinibJunBBcr-Abl即時定量RT-PCR慢性骨髓性白血病
外文關鍵詞:imatinibJunBBcr-Ablreal-time quantitative RT-PCRchronic myeloid leukemia
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:1
Imatinib mesylate是一種有效的Bcr-Abl酪胺酸激酶〔tyrosine kinase〕抑制劑,這個激酶是慢性骨髓性白血病的病理發生學上一相當關鍵的蛋白質,此藥物是最近對癌症治療研究最熱門的所謂標靶治療〔target therapy〕的藥物之一,它已顯示出相當有效的臨床治療反應,包括血液學上的緩解及細胞遺傳學上的緩解,特別是對慢性期的病人,其療效也已得到包括phase III在內的各種臨床試驗證實。JunB是activating protein-1 轉錄因子的Jun 家族之一員,調節細胞的成長分化及增生轉變。最近的研究發現缺少JunB表現的基因轉殖的老鼠,會表現出骨髓增殖性疾病,類似於人類慢性骨髓性白血病的變化,其在骨髓性細胞生成上,扮演類似腫瘤抑制基因的角色。另外的研究也發現在慢性骨髓性白血病的病人其JunB的表現缺乏,是由於JunB基因的promoter區域被甲基化而導致其不活化,而其疾病不同的表現和被甲基化的比例有關。在此我們利用即時定量RT-PCR的方法,定期追蹤慢性骨髓性白血病病人在接受imatinib治療後,其JunB和Bcr-Abl在週邊血液的表現。總共有22位病人接受imatinib的治療,19位接受規則追蹤的病人中,9位男性,10位女性,平均年齡37歲,平均追蹤期為6個月,14位病人為慢性期患者,5位為加速期患者。14位慢性期的病人〔100%〕均達到完全血液學緩解,達到主要細胞遺傳學反應有10位〔71.4%〕,完全細胞遺傳學反應有9位〔64.3%〕,平均時間為16及18星期,而分子學上反應則有8位〔57.1%〕,平均時間為21星期。在其餘5位加速期的病人,有1位〔20%〕達完全細胞遺傳學及分子學上反應,有2位〔40%〕仍維持在加速期,有2位〔40%〕疾病進展至芽細胞危象期。副作用方面,全部病人因治療導致的grade 3和grade 4的白血球低下和血小板低下分別有8位〔36.4%〕及6位〔27.3%〕,其餘非血液學上副作用較少發生。在JunB和Bcr-Abl的表現上,隨治療而JunB表現增加而Bcr-Abl下降或偵測不出的病人有5位,臨床上都能達完全細胞遺傳學反應〔100%〕及分子學上反應〔100%〕。而JunB表現越來越少甚至很低且Bcr-Abl一直存在的病人有2位,均為加速期進展至blast crisis而導致mortality,且合併clonal evolution的病人。無規則的JunB表現且Bcr-Abl沒偵測到有3位,臨床上均達完全細胞遺傳學反應,而Bcr-Abl逐漸減少甚至消失有3位,其中2位達完全細胞遺傳學反應,1位達主要細胞遺傳學反應,其平均診斷至開始治療期間及平均達主要細胞遺傳學反應之時間和JunB增加組無明顯之差異。另無規則的JunB和Bcr-Abl表現共6位,4位慢性期而2位加速期病人,臨床上均維持於原疾病分期,並無細胞遺傳學反應,治療反應未如預期。而JunB表現增加與否,和主要細胞遺傳學反應,完全細胞遺傳學反應及分子學上反應之有無,有顯著性差異存在。因此我們認為,雖然所收集的病人及檢體數不夠多,但臨床上對於治療反應的評估,包括主要細胞遺傳學反應和完全細胞遺傳學反應的比例,和其他研究結果相類似,也證實了imatinib的臨床療效,惟可能有較多grade 3-4的白血球低下和血小板低下的情況。而JunB表現的變化,特別是那些隨著治療而增加表現的族群和良好臨床反應的關係,暗示著JunB的表現增加,可能可以當作一個預測良好治療效果的指標,及發展新治療方法的依據。而由於其他能達到完全細胞遺傳學反應的病人也有部分呈現不一致的JunB表現,也暗示著可能另有其他的機制,能夠共同調節JunB的表現。而是否imatinib的治療,能夠導致更多的JunB基因的promoter area的demethylation或經由其他機制使JunB的表現增加,是需再探討之處。而另外衍生出的問題,包括對於Bcr-Abl的其他下游路徑及不同的受質,是否會因imatinib的治療同時改變其表現,還有對於那些JunB和Bcr-Abl表現均起伏不定的病患,臨床上可能產生抗藥性的原因,以及對於這些病人更長期的追蹤變化,包括能否持續維持良好反應,也需更長時間及更進一步的研究來證實。

Imatinib mesylate, a potent inhibitor of the Bcr-Abl tyrosine kinase that is central to the pathogenesis of CML, has demonstrated remarkable hematologic and cytogenetic response especially in chronic phase. This was well documented in various studies including phase III study. JunB is a component of the Jun family genes of the activating protein-1 transcription factors that are important in the control of cell growth, differentiation and neoplastic transformation. It was demonstrated that transgenic mice lacking JunB expression developed myeloproliferative disease and eventually progressing to blast crisis that resembles human CML. Recently, it was demonstrated that down-regulated JunB expression in CML was due to the inactivation of JunB gene by methylation in the promoter area, and the differential expression was correlated to the ratio of cells being methylated. Here we used real-time quantitative RT-PCR to monitor the serial changes of both JunB and Bcr-Abl expression in peripheral blood in our patients receiving imatinib. Total 22 patients were treated with imatinib, and in 19 of the 22 patients (9 male and 10 female, median age 37 years-old) who received regular follow-up, 14 patients were in chronic phase and 5 patients were in accelerating phase. All of the 14 chronic phase patients achieved complete hematologic response (100%), and major cytogenetic response was found in 10 of 14 (71.4%) patients and complete cytogenetic response in 9 of 14 (64.3%) patients, with median time 16 and 18 weeks respectively. Molecular response was also noted in 8 of 14 (57.1%) patients with median time 21 weeks. Among the 5 patients in
