跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/02 04:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃信智
研究生(外文):Huang Hsin-Chih
論文名稱:細料含量與非均向壓密對高雄前鎮河岸邊土壤液化現象之影響
論文名稱(外文):Influence of fine content and anisotropic consolidated condition on liquefaction of riverside sand of Chen-Zern river in Kaohsiung city
指導教授:蕭達鴻蕭達鴻引用關係
指導教授(外文):Darn-Horng Hsiao
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:101
中文關鍵詞:液化細料含量非均向壓密
外文關鍵詞:liquefactionfine contentanisotropic consolidation
相關次數:
  • 被引用被引用:12
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘  要
  本文主要利用動三軸試驗探討細料含量與非均向壓密對高雄前鎮河岸邊砂土液化現象之影響。使用前鎮河岸邊砂土與當地細料,分別控制混合料相對密度30%、50%、70%與混合料相似值,細料含量0%、5%、15%、25%,應力比(Kc)1.0、1.25、2和3,進行均向壓密與非均向壓密狀態之動三軸試驗。
  均向壓密試驗結果顯示,在混合料相對密度控制下,細料含量5%之試體有最大抵抗液化強度,細料含量大於5%後,試體抵抗液化強度隨細料含量的增加而降低;在混合料相似值控制下,混合料試體需提高乾土單位重才可得與純砂相似之值,以相似值試體試驗之結果顯示,試體抵抗液化強度隨細料含量的增加而提高。以不同控制參數分析控制相對密度和控制相似值試體之試驗結果可發現,就前鎮河岸邊土壤而言,控制混合料乾密度、孔隙比和相對密度所進行液化試驗,結果為細料含量增加將導致試體液化強度下降,而控制砂結構孔隙比或砂結構相對密度進行液化試驗,其結果為試體液化強度隨細料含量增加而提高。綜合控制相對密度試體與控制值試體之試驗結果,在相同控制參數下細料對試體液化強度之影響將有相同的趨勢。就混合料乾密度、孔隙比、相對密度、砂結構孔隙比、砂結構相對密度、值等控制參數而言,以d、e、Dr進行控制,所顯示細料影響趨勢與現地現象不同,而以es和Drs進行控制則無法完全模擬現地情形。此時以值控制顯示之細料影響趨勢與現地現象類似,且能經由值與(N1)60之經驗公式,求得實驗室控制之值與(N1)60之關係,便於將試驗結果繪成(N1)60&CRR圖形。
  非均向壓密試驗結果顯示,在混合料相對密度控制下,細料將使試體承受反覆剪應力之能力下降,其中相對密度50%、細料含量5%與相對密度50%、細料含量25%和相對密度70%、細料含量25%試體抵抗反覆剪應力之能力會低於均向壓密下之試體;在混合料相似值控制下,所有試驗結果均顯示非均向壓密試體承受反覆剪應力之能力高於均向壓密試體。
  本文嘗試將試驗結果應用於前鎮河岸邊基址液化分析,結果顯示以實驗結果分析現地液化潛能時,其分析安全係數SPT-N簡易經驗評估法為大。
Abstract
The purpose of this study, performing a series of dynamic triaxial tests, concerns primarily the effect of fine content and anisotropic condition on liquefaction behavior of the local sands obtained from the riverside of Chen-Zern river. The relative densities of the specimens were prepared by 30%, 50% and 70% respectively with different fine content including such as 0%, 5%, 15% and 25%. In the meantime Kc(=s1c/s3c) of 1.0, 1.25, 2.0 and 3.0 were conducted to investigate the influence of anisotropic condition on the liquefaction resistance for the testing specimens. The test results show that the liquefaction resistance decreases with the increase of fine content except for FC=5%. In order to clarify the findings, the additional tests were also processed. Whereas the corresponding internal friction angle f of the specimens in triaxial CD tests were required to be similar. It is found that the liquefaction resistance increases with increasing content of fines when we take f into account. When using different controlled parameters to analyze the test result which were controlled by relative density and corresponding internal friction angle of sand, we can find that the liquefaction resistance of testing specimens decreases with the increase of fine content. Moreover specimens were controlled by void ratio of sand structure, as well as relative density of sand structure and internal friction angle of sand, the results show that the liquefaction resistance increase with the increase fine content. For the controlled parameters gd, e and Dr, we can find that the influence of fine content on liquefaction resistance seems to have opposite trend when comparing with the results in the field. While the specimens, which are controlled by es and Drs, can’t absolutely simulate the field condition. When the specimens were controlled by internal friction angle of sand from this study, it seems to be similar to the findings in the field. We can feasibly convert the relations of f and (N1)60. into (N1)60 and CRR curve.
