跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 20:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍慶忠
研究生(外文):Ching-Chung Lan
論文名稱:場放射顯示器藍光ZnGa2O4發光機構之研究
論文名稱(外文):The Study of Luminescent Mechanism of Blue ZnGa2O4 Phosphor for Field Emission Display
指導教授:楊素華楊素華引用關係
指導教授(外文):Su-Hua Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:80
中文關鍵詞:場放射顯示器螢光體光激發光
外文關鍵詞:field emission displayphosphorphotoluminescence
相關次數:
  • 被引用被引用:2
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在本篇論文中,我們成功地推論出場放射顯示器藍光ZnGa2O4的發光機構。藉由系統化地研究各種摻雜條件如摻雜原料、摻雜順序、摻雜濃度等對螢光體的發光機構之影響,同時對螢光體的發光特性亦有深入研究。
在本實驗中,我們發現當以In2O3作為摻質時,螢光體的發光機構受到In3+的影響。在混合摻入的情形下,In3+離子將會取代Zn2+離子。在兩種摻雜順序下,均發現於In2O3摻雜濃度為15 wt%時,具有較其他摻雜濃度時為佳的光激發光強度。而且在混合摻雜的情形下主發光波長有向短波長移動的趨勢出現。
而以MnO2作為摻質時,Mn亦使ZnGa2O4螢光體的發光機構發生改變。在MnO2摻雜濃度低於9 wt%時,Ga3+離子將會被Mn4+離子取代,而當濃度高於9 wt%時,Mn2+離子則會取代Zn2+離子。從光激發光光譜量測分析中發現,對分開摻雜且MnO2的濃度為12 wt%的情形下,Mn2+離子躍遷至4T1->6A1 此能階時,將會發出綠色光,其發光波長為505 nm.
我們藉由摻雜In2O3來降低螢光粉的電阻值,成功地增強發光強度。此外,並藉由摻雜MnO2來改變螢光粉的發光中心,成功地發出綠光。
In this paper, we successfully infer the luminescent mechanism of the blue ZnGa2O4 phosphor for field emission display. The parameters of dopant variety, doping sequence and doping concentration were investigated systematically to evalute the effect of those factors on the luminescent mechanism of phosphor. Moreover, the luminescent characteristic of the phosphor will be discussed.
In this experiment, when the In2O3 is doped into the ZnGa2O4 phosphor, the luminescent mechanism of phosphor will be affected by the In3+ ions. For the mixed case, the In3+ will substitute for Zn2+. From the analysis of PL spectra, the optimal PL intensity is obtained when the In2O3 weight percentage is at 15 wt% for mixed and separated cases. Furthermore, in the mixed case, a blue shifted phenomenon of the PL wavelength is revealed.
In addition, the luminescent mechanism is altered when the MnO2 is doped into the ZnGa2O4 phosphor. When the concentration of MnO2 is below 9 wt%, Mn4+ will substitute for Ga3+. Moreover when the concentration of MnO2 is greater than 9 wt%, Zn2+ will be substituted by Mn2+. For the separated case and when the concentration of MnO2 is 12 wt%, a green emission is found when the Mn2+ ion is transited from 4T1->6A1 energy levels. The wavelength is at 505 nm.
A reduce resistance and an enhanced luminescence are observed when the In2O3 is doped into the ZnGa2O4 phosphor. Furthermore, MnO2 doping will change the luminescent center of ZnGa2O4 phosphor, so a green emission is obtained.
Content
Abstract (in Chinese)......................................i
Abstract (in English)...............................iii
Acknowledgement...............................v
Content.....................................vi
Figure Captions...............................viii
Chapter 1. Introduction................... 1
1-1 The History of Field Emission Display..................3
1-2 Requirement of FED’s Phosphor Layer...................4
Chapter 2. Theory of FED and material properties............7
2-1 Theory of FED................................... 7
2-2 Properties of ZnGa2O4 Phosphor...................11
2-2-1 Host Material.........................11
2-2-2 Luminescent Center....................12
2-2 Luminance Efficiency.........................13
Chapter 3. Experimental Procedures and Measurement
System Configurations......................................15
3-1 Experiment Procedures.......................15
3-1-1 Substrate Preparation...................15
3-1-2 Fabrication of ZnGa2O4 Phosphor............16
3-1-3 ZnGa2O4 Powder Phosphor Doping with Metallic
Oxide..............................17
3-1-4 Procedures of screen-printing.............18
3-2 Measurement System........................18
3-2-1 XRD Analysis...........................19
3-2-2 Energy Dispersive Spectrometer (EDS).......20
3-2-3 Photoluminescence (PL).....................21
Chapter 4. Results and Discussion.......................22
4-1 ZnGa2O4 Powder Phosphor..................22
4-1-1 XRD Analysis..........................23
4-1-2 EDS and SEM Analyses.................23
4-2 Phosphor Doped with In2O3................24
4-2-1 The doping Process of In2O3...........24
4-2-2 XRD Analysis.......................25
4-2-3 EDS Analysis...........................25
4-2-4 Resistances of the In2O3-doped ZnGa2O4
phosphors.............................26
4-2-5 Photoluminescence Spectra............27
4-3 Powder Phosphor Doped with MnO2...........28
4-3-1 The doping Process of MnO2..........28
4-3-2 XRD Analysis...................29
4-3-3 EDS Analysis...................29
4-3-4 Resistances of the MnO2-doped ZnGa2O4
phosphors........................30
4-3-5 Photoluminescence spectra................31
Chapter 5. Conclusion........................33
References................................36
Reference
[1] I. J. Hsieh, M. S. Feng, K. T. Kuo and P. Lin, J. Electrochem. Soc., 141, 1617, 1994.