accelerating phase, one of them (20%) achieved complete cytogenetic response and molecular response, two of them (40%) remained in accelerating phase and two of them (40%) with disease progression to blast crisis with clonal evolution. Grade III to IV leukopenia and thrombocytopenia caused by imatinib was found in 8 of 19 (36.4%) and 6 of 19 (27.3%) patients, and other side effects were not so obvious compared with other studies. Gradual increase in JunB expression with decrease or undetectable Bcr-Abl expression during imatinib treatment was found in 5 patients, all of them achieved complete cytogenetic response (100%) and even molecular response (100%). Gradual decrease to even very low level of JunB expression with variable Bcr-Abl expression was found in two patients who possessed disease progression to blast crisis with clonal evolution and leaded to mortality. Variable JunB expression with undetectable Bcr-Abl expression was found in 3 patients, all of them achieved complete cytogenetic response. Variable JunB expression with gradual decrease Bcr-Abl expression was found in other 3 patients, 2 of them achieved complete cytogenetic response and one of them achieved major cytogenetic response. No significance existed on the median time to complete cytogenetic response and median time to initiation of imatinib between these two groups. The other 6 patients (4 in chronic phase and 2 in accelerating phase) with variable JunB and Bcr-Abl expression revealed no cytogenetic response and remained in stable disease. Significance existed between increased JunB expression and good clinical response such as complete cytogenetic response or molecular response. Conclusively, similar clinical response rate including major and complete cytogenetic response during chronic and accelerating phase was found in our results compared with previous studies, indicated the clinical efficacy of imatinib in the treatment of CML. It seemed that more grades III to IV leukopenia and thrombocytopenia were found during treatment in our study. The correlation between those who possessed gradual increase in JunB expression and good clinical response implied that the increase in JunB expression during imatinib treatment might be used as a predictor for good clinical response and a basis for developing new treatment tragedy. The fact that variable JunB expression could be found in those who possessed complete cytogenetic response indicated that there were still other mechanisms responsible for regulation of JunB expression. The possible mechanism accounting for increasing JunB expression is caused by more demethylation in promoter area of JunB gene or by other mechanism needs to be further investigated. Furthermore, the changes in specific genes expression other than JunB that is down-streamed to Bcr-Abl protein during imatinib treatment, the possible mechanisms for those who revealed drug resistance, and the long-term effects of imatinib, still needed to be further investigated.