As for anisotropic consolidated condition, the liquefaction resistance of the specimen will be higher than that of the specimen applied with isotropic condition. However the results of some specimens, which are Dr=50% with FC=5%, Dr=50% with FC=25% and Dr=70% with FC=25%, are opposite with those of other specimens.
The article intends also to apply the test results to evaluate liquefaction potential for the soil resting on the riverside of Chen-Zern river. It is found that the factor of safety calculated by the results of dynamic triaxial tests are higher than those of the empirical evaluation methods.
目  錄
中文摘要 -------------------------------------------------------------------------------------Ⅰ
英文摘要 -------------------------------------------------------------------------------------Ⅱ
誌謝 -------------------------------------------------------------------------------------Ⅳ
目錄 -----------------------------------------------------------------------------------Ⅴ
表目錄 -------------------------------------------------------------------------------------Ⅶ
圖目錄 -------------------------------------------------------------------------------------------Ⅷ
符號說明 ------------------------------------------------------------------------------------------XI
第一章 緒論---------------------------------------------------------------------------------1
1-1 前言---------------------------------------------------------------------------------1
1-2 研究目的---------------------------------------------------------------------------1
1-3 研究範圍及試驗項目------------------------------------------------------------2
第二章 文獻回顧---------------------------------------------------------------------------3
2-1 實驗室土壤液化現象------------------------------------------------------------3
2-2 細料含量對砂土液化強度之影響---------------------------------------------3
2-2-1 控制參數為乾土單位重--------------------------------------------------------3
2-2-2 控制參數為砂結構孔隙比-----------------------------------------------------4
2-2-3控制參數為相對密度或孔隙比------------------------------------------------4
2-2-4非塑性細料對砂土液化阻抗的影響------------------------------------------5
2-2-5塑性細料對砂土液化阻抗的影響---------------------------------------------5
2-3 非均向壓密應力對砂土液化強度的影響------------------------------------5
2-4 反覆載重下孔隙水壓力變化情形--------------------------------------------6
2-5 砂土摩擦角值與SPT(N)值之關係----------------------------------------6
2-6 現地液化評估方法-----------------------------------------------------------6
2-7 現場CRR-N1之關係-----------------------------------------------------------7
第三章 試體準備與試驗程序-----------------------------------------------------------9
3-1 試驗土樣---------------------------------------------------------------------------9
3-2 試體設備---------------------------------------------------------------------------9
3-3 試體製作------------------------------------------------------------------------9
3-4 試體的飽和------------------------------------------------------------------------9
3-5 試體的壓密---------------------------------------------------------------------10
3-6 動力三軸壓縮試驗--------------------------------------------------------------10
3-7 試驗控制條件--------------------------------------------------------------------10
3-7-1相對密度--------------------------------------------------------------------------10
3-7-2細料含量--------------------------------------------------------------------------10
3-7-3 非均向壓密----------------------------------------------------------------------11
第四章 試驗結果與分析----------------------------------------------------------------12
4-1 靜三軸排水試驗結果-----------------------------------------------------------12
4-2 均向壓密下液化試驗結果-----------------------------------------------------12
4-2-1相對密度對液化強度之影響--------------------------------------------------12
4-2-2細料含量對液化強度之影響--------------------------------------------------13
4-2-3孔隙水壓力上升曲線-----------------------------------------------------------13
4-3 以不同控制參數分析液化試驗結果-----------------------------------------14
4-3-1混合料乾密度之影響-----------------------------------------------------------14
