跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林志輝
研究生(外文):Lin, Chi-Hui
論文名稱:抗蟲基因轉殖與葉綠體內轉錄終止之研究
論文名稱(外文):Transgenic approaches for pest control and intrinsic transcription termination in chloroplast
指導教授:陳良築
指導教授(外文):Chen, Liang-Jwu
學位類別:博士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:174
中文關鍵詞:蘇力菌殺蟲晶體蛋白質葉表草生軟腐菌葉綠體 葉綠體轉殖自發型轉錄終止基因型鑑定cry1C rps18小菜蛾 斜紋夜盜蛾菸草 水稻
外文關鍵詞:Bacillus thuringiensis insecticidal crystal proteinsepiphytic Erwinia herbicolachloroplast plastid transformationintrinsic transcription terminationgenotypingcry1C rps18diamondback moth(Plutella xylostella) tobacco cutworm(Spodoptera litura)tobacco rice
相關次數:
  • 被引用被引用:2
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
將轉殖葉表生菌及葉綠體技術應用於蘇力菌抗蟲基因表現與自發型轉錄終止,是本研究的重點。第一章概論蘇力菌抗蟲基因的應用。分析基因種類與轉基因作物種植比例的年相關性、總結抗蟲策略,並回顧文獻。第二~五章分別舉實例說明抗蟲基因在微生物與植物體內的應用效果,以及開發新基因之必要性。第二章實驗說明,將蘇力菌殺蟲晶體蛋白基因cry1Aa1以電穿孔法送入常見於植物葉表且無害的草生軟腐菌Erwinia herbicola中,毒害小菜蛾可達最高83.3%的死亡率,效期約2週,死亡率隨效期下降,符合用藥安全,除抗蟲效果,該菌分泌代謝物亦可有效抑制蔬菜黑腐與軟腐病害微生物之生長。第二章附錄說明本案已行專利申請。持續開發蘇力菌基因種類,掌握本土資源,是第三章之主旨。重點針對目前商品化蘇力菌製劑無法有效防治的夜蛾科Spodoptera屬害蟲,說明此類蟲害在全球的發生狀況,並發掘對其具毒害效果的新型cry1C基因。利用快速的複合式聚合酶連鎖反應配合生物檢定,尋得殺蟲致死率達36.7%的新型cry1C基因。第四、五章以實驗說明蘇力菌基因在植物細胞核與葉綠體之表現。轉入細胞核的基因是人工合成的cry1Ac基因,轉入葉綠體的是未經修飾的cry1C基因,且不含協助形成晶體的基因端。在細胞核的表現因單、雙子葉植物系統的差異,使抗蟲基因呈弱勢態,仍對番茄夜蛾幼蟲具有抑制生長的效果。在葉綠體表現強勢的cry1C基因,可產生約1%的殺蟲蛋白,對斜紋夜盜蛾幼蟲具有近100%的致死率,子代中的Cry1C殺蟲蛋白可達4%,100%的殺蟲成效由3天縮短為2天。表現cry1C基因的轉錄單元中,使用了E. coli thra終止子,為了解該型終止子是否可具自發型的轉錄終止反應,第六章實驗設計了由aadA與cry1C基因組成的dicistron,將終止子放置基因間,利用poly-T長短可控制終止效率的特性,觀察生體內轉錄終止的發生。結果顯示,自發型的轉錄終止仍可參與葉綠體基因表現的調控,並可能是由細胞核傳送至葉綠體的RNA聚合酶所使用的轉錄終止訊號之一。反轉對稱序列看似不能在葉綠體內終止轉錄,利用電腦分析20種綠色植物的葉綠體全基因序列,同時加上「反轉對稱序列形成莖環結構」與「poly-T在RNA聚合酶內形成不穩定的DNA-RNA hybrid」的兩項空間配位因素,發現葉綠體基因後方仍存有自發型轉錄終止子。測試水稻葉綠體rps18基因下游的rpsWT終止子,發現其轉錄終止的發生與RNA的建造基質,即rNTP的濃度有關,類似自發型的E. coli thra終止子在生體外的反應。葉綠體內轉錄終止子將可能依賴莖環結構形勢、其下游形成DNA-RNA hynrid的穩定度、供應rNTP的濃度等三因素決定其是否終止轉錄。
Transgenic approaches applying for pest control were accomplished by expressing Bacillus thuringiensis (Bt) endotoxins in epiphytic bacteria or plant chloroplasts. Intrinsic transcription termination for gene expression in chloroplast was also demonstrated hereby. In chapter 1, we summaried distribution of Bt gene types, the correlation between the annually increasing number of gene and the production and commercialization of transgenic Bt plants. A complete summary for transgenic strategies and the literature review were also included. Experiments in chapter 2~5 carried out the strategies regarding to Bt genes in epiphytic bacteria, in plant nuclei or in chloroplasts for their insecticidal activities. In chapter 2, the epiphytic Erwinia herbicola has been successfully transformed with a Bt toxin gene cry1Aa1 presented in plasmid pUN4. One of the transformed E. herbicola strains, Eh4, was sprayed on cabbage leaves for colonization to test its insecticidal efficacy and persistency against the diamondback moth (DBM). The mortality rates of DBM were 36.7~60% and 40~83.3% after feeding for 48 and 72 hours, respectively. A decrease of insecticidal efficacy with a concomitant increase of time interval after spraying E. herbicola was observed. The antagonistic effects of E. herbicola showed that there was a significant suppression against Xanthomonas campestris pv. campestris and Erwinia carotovora subsp. carotovora. Results in chapter 2 were used to apply for an official patent in 2002. In chapter 3, eleven in 807 Bt isolates in Taiwan were identified for their cry1 genotypes, cry1C gene content, and the related insecticidal activities. Multiplex polymerase chain reaction (mPCR) genotyping and assays for insecticidal activity or pest growth inhibition helped to explore a novel type of cry1C gene from E05-20a strain causing a mortality rate of 36.7% against the tobacco