[2] D. C. Look, Materials Science and Engineering B80, p. 383,2001.
[3] X. W. Sun, L. D. Wang and H. S. Kwok, Thin Solid Films, 360, p.75, 2001.
[4] B. Ismail, M. Abaab and B. Rezig, Thin Solid Films, 383, p. 92, 2001.
[5] L. E. Shea, R. K. Datta and J. J. Brown Jr., J. Electrochem. Soc., 141, 1950, 1994.
[6] K. H. Hsu and K. S. Chen, Ceramics International, 25, 339, 1999.
[7] K. H. Hsu, M. R. Yang and K. S. Chen, J. Materials Science: Materials in Electronic, 9, 283, 1998.
[8] Y. K. Park, J. I. Han, M. G. Kwak and S. H. Ju, Proceeding of 5th International Conference on Properties and Applications of Dielectric Materials, Seoul, Korea, 1997.
[9] S. H. M. Poort, D. Cetin, A. Meijerink and G. Blasse, J. Electrochem. Soc., 144, 2179, 1997.
[10] S. Itoh, H. Toki, Y. Sato, K. Morimoto and T. Kishino, J. Electrochem. Soc., 138, 1509, 1991.
[11] L. E. Shea, R. K. Datta and J. J. Brown Jr., J. Electrochem. Soc., 141, 2198, 1994.
[12] R. H. Flower et al., Proceedings of the Royal Socirty, London, Series A, Vol. 119, p.173, 1928.
[13] C. F. Yu, and P. Lin, Jpn. J. Appl. Phys. Part 2 34, p. 684, 1995.
[14] H. Toki, F. Kataka, Y. Kagwa, and S. Itoh, IDW’95, p. 81, 1995.
[15] J. S. Yoo and J. D. Lee, J. Appl. Phys., 81, 2810, 1997.
[16] A. Yamada, A. Watanabe, H. Haneda, and S. H. Shirasaki, MRS Intl. Mtg. Adv. Mats. 3, 181, 1989.
[17] T.A. Kennedy, E. R. Glaser, and P. B. Klein, Phys. Rev., B 52, R14, 356, 1995.
[18] I. Yu, T. Isobe, M. Senna, and S. Takahashi, Mater. Sci. Eng., B 38, 177, 1996.
[19] F. A. Kroger and V. J. Vink, Solid State Phys. 3, 307, 1956.
[20] H. Yamamoto, J. Soc. Inf. Disp. 4, 165, 1996.
[21] R. Raue, M. Shiki, H. Matsukiyo, H. Toyama, and H. Yamamoto, J. Appl. Phys., 75, 481, 1994.
[22] W. Zhu, G. P. Kochanski, S. Jin, and L.Seibles, J. Vac. Sci. Technol., B, 14, 2011, 1996.
[23] M. Liu, A. H. Kitai, and P. Mascher, J. Lumin, 54, 35, 1992.
[24] D. L. Dexter, J. Chem. Phys., 21, 836, 1953.
[25] T. Minami, Y. Kuroi, and S. Takata, J. Vac. Sci. Technol., A, 14, 1736, 1996.
[26] D. Drummond and L. A. Schlie, J. Chem. Phys., 65, 3454, 1976.
[27] R. L. Mohler and W. B. White, Mater. Res. Bull,. 29, 1109, 1994.
[28] Tanabe and Sugano, J. Phys. Soc. Japan, 9, 753, 1954.
[29] C.T.Yu and P. Lin, J. Appl. Phys., 79, 7191, 1996.
[30] W. Jia, H. Liu, S. Huang, X. Wu, L. Lu and W. M. Yen, J. Electrochem. Soc., 142, 1637, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top