4-3-2混合料孔隙比之影響-----------------------------------------------------------15
4-3-3混合料相對密度之影響--------------------------------------------------------15
4-3-4砂結構孔隙比之影響-----------------------------------------------------------15
4-3-5砂結構相對密度之影響--------------------------------------------------------16
4-4 混合料內摩擦角對液化強度之影響-----------------------------------------17
4-4-1混合料內摩擦角液化試驗結果-----------------------------------------------17
4-4-2不同控制參數分析相似角試體液化試驗結果---------------------------18
4-5 所有試驗結果之控制參數分析-----------------------------------------------18
4-6 非均向壓密試驗結果-----------------------------------------------------------19
4-6-1非均向壓密試體之試驗現象--------------------------------------------------19
4-6-2相對密度控制下之試驗結果--------------------------------------------------21
4-6-3相似值控制下之試驗結果---------------------------------------------------22
4-7 試驗結果於現地土壤之應用--------------------------------------------------23
第五章 結論與建議---------------------------------------------------------------------25
5-1 結論-------------------------------------------------------------------------25
5-2 建議-------------------------------------------------------------------------26
參考文獻 -------------------------------------------------------------------------------------27
附錄一 前鎮河部分鑽孔資料----------------------------------------------------------97
表 目 錄
表1.1 規劃不同應力比和相對密度之項目與數量--------------------------------------30
表1.2 規劃之靜三軸壓縮試驗項目與數量-----------------------------------------------30
表1.3 規劃以相似摩擦角做控制條件之動三軸試驗項目與數量--------------------30
表3.1 取樣地點鑽探紀錄表-----------------------------------------------------------------31
表3.2 砂土物理性質--------------------------------------------------------------------------32
表3.3 控制細料的孔隙比與乾密度關係--------------------------------------------------32
表3.4 試體相對密度與乾密度之關係-----------------------------------------------------32
表4.1 不排水靜三軸壓縮試驗結果--------------------------------------------------------33
表4.2 控制試體相對密度動三軸試驗結果-----------------------------------------------34
表4.3 控制試體相似純砂相對密度30%、50%及70%之值動三軸試驗結果-------35
表4.4 控制試體相對密度非均向壓密下動三軸試驗結果-----------------------------36
表4.5 控制試體相似純砂相對密度30%、50%及70%值非試體均向壓密下動三軸
試驗結果-------------------------------------------------------------------------------42
表4.6 試驗試體細料含量--------------------------------------------------------------------46
表4.7 混合料孔隙比改為砂結構孔隙比、砂結構相對密度之結果-------------------46
表4.8 試體值與細料含量之關係----------------------------------------------------------47
表4.9 、N1與液化強度之關係------------------------------------------------------------47
表4.10 本文鑽孔前鎮河岸邊土壤液化潛能評估表-------------------------------------48
圖 目 錄
圖1.1 試驗流程圖-----------------------------------------------------------------------------49
圖2.1 以乾土單位重d為控制參數之結果-----------------------------------------------50
圖2.2 砂結構孔隙比示意圖-----------------------------------------------------------------50
圖2.3 以砂結構孔隙比為控制參數之結果-----------------------------------------------50
圖2.4 Monterey Sand細料含量與反覆應力比之關係----------------------------------51
圖2.5 Yatesville Sand細料含量與反覆應力比之關係----------------------------------51
圖2.6 塑性指數與反覆應力比之關係-----------------------------------------------------51
圖2.7 剪應力倒轉與不排水剪力強度對於砂動態強度之影響-----------------------52
圖2.8 動力三軸試驗分類--------------------------------------------------------------------52
圖2.9 均向與非均向壓密動力三軸試驗之軸向應變與孔隙水壓行為--------------53
圖2.10 反覆應力比與初始剪應力之關係-------------------------------------------------53
圖2.11 K與之關係------------------------------------------------------------------------54
圖2.12 規則荷重作用下孔隙水壓激發過程----------------------------------------------54
圖2.13 孔隙水壓比上升區線與參數變化關係-----------------------------------------54
圖2.14 折減係數與深度之關係-------------------------------------------------------------55
圖2.15 粉砂土抗液化強度與 之關係----------------------------------------------55
圖2.16 修正值Cr與相對密度之關係-------------------------------------------------------56
圖3.1 現場地理位置--------------------------------------------------------------------------57
圖3.2 現場鑽孔取樣位置--------------------------------------------------------------------57