cutworm (Spodoptera litura, TCW). In chapter 4, two Bt genes, a synthetic cry1A(c) and a PCR-amplified cry1C, containing no C-terminal domain region responsible for crystallization, were delivered into nucleus and chloroplast of the tobacco plant cells, respectively. Three transgenic lines, Nt-Ac/C-1, -2, -3, were assayed for the coexistence of cry1A(c) and cry1C genes in plant cell and showed the insecticidal activity of 100% against the TCW, and of 33% against the Helicoverpa armigera. Although the mortality rate caused by the synthetic cry1A(c) gene’s product was not significant among larvae of H. armigera, their weight increments (10.6~51.7%) were much less than those of the controlled larvae (up to 255%). It indicated that expressing cry1A(c) gene in co-transformed tobacco provides a protection effect. Chloroplast is a better location for over-expression of Bt endotoxin. We proved it in chapter 5. The cry1C gene constructed under the control of rbcL promoter and the E. coli thra terminator in a plasmid vector as shown in chapter 4 was delivered into the chloroplast alone. High expression level of the integrated cry1C gene in chloroplast was observed through Northern and Western hybridization assays (~1% in soluble proteins). The transplastomic tobacco plants are highly toxic to TCW, causing a mortality rate of 76.9% to 100% after 72 hours of feeding test. T1 progeny of the transplastomic line IC-5 produced about 4% of the Cry1C in total soluble proteins. This very toxic tobacco plant to TCW resulted in a mortality of 100% within two days. Since the plastid transgenes are not transmitted through pollen, highly expressed Cry1C in chloroplasts facilitated not only the improvement in breeding for insect-resistant plants, but also the prevention of contamination of transgenes among crop plants. In chapter 6, we focused on the problem of which the E. coli thra terminator is able to be or not to be intrinsic in chloroplast transcription in vivo. A dicistronic gene expression unit was introduced in the assay. Wild-type thra terminator (T9WT) standing between aadA and cry1C interrupted 64.3% of the dicistronic transcription, implying that intrinsic termination still play its role in the regulation of plastid gene expression. Terminator with a shorter poly-T tract (T4) had no termination function in vitro but displayed a termination efficiency of 18.1% in vivo. It indicated that a nuclear-encoded polymerase (NEP) may response to the intrinsic termination. Despite some inverted repeats (IR) did not work for transcription termination in plastid, a survey of all published plastid genomes was developed by the GeSTer algorithm to look for intrinsic terminator-like structures in the 3’-untranslated region (3’-UTR) of plastid genes. A candidate (rpsWT) was found at 3’-UTR of the rice rps18 gene in the form of an easy-to-form stem-loop structure immediately followed by an unstable DNA-RNA hybrid such as the poly-T tract. The rpsWT is composed of a GC-rich IR and an immediately followed poly-T tract (TTCTTTTTT). Its IR showed a concensus motif (TCCCGGAGN6CTCCGGG) among some higher plants. Termination of the rpsWT is determined by the concentration of rNTP, similar to that we observed previously in transcription termination of the E. coli thra or leu terminators in vitro. Results in chapter 6 prompted us to propose a model for intrinsic termination in chloroplast, which is the combination of the factor 1 (a stable stem-loop structure), factor 2 (an unstable DNA-RNA hybrid appears in time after the stem-loop starts to form), and factor 3 (an interferenced RNA chain synthesis at certain position on DNA template due to factor 1, 2, plus the insufficient concentration of the complement rNTP).