目 錄
中文摘要…………………………………… 2
英文摘要…………………………………… 5
第一章 緒論……………………………… 9
第二章 實驗研究及方法…………………18
第三章 實驗結果…………………………27
第四章 討論………………………………45
第五章 參考文獻…………………………57

1. Fiakow PJ, Jacobson RJ, Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 1977;63:125-130
2. Faderl S, Talpaz M, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med 1999;341:164-172
3. Sawyers CL. Chronic Myeloid leukemia. N Engl J Med 1999;340:1330-1340
4. Kantarjian HM, Dixon D, Keating MJ et al. Characteristics of accelerated disease in chronic myelogenous leukemia. Cancer 1988;61:1441-1446
5. Sokal JE, Baccarani M, Russo D et al. Staging and prognosis in chronic myelogenous leukemia. Semin Hematol 1988;25:49-61
6. Griffin JD, Todd RF III, Ritz J et al. Differentiation patterns in the blastic phase of chronic myeloid leukemia. Blood 1983;61:85-91
7. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science 1960;132:1497
8. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243:290-293
9. Bartram CR, de Klein A, Hagemeijer A et al. Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 1983; 306:277-280
10. Groffen J, Stephenson JR, Heisterkamp N et al. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 1984;36:93-99
11. Heisterkamp N, Stephenson JR, Groffen J et al. Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 1983;306:239-242
12. Shtivelman E, Lifshitz B, Gale RP et al. Fused transcript of abl and bcr genes in chronic myelogenous leukemia. Nature 1985; 315:550-554
13. Lugo TG, Pendergast AM, Mullar AJ et al. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990;247:1079-1082
14. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990;247:824-830
15. Kurzrock R, Gutterman JU, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med 1988;319:990-998
16. Specchia G, Mininni D, Guerrasio A et al. Ph positive acute lymphoblastic leukemia in adult: molecular and clinical studies. Leuk Lymphoma 1995;18:suppl 1:37-42
17. Laneuville P. Abl tyrosine protein kinase. Semin Immunol 1995;7:255-266
18. Shepherd P, Suffolk R, Hasler J et al. Analysis of molecular breakpoint and mRNA transcripts in a prospective randomized trial of interferon in chronic myeloid leukemia: no correlation with clinical features, cytogenetic response, duration of chronic phase, or survival. Br J Haematol 1995;89:546-54
19. Kurzrock R, Shtalrid M, Romero P et al. A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukemia. Nature 1987;325:631-635
20. Pane F, Frigeri F, Sindona M et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker. Blood 1996;88:2410-2414.
21. Melo JV, Myint H, Galton DAG et al. P190 BCR-ABL chronic myeloid leukemia: the missing link with chronic myelomonocytic leukemia? Leukemia 1994;8:208-211.
22. McWhirter JR, Galasso DL, Wang JY. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993;13:7587-7595
23. Pendergast AM, Quilliam LA, Cripe LD et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993;75:175-185
24. Pendergast AM, Muller AJ, Havlik MH et al. BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell 1991;66:161-171.
25. Oda T, Heaney C, Druker BJ et al. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 1994;269:22925-8
26. Salgia R, Li JL, Lo SH et al. Molecular cloing of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL. J Biol Chem 1995;270:5039-5047.
27. Gordon MY, Dowding CR, Greaves MF et al. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukemia. Nature 1987;328:342-344.
28. Verfaillie CM, Hurley R, Zhao RC. et al. Pathophysiology of CML: do defects in integrin function contribute to the premature circulation and massive expansion of the BCR-ABL positive clone? J Lab Clin Med 1997;129:584-591
29. Zhao RC, Tarone G, Verfaillie CM. Presence of the adhesion inhibitory β1B intergrin isoform on CML but not normal progenitors is at least in part responsible for the decreased CML progenitor adhesion [abstract]. Blood. 1997;90:393a
30. Uemura N, Griffin JD. The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration. J Biol Chem 1999:274: 37525-37532.