圖3.3 現場土樣顆粒粒徑分佈曲線--------------------------------------------------------58
圖3.4 細料顆粒粒徑分佈曲線--------------------------------------------------------------58
圖3.5 混合料顆粒粒徑分佈曲線-----------------------------------------------------------59
圖3.6 CKC氣壓式動三軸試驗系統--------------------------------------------------------60
圖3.7 CKC動三軸載重系統示意圖--------------------------------------------------------60
圖3.8 CKC反覆三軸試驗儀全貌-----------------------------------------------------------61
圖3.9 試體製作工具--------------------------------------------------------------------------61
圖4.1 不同細料靜三軸排水試驗之軸差應力與應變曲線-----------------------------62
圖4.2 純砂與混合料相似之軸差應力與應變曲線--------------------------------------63
圖4.3 典型動三軸試驗結果-----------------------------------------------------------------64
圖4.4 相對密度與初始液化強度之關係--------------------------------------------------65
圖4.5 細料含量與液化強度之關係--------------------------------------------------------66
圖4.6 孔隙水壓上升曲線--------------------------------------------------------------------67
圖4.7 相同相對密度試體乾密度、孔隙比、相對密度與液化強度之關係-----------68
圖4.8 相同相對密度試體砂結構孔隙比、砂結構相對密度與液化強度之關係----69
圖4.9 相似試體細料含量與初始液化強度之關係-------------------------------------70
圖4.10 相似試體細料含量與液化強度(=10%)之關係-------------------------------71
圖4.11 相似試體混合料乾密度、孔隙比、相對密度與液化強度之關係-----------72
圖4.12 相似試體砂結構孔隙比、相對密度與液化強度之關係----------------------73
圖4.13 所有試體乾密度、孔隙比、相對密度與液化強度之關係----------------------74
圖4.14 所有試體砂結構孔隙比、相對密度與液化強度之關係-----------------------75
圖4.15 非均向壓密試體承受反覆荷重狀態----------------------------------------------76
圖4.16 試體承受反覆荷重為壓力側之行為----------------------------------------------77
圖4.17 試體承受反覆荷重接近張力側之行為-------------------------------------------78
圖4.18 試體承受反覆荷重小部分在張力側之行為-------------------------------------79
圖4.19 試體同時承受壓力及張力反覆荷重之行為-------------------------------------80
圖4.20 非均向壓密試體應力路徑-------------------------------------------------------------81
圖4.21 不同非均向壓密程度反覆震動次數與軸向累積應變率之關係-------------82
圖4.22 相同相對密度細料含量0%非均向壓密下試體強度與反覆次數之關係---83
圖4.23 相同相對密度細料含量5%非均向壓密下試體強度與反覆次數之關係---84
圖4.24 相同相對密度細料含量15%非均向壓密下試體強度與反覆次數之關係-85
圖4.25 相同相對密度細料含量25%非均向壓密下試體強度與反覆次數之關係-86
圖4.26 控制相對密度試體強度與初始剪應力比之關係-------------------------------87
圖4.27 相似值不同細料含量非均向壓密下試體強度與反覆次數之關係--------88
圖4.28 相似值不同細料含量非均向壓密下試體強度與反覆次數之關係--------89
圖4.29 相似值不同細料含量非均向壓密下試體強度與反覆次數之關係--------90
圖4.30 控制相似值試體強度與初始剪應力比之關係--------------------------------91
圖4.31 不同值、相同細料含量試體強度與初始剪應力比之關係-------------------92
圖4.32 相似試體N1與液化強度(初始液化)之關係------------------------------------93
圖4.33 相似試體N1與液化強度(=10%)之關係---------------------------------------94
圖4.34 不同細料含量試體強度與非均向壓密比之關係-------------------------------95
圖4.35 利用本文實驗數據評估液化潛能流程圖------------------------------------------96
參考文獻
1. Ishihara, K., Acacio, A., and Towahata, I., 1993, ”Liquefaction-Induced Ground Damage in Dagupan in the July 16, 1990 Luzon Earthquake”, Soils and Foundations, Vol. 33, No.1, pp. 133-154.
2. 倪勝火、賴宏源,2000,”常用液化評估法對921地震案例適用性探討”,921集集大地震週年紀念學術研討會論文集,台灣,民國89,第233~270頁。
3. Seed, H. B. and Lee, K. L., 1966, ”Liquefaction of Saturated Sands during Cyclic Loading”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 95, No. SM6, pp. 105-134.
4. Seed, H. B., Idriss, I. M., Lee, K. L. and Makdisi, F. I., 1975, “Dynamic Analysis of the Slide in the Lower San Fernando Dam during The Earthquake of February 9, 1971”, Journal of the Geotechnical Engineering Division, Vol. 101, No. 9, pp. 889-911.
5. Youd, T. L. et al., 2001, ”Liquefaction Resistance of Soils: Summary Report form the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils”, Journal of Geotechnical and Geoevironmental Engineering, ASCE, Vol 127, No. 10, pp. 817-833.
6. Seed, H. B., Tokimatsu, K., Harder, L. F. and Chung R. M., 1985, “The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation”, Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 12, pp. 1425-1445.
7. Shen, C. K., Vrymoed J. L. and Uyeno C. K., 1977, ”The Effects of Fines on Liquefaction of Sands”, Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp. 381-385.