中文總摘要 ix
英文總摘要 xi
第一章:蘇力菌毒素基因轉殖與作物蟲害防治總論(文獻回顧) 1
緒言 2
基因種類之開發與蟲害之防治 3
Bt抗蟲基因之微生物製劑與作物蟲害防治 5
Bt抗蟲基因轉殖作物與蟲害防治 8
抗蟲轉殖作物對環境安全之衝擊 11
結語 13
引用文獻 13
圖1-1 Bt毒素基因種類的分布及基因數目的增加與轉殖植物推廣
時間的相關性 22
圖1-2 目前Bt毒素基因轉殖之抗蟲策略 24
第二章:含蘇力菌毒素基因cry1Aa1之轉形葉表生菌Erwinia herbicola
的殺蟲效力與拮抗植物病原菌之分析 27
中文摘要 28
英文摘要 29
緒言 31
材料與方法 32
菌種、基因與質體來源 32
生菌製劑之製備與施用 32
殺蟲效力之生物檢定 33
抑制植物病原菌生長之測試 33
結果 33
葉表上的E. herbicola轉形菌株之殺蟲效力 33
E. herbicola可抑制植物病原菌之生長 34
討論 34
引用文獻 37
表2-1 噴灑於甘藍葉面之基因轉形與未轉形的Erwinia herbicola
對小菜蛾之殺蟲效力 39
圖2-1 含蘇力菌毒素基因cry1Aa1之質體pUN4 40
圖2-2 甘藍葉面經噴灑轉形或未轉形之葉表生菌後受到小菜蛾危
害的情形 41
圖2-3 轉形與未轉形之葉表生菌Erwinia herbicola分別對斑點病
、黑腐病與軟腐病病原菌之拮抗效果 43
第二章附錄:申請專利說明書 44
第三章:利用基因型鑑定策略發現有效殺蟲活性之台灣本土新型
蘇力菌cry1C基因(短訊) 51
中文摘要 52
英文摘要 58
引用文獻 60
表3-1 不同來源下含有cry1C基因之台灣本土蘇力菌分離株的
cry1基因組成與其對小菜蛾的殺蟲活性 62
表3-2 含有cry1C基因之台灣本土蘇力菌分離株對斜紋夜盜幼蟲
之殺蟲活性 63
圖3-1 利用複合式聚合酶連鎖反應進行cry1基因型之鑑定與cry1C
基因之確認 64
圖3-2 含Cry1C蛋白之各菌株培養液對斜紋夜盜蛾幼蟲生長的抑制
效應 66
第四章:合成型蘇力菌毒素基因cry1A(c)與野生型基因cry1C之共同
轉殖及其在菸草中殺蟲效力之表現差異 69
中文摘要 70
英文摘要 71
緒言 73
材料與方法 75
轉殖載體來源與修飾 75
基因來源與轉殖質體構築 75
粒子轟擊法與共同轉殖菸草之再生 77
微載體(microcarrier)之製備與DNA包覆(coating) 77
粒子轟擊法 77
共同轉殖菸草之再生 77
共同轉殖菸草之鑑定 77
植物總量DNA之抽取 77
PCR檢定 78
南方墨漬法(Southern blotting) 78
殺蟲活性之生物檢定法 78
結果 79
人工合成cry1A(c)基因之修飾 79
cry1C基因之分離與類型鑑定 80
共同轉殖菸草之鑑定 80
cry1A(c)與cry1C基因分別造成之殺蟲效果 81
討論 83
引用文獻 86
表4-1 含雙蘇力菌毒素基因cry1A(c)與cry1C之共同轉殖菸草
對斜紋夜盜蛾幼蟲之殺蟲效力 92
表4-2 含雙蘇力菌毒素基因cry1A(c)與cry1C之共同轉殖菸草
對番茄夜蛾(玉米穗蟲)幼蟲之殺蟲效力 93
圖4-1 轉殖載體之修飾與質體pCAM-Ac、pN-IC101之構築 94
圖4-2 人工合成的cry1A(c)基因與野生型基因密碼序列之比較 97
圖4-3 經定序之cry1C基因密碼與對應之胺基酸序列 100
圖4-4 共同轉殖菸草之轉基因鑑定 102
第五章:蘇力菌野生型毒素基因cry1C在菸草葉綠體中之表現對
斜紋夜盜蛾幼蟲具高效殺蟲力 105
中文摘要 106
英文摘要 107
緒言 109
材料與方法 111
基因與質體構築 111
葉綠體轉殖與植物再生 112
核酸墨漬法 113
蛋白質免疫偵檢與定量 114
昆蟲生物檢定 115
結果 115
葉綠體表現載體構築與轉殖 115
含蘇力菌基因之轉葉綠體植物選拔與鑑定 116
蘇力菌基因在葉綠體內之表現 117
殺蟲活性檢定 118
子代發芽試驗與其殺蟲活性檢定 119
討論 120