31. Sattler M, Salgia R, Okude K et al. The protooncogene product p120 CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR-ABL, and p210BCR-ABL to the phosphatigylinositol-3’ kinase pathway. Oncogene 1996;12: 839-846
32. Pelicci G, Lanfrancone L, Salcini AE et al. Constitutive phosphorylation of Shc proteins in human tumors. Oncogene 1995;11:899-907
33. Ilaria RL Jr, Van Etten RA. P210 and P190 (BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996;271:31704-31710
34. Chai SK, Nichols GL, Rothman P. Constitutive activation of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells derived from leukemic patients. J Immunol 1997;159:4720-4728
35. de Groot RP, Raaijmakers JA, Lammers JW et al. STAT5 activation by BCR-Abl contributes to transformation of K562 leukemia cells. Blood 1999;94:1108-1112
36. Horita M, Andreu EJ, Benito A et al. Blockade of the Bcr-abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppression signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 2000;191:977-984
37. Sillaber C, Gesbert F, Griffin JD et al. STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 2000;95:2118-2125
38. Daley GQ, Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci U S A. 1988;85:9312-9316
39. Skorski T, Kanakaraj P, Nieborowska Skorska M et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995;86:726-736
40. Skorski T, Bellacosa A, Nieborowska Skorska M et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997;16:6151-6161
41. Franke TF, Japlan DR, Cantley LC. PI3K: down-stream AKTion blocks apoptosis. Cell 1997:88:435-437
42. del Peso L, Gonzalez-Garcia M, Nunez G et al. Interleukin-3-induced phosphorylation of bad through the protein kinase akt. Science 1998;278:687-689
43. Sawyers CL, Callahan W, Witte ON. Dominant negative MYC blocks transformation by ABL oncogenes. Cell 1992;70:901-10
44. Zou X, Rudchenko S, Calame K et al. Induction of c-myc transcription by the v-Abl tyrosine kinase requires Ras, Raf1, and cyclin-dependent kinases. Genes Dev 1997;11:654-662
45. Sirard C, Laneuville P, Dick JE. Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M70E cells by an autocrine mechanism. Blood 1994;83:1575-1585
46. Puil L, Liu J, Gish G et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signaling pathway. EMBO J 1994;13: 764-773
47. Cortez D, Kadlec L, Pendergast AM. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 1995;15:5531-5541
48. Bedi A, Zehnbauer BA, Jones RJ et al. Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 1994;83: 2038-2044
49. Bedi A, Barber JP, Bedi GC et al. BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. Blood 1995;86:1148-1158
50. Dubrez L, Eymin B, Solary E et al. BCR-ABL delays apoptosis upstream of procaspase-3 activation. Blood 1998;91:2415-2442
51. Amarante Mendes GP, Naekyung Kim C, Liu L et al. Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome C and activation of caspase-3. Blood 1998;91:1700-1705
52. Sanchez Garcia I, Martin Zanca D. Regulation of Bcl-2 gene expression by BCR-ABL is mediated by Ras. J Mol Biol 1997;267:225-228
53. Neshat MS, Raitano AB, Sawyers CL et al. The survival function of the Bcr-abl oncogene is mediated by Bad-dependent and —independent pathways: roles for phosphatidyl-inositol 3-kinase and Raf. Mol Cell Biol 2000;20:1179-1186
54. Majewski M, Nieborowska-Skorska M, Salomoni P et al. Activation of mitochondrial Raf-1 is involved in the antiapoptotic effects of Akt. Cancer Res 1999;59:2815-2819
55. Gabriele L, Phung J, Fukumoto J et al. Regulation of apoptosis in myeloid cells by interferon consensus sequence-binding protein. J Exp Med 1999;190:411-421
56. Schindler T, Bornmann W, Pellicena P et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science. 2000;289:1938-1942
57. Buchdunger E, Zimmermann J, Mett H et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 1996;56:100-104
58. Druker BJ, Tamura S, Buchdunger et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-abl positive cells. Nat Med 1996;2:561-566
59. Buchdunger E, Cioffi CL, Law N et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000;295:139-145
60. Heinrich MC, Griffith DJ, Druker BJ et al. Inhibition of c-kit receptor tyrosine kinase activity by STI-571, a selective tyrosine kinase inhibitor. Blood 2000;96:925-932
61. Okuda K, Weisberg E, Gilliland DG et al. ARG tyrosine kinase activity is inhibited by STI571. Blood 2001;97:2440-2448
62. Yiash P, Gazit A, Gilon C et al. Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science 1988;242:933-935
63. Druker BJ, Lydon NB. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 2000;105:3-7
64. Buchdunger E, Cioffi CL, Law N et al. Abl protein-tyrosine kinase inhibitor STI-571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000;295:139-145