8. Uyeno, C. K., 1977, Liquefaction of Ottawa Sand with Fines, Master Thesis, University of California, Davis.
9. Thevanayagam, S., 1998, ”Effect of Fines and Confining Stress on Undrained Shear Strength of Silty Sands”, Journal of Geotechnical and Geoevironmental Engineering, Vol 124, No. 6, pp. 479-491.
10. Ueng, T. S. and Chang C. S., 1982, ”The Effects of Clay Content on Liquefaction of Fulung Sand”, Soil Dynamics and Earthquake Engineering Conference, Southampton.
11. O-Hara, S., Yasunaga F. and Fujii N., 1974, “Experimental Study on Liquefaction of Saturated Sand Contained a Little Clay”, Technology Report of the Yamaguchi University, Tokiwadai, UBE, Japan, Vol. 1, No. 3, pp. 401-408.
12. Polito, P. and Matrin, R., 2001, “Effects of Nonplastic Fines on the Liquefaction Resistance of Sands”, Journal of Geotechnical and Geoevironmental Engineering, ASCE, Vol. 127, No. 5, pp. 408-415.
13. Chung, K. Y. C. and Wong I. H., 1982, “Liquefaction Potential of Soils with Plastic Fines”, Soil Dynamics and Earthquake Engineering Conference, Southampton.
14. Lee, K. L. and Seed, H. B., 1967, “Dynamic Strength of Anisotropically Consolidation Sand”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM1, pp. 47-70.
15. Vaid, Y. P. and Finn, W. D. L., 1979, “Static Shear and Liquefaction Potential”, Journal of Geotechnical and Geoevironmental Engineering Division, ASCE, Vol. 105, No. GT10, pp. 1233-1246.
16. Vaid, Y. P. and Chern, J. C., 1983, “Effect of Static Shear on Resistance to Liquefaction”, Soils and Foundations, Vol. 23, No. 1, pp. 47-60.
17. Mohamad, R. and Dobry, R., 1986, “Undrained Monotonic and Cyclic Triaxial Strength of Sand”, Journal of Geotechnical and Geoevironmental Engineering, ASCE, Vol. 112, No. 10, pp. 941-958.
18. Selig, E. T. and Chang, C. S., 1981, “Soil Failure Modles in Undraind Cyclic Loading”, Journal of Geotechnical and Geoevironmental Engineering Division, ASCE, Vol. 107, No. GT5, pp. 539-551.
19. Rollins, K. M. and Seed H. B. 1990, ”Influence of Buildings on Potential Liquefaction Damage”, Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 2, pp. 165-185.
20. 黃俊鴻、陳正興,1992,”土壤受反覆剪應力作用之孔隙水壓激發模式”,中國土木水利工程學刊,第四卷,第一期,第59-71頁。
21. 吳偉特、楊騰芳,1987,”細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究”,土木水利,第十四卷,第三期,第59-74頁。
22. Hatanaka, M. and Uchida, A., 1996, “Empirical Correlation Between Penetration Resistance and Internal Friction Angle of Sandy Soils”, Soils and Foundations, Vol. 36, No. 4, pp. 1-9.
23. Seed, H. B. and Idriss, I. M., 1971, “Sumplified Procedure for Evaluating Soil Liquefaction Potential”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 107, No. SM9, pp. 1249-1274.
24. Braja, M. Das, 1992, Principles of Soil Dynamics, PWS-KENT Inc., Boston.
25. Ladd, R. S., 1974, “Specimen Preparation and Liquefaction of Sands”, Journal of Geotechnical Engineering Division, ASCE, Vol. 100, No. GT10, pp. 1180-1184.
26. Mulilis, J. P., Seed, H. B. and Chan C. K., 1977, “Resistance to Liquefaction due to Susttained Pressure”, Journal of Geotechnical and Geoevironmental Engineering Division, ASCE, Vol. 103, No. GT7, pp. 793-797.
27. Tokimatsu, K., and Yoshimi, Y., 1983, “Empirical Correlation of Soil Liquefaction Based on SPT-N Value and Fines Content”, Soils and Foundations, Vol. 23, No. 4, pp. 56-74.
28. Iwasaki, T., Arakawa T., and Tokida K., 1982, “Simplified Procedures for Assessing Soil Liquefaction during Earthquakes”, Soil Dynamics and Earthquake Engineering Conference, Southampton, pp. 925-939.
29. 日本道路協會,日本道路橋示方書同解說-V耐震設計篇,日本,1996。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top