蘇力菌基因與細菌終止子可在葉綠體內發揮功能 120
插入葉綠體基因組的蘇力菌基因可表現高量蛋白質 120
葉綠體內表現蘇力菌毒素可達到高劑量抗蟲策略與防止基因流佈 121
引用文獻 123
Table 5-1 Insecticidal efficacy of the cry1C gene-transformed
transplastomic tobaccos against the larvae of tobacco
cutworm (Spodoptera litura) 127
Fig. 5-1 Construction of plasmid expression vectors 128
Fig. 5-2 DNA gel blotting assay of transplastomic tobaccos 130
Fig. 5-3 RNA and immuno blotting assays for cry1C gene
expression in transplastomic tobaccos 132
Fig. 5-4 Insecticidal activity assay of transplastomic tobaccos
and T1 seed germination test against antibiotic 134
第六章:自發型終止子可在高等植物葉綠體內終止轉錄(初稿) 137
英文摘要 138
緒言 140
材料與方法 142
質體構築 142
葉綠體轉殖與植物再生 143
PCR與南方墨漬法 144
北方墨漬法與定量分析 144
葉綠體基因組中自發轉錄終止子之電腦預測 145
推測終止子之選殖 145
生體外轉錄 146
結果 146
E. coli自發轉錄終止子可在葉綠體中終止轉錄 146
如何預測葉綠體中的轉錄終止子? 148
rpsWT的結構與功能相當接近自發終止子 149
連續的poly-T可加強rpsWT的轉錄終止功能 150
討論 151
葉綠體mRNA 3’端形成中仍存在的調節因素 151
葉綠體內自發轉錄終止子的結構限制 153
葉綠體轉錄的建造基質可能參與指揮自發轉錄終止 154
引用文獻 155
Table 6-1 Quantity of the plastid genes and the palindromes
predicted by the GeSTer program 161
Fig. 6-1 Identification of transgenic plants and in vivo termination
by E. coli thra terminators in tobacco chloroplasts 162
Fig. 6-2 Compilation of plastid rps18, rpl20, and their intergenic
regions (3’-UTR), derived from phylogenic relationships
of Viridiplantae 164
Fig. 6-3 A factor-independent terminator-like IR found in the 3’-UTR
of the rice plastid rps18 gene and its relatives from other
green plants 166
Fig. 6-4 Termination analyses of the rpsWT and rpsMT in vitro 168
Fig. 6-5 A proposed model for IR-dependent mRNA maturation
in chloroplasts 170
總結與前瞻 171
Chapter 1 (94 references)
1.Adetuyi, F. C. 1990. Studies of the antifungal compounds produced by Erwinia herbicola. Indian J. Pathol. Microbiol. 33: 48-52.