65. Beran M, Cao X, Estrov Z, et al. Selective inhibition of cell proliferation and BCR-ABL phosphorylation in acute lymphoblastic leukemia cells expressing Mr 190,000 BCR-ABL protein by a tyrosine kinase inhibitor (CGP-57148). Clin Cancer Res 1998;4:1661-1672
66. Carroll M, Ohno-Jones S, Tamura S et al. CGP-57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 1997;90:4947-4952
67. Deininger MW, Goldman JM, Lydon N et al. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 1997;90:3691-3698
68. Buchdunger E, Zimmermann J, Mett H et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res 1996;56:100-104
69. le Coutre P, Mologni L, Cleris L et al. In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. J Natl Cancer Inst 1999;91:163-168
70. Durker BJ, Talpaz M, Resta DJ et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031-1037
71. Druker BJ, Sawyers CL, Kantarjian H et al. activity of a specific inhibitor of the BCR-ABL tyrosine in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001;344:1038-1042
72. Kantarjian H, Sawyers C, Hochhaus A et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002;346:645-652
73. Talpaz M, Silver RT, Druker BJ et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: result of a phase 2 study. Blood 2002;99:1928-1937
74. Sawyers CL, Hochhaus A, Feldman E et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myeloid leukemia in myeloid blast crisis: results of a phase II study. Blood 2002;99:3530-3539
75. Angel P, Karin M. The role of JUN, Fos, and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1991;1072:129-157
76. Mollinedo F, Vaquerizo MJ, Naranjo JR. Expression of c-jun, junB and junD proto-oncogenes in human peripheral-blood granulocytes. Biochem J 1991;273:477-479
77. Lord KA, Hoffman-Liegermann B, Liebermann DA. Proto-oncogenes of the fos/jun family of transcription factors are positive regulators of myeloid differentiation. Mol Cell Biol 1993;13:841-851
78. Chiu R, Angel P, Karin M. Jun-B differs in its biological properties from, and is a negative regulator of, c-Jun. Cell 1989;59:979-986
79. Hsu JC, Cressman DE, Taub R. Promoter-specific transactivation and inhibition mediated by JunB. Cancer Res. 1993;53:3789-3794
80. Schütte J, Viallet J, Nau M, Segal S, Fedorko J, Minna J. jun-B inhibits and c-fos stimulates the transforming and trans-activating activities of c-jun. Cell. 1989;59:987-997
81. Schorpp-Kistner M, Wang Z-Q, Angel P, Wagner EF. JunB is essential for mammalian placentation. EMBO J 1999;18:934-948
82. Schorpp M, Jäger R, Schellander K, et al. The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Res 1996;24:1787-1788
83. Passegué E, Wanger EF. JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression. EMBO J 2000;19:2969-2979
84. Bakiri L, Lallemand D, Bossy-Wetzel E, Yaniv M. Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J 2000;19:2056-2068
85. Schreiber M, Kolbus A, Piu F, et al. Control of cell cycle progression by c-Jun is p53 dependent. Gene Dev 1999;13:607-619
86. Passegué E, Jochum W, Schorpp-Kistner M, Mohle-Steinlein U, Wagner EF. Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking JunB expression in the myeloid lineage. Cell 2001;104:21-32
87. Yang MY, Liu TC, Lin SF et al. JunB gene expression in inactivated by methylation in chronic myelogenous leukemia. Blood 2003;101:3205-3211
88. O’brien SG, Guilhot F, Druker BJ et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994-1004
89. le Coutre P, Tassi E, Varella-Garcia et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 2000;95:1758-1766
90. Weisberg E, Griffin JD. Mechanisms of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 2000;95:3498-3505
91. Gorre ME, Mohammed M, Ellwood K et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001;293:876-880
92. Branford S, Rudzki Z, Walsh S et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who developed imatinib (STI571) resistance. Blood 2002;99:3472-3475
93. Hofmann WK, de Vos S, Elashoff D et al. Relation between resistance of Ph-positive acute lymphoblastic leukaemia to the tyrosine kinase inhibitor STI571 and gene-expression profiles: a gene-expression study. Lancet 2002;359:481-486
94. Kreil S, Muller C, Lahaye T et al. Molecular and chromosomal mechanisms of resistance in CML patients after STI571(Glivec) therapy. Blood 2001;98:435a (abstr 1823)
95. von Bubnoff N, Schneller F, Peschel C et al. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukemia to STI571: a prospective study. Lancet 2002:359:487-491
96. Barthe C, Cony-Makhoul P, Melo JV et al. Roots of clinical resistance to STI-571 cancer therapy. Science 2001;293:2163
97. Hochhous A, Kreil S, Corbin A et al. Roots of clinical resistance to STI-571 cancer therapy. Science 2001;293:2163
98. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol 2003;4:75-85

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