2.Angus, T. A. 1954. A bacterial toxin paralysing silkworm larvae. Nature 173: 545-546.
3.Arencibia, A., Vazquez, R. I., Prieto, D., Tellez, P., Carmona, E. R., Coego, A., Hernandez, L., de la Riva, G. A., and Selman-Housein, G. 1997. Transgenic sugarcane plants resistant to stem borer attack. Mol. Breed. 3: 247-255.
4.Aronson, A. I., Wu, D., and Zhang, C. 1995. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J. Bacteriol. 177: 4059-4065.
5.Bar, E., Lieman-Hurwitz, J., Rahamim, E., Keynan, A., and Sandler, N. 1991. Cloning and expression of Bacillus thuringiensis israelensis d-endotoxin DNA in B. sphaericus. J. Invertebr. Pathol. 57: 149-158.
6.Barton, K. A., Whiteley, H. R., and Yang, N. S. 1987. Bacillus thuringiensis d-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to Lepidopteran insects. Plant Physiol. 85: 1103-1109.
7.Bechtel, D. B., and Bulla, L. A., Jr. 1976. Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis: pathogenicity for larvae of Lepidoptera. J. Bacteriol. 127: 1477-1481.
8.Biever, K. D., Hostetter, D. L., and Kern, J. R. 1994. Evolution and implementation of a biological control-IPM system for crucifers: 24-year case history. Am. Entomol. 40: 103-108.
9.Bora, R. S., Murty, M. G., Shenbagarthai, R., and Sekar, V. 1994. Introduction of a lepidoptera-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phyllosphere. Appl. Environ. Microbiol. 60: 214-222.
10.Bradley, D., Harkey, M. A., Kim, M. K., Biever, K. D., and Bauer, L. S. 1995. The insecticidal CryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. J. Invertebr. Pathol. 65: 162-173.
11.Carozzi, N. B., Warren, G. W., Desai, N., Jayne, S. M., Lotstein, R., Rice, D. A., Evola, S., and Koziel, M. G. 1992. Expression of a chimeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco. Plant Mol. Biol. 20: 539-548.
12.Chen, L., Marmey, P., Taylor, N. J., Brizard, J. P., Espinoza, C., D''Cruz, P., Huet, H., Zhang, S., de Kochko, A., Beachy, R. N., and Fauquet, C. M. 1998. Expression and inheritance of multiple transgenes in rice plants. Nat. Biotechnol. 16: 1060-1064.
13.Cheng, X., Sardana, R., Kaplan, H., and Altosaar, I. 1998. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. USA 95: 2767-2772.
14.Corneille, S., Lutz, K., Svab, Z., and Maliga, P. 2001. Efficient elimination of selectable marker genes from the plastid genome by the Cre-lox site-specific recombination system. Plant J. 27: 171-178.
15.Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., and Dean, D. H. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807-813.
16.Crickmore, N., Zeigler, D. R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Bravo, A., and Dean, D. H. 2002. Bacillus thuringiensis toxin nomenclature. http://www.biols.susx.ac.uk/Home /Neil_Crickmore /Bt/index.html (January 7, 2003).
17.Dale, E. C., and Ow, D. W. 1990. Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91: 79-85.
18.Dale, E. C., and Ow, D. W. 1991. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA 88: 10558-10562.
19.Daniell, H., Datta, R., Varma, S., Gray, S., and Lee, S. B. 1998. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16: 345-348.
20.Daniell, H., Muthukumar, B., and Lee, S. B. 2001. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr. Genet. 39: 109-116.
21.Daniell, H., and Varma, S. 1998. Chloroplast-transgenic plants: panacea--no! gene containment --yes! Nat. Biotechnol. 16: 602.
22.Davey, M. R., Rech, E. L., and Mulligan, B. J. 1989. Direct DNA transfer to plant cells. Plant Mol. Biol. 13: 273-285.
23.De Cosa, B., Moar, W., Lee, S. B., Miller, M., and Daniell, H. 2001. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19: 71-74.
24.Dean, D. H., Rajamohan, F., Lee, M. K., Wu, S. J., Chen, X. J., Alcantara, E., and Hussain, S. R. 1996. Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis--a minireview. Gene 179: 111-117.
25.Estruch, J. J., Carozzi, N. B., Desai, N., Duck, N. B., Warren, G. W., and Koziel, M. G. 1997. Transgenic plants: an emerging approach to pest control. Nat. Biotechnol. 15: 137-141.
26.Felsenstein, J. 1989. PHYLIP-phylogeny inference package (version 2). Cladistics 5: 164-166.
27.Ferre, J., Real, M. D., Van Rie, J., Jansens, S., and Peferoen, M. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88: 5119-5123.
28.Fischhoff, D. A., Bowdish, K. S., Perlak, F. J., Marrone, P. G., McCormick, S. M., Niedermeyer, J. G., Dean, D. A., Kusano Kretzmer, K., Mayer, E. J., Rochester, D. E., Rogers, S. G., and Fraley, R. T. 1987. Insect tolerant transgenic tomato plants. Bio/Technol. 5: 807-813.
29.Fuchs, R. L., MacIntosh, S. C., Dean, D. A., Greenplate, J. T., Perlak, F. J., Pershing, J. C., Marrone, P. G., and Fischhoof, D. A. 1990. Quantification of Bacillus thuringiensis insect control protein as expressed in transgenic plants, pp. 105-113. In: L. A. Hickle & W. L. Fitch eds. Analytical Chemistry of Bacillus thuringiensis. ACS Symp. Ser. Am. Chem. Soc. Washington, D. C., USA. 432 pp.
30.Fujimoto, H., Itoh, K., Yamamoto, M., Kyozuka, J., and Shimamoto, K. 1993. Insect resistant rice generated by introduction of a modified d-endotoxin gene of Bacillus thuringiensis. Biotechnology (NY) 11: 1151-1155.
31.Ganyshkina, L. A., Lebedeva, N. N., Azizbekian, R. R., Iakubovich, V., and Sergiev, V. P. 2002. The duration of action of Bacillus thuringiensis spp. israelensis and Bacillus sphaericus after encapsulation by infusoria Tetrahymena pyriformis. Med. Parazitol. (Mosk) 4: 23-27.
32.Gelernter, W. D., and Trumble, J. T. 1999. Factors in the success and failure of microbial insecticides in vegetable crops. Integr. Pest Manag. Rev. 4: 301-306.
33.Gill, S. S., Cowles, E. A., and Pietrantonio, P. V. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636.
34.Graham, T. L. 1988. Genetic engineering of soil microorganisms for pest control. Agric. Ecosys. Environ. 24: 317-323.
35.Hadi, M. Z., McMullen, M. D., and Finer, J. J. 1996. Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep. 15: 500-505.
36.Heifetz, P. B. 2000. Genetic engineering of the chloroplast. Biochimie 82: 655-666.
37.Hoa, T. T., Bong, B. B., Huq, E., and Hodges, T. K. 2002. Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor. Appl. Genet. 104: 518-525.
38.Hofte, H., and Whiteley, H. R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255.
39.Khan, M. S., and Maliga, P. 1999. Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat. Biotechnol. 17: 910-5.
40.Klee, H., Horsch, R., and Rogers, S. 1987. Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol. 38: 467-486.
41.Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70-73.
42.Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., and Kadwell, S. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technol. 11: 194-200.
43.Kumar, A. S., and Aronson, A. I. 1999. Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis d-endotoxin. J. Bacteriol. 181: 6103-6107.
44.Leneuve, P., Colnot, S., Hamard, G., Francis, F., Niwa-Kawakita, M., Giovannini, M., and Holzenberger, M. 2003. Cre-mediated germline mosaicism: a new transgenic mouse for the selective removal of residual markers from tri-lox conditional alleles. Nucleic Acids Res. 31: e21.
45.Lin, C. H., Chang, M. L., Tzeng, C. C., and Chen, L. J. 2002. Co-transformation of the synthetic cry1A(c) and wild-type cry1C genes encoding Bacillus thuringiensis endotoxins into tobacco and their bipartite expression effects on insecticidal efficacy. Plant Prot. Bull. 44: 209-232.
46.Lin, C. H., Huang, W. C., Tzeng, C. C., and Chen, L. J. 2002. Insecticidal activity and plasmid retention of the epiphytic Erwinia herbicola strains transformed with the Bacillus thuringiensis cry1Aa1 gene. Plant Prot. Bull. 44: 21-36.
47.Lin, C. H., Tzeng, C. C., Huang, W. C., Chen, L. J., and Kao, S. S. 2002. Applications of the epiphytic bacterial genus Erwinia transformed with foreign genes on plant protection. ROC patent pending no. 091125404. (in pending)
48.Lin, C. H., Tzeng, C. C., Kao, S. S., and Chen, L. J. 2003. Insecticidal efficacy and phytopathogenic antagonism of the epiphytic Erwinia herbicola strains transformed with the Bacillus thuringiensis cry1Aa1 gene. J. Agri. Assoc. China 4: 17-29.
49.Lin, C. H., Wu, S. P., Kao, S. S., and Tzeng, C. C. 2002. Identification of novel cry1C genes from local Taiwan Bacillus thuringiensis isolates with effective insecticidal activity by genotyping strategy. Plant Prot. Bull. 44: 233-244.
50.Loguercio, L. L., Barreto, M. L., Rocha, T. L., Santos, C. G., Teixeira, F. F., and Paiva, E. 2002. Combined analysis of supernatant-based feeding bioassays and PCR as a first-tier screening strategy for Vip-derived activities in Bacillus thuringiensis strains effective against tropical fall armyworm. J. Appl. Microbiol. 93: 269-277.
51.Loguercio, L. L., Santos, C. G., Barreto, M. R., Guimaraes, C. T., and Paiva, E. 2001. Association of PCR and feeding bioassays as a large-scale method to screen tropical Bacillus thuringiensis isolates for a cry constitution with higher insecticidal effect against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Lett. Appl. Microbiol. 32: 362-7.
52.Mahaffee, W. F., Moar, W. J., and Kloepper, J. W. 1994. Bacterial endophytes genetically engineered to express the CryIIA d-endotoxin from Bacillus thuringiensis subsp. kurstaki, pp. 245-246. In: M. H. Ryder, P. M. Stevens, & G. D. Bowen eds. Improving plant productivity with rhizosphere bacteria. CSIRO Publications, East Melbourne, Victoria, Australia. 288 pp.
53.Manasherob, R., Ben-Dov, E., Margalit, J., Zaritsky, A., and Barak, Z. 1996. Raising activity of Bacillus thuringiensis var. israelensis against Anopheles stephensi larvae by encapsulation in Tetrahymena pyriformis (Hymenostomatida: Tetrahymenidae). J. Am. Mosq. Control Assoc. 12: 627-631.
54.Martens, J. W. M., Honee, G., Zuidema, D., Lent, J. W. M. v., Visser, B., and Vlak, J. M. 1990. Insecticidal activity of a bacterial crystal protein expressed by a recombinant baculovirus in insect cells. Appl. Environ. Microbiol. 56: 2764-2770.
55.McBride, K. E., Svab, Z., Schaaf, D. J., Hogan, P. S., Stalker, D. M., and Maliga, P. 1995. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology (NY) 13: 362-365.
56.McLaren, J. S. 2000. Agricultural biotechnology: myth and measurement. Mol. Diagn. 5: 257-265.
57.Merryweather, A. T., Weyer, U., Harris, M. P., Hirst, M., Booth, T., and Possee, R. D. 1990. Construction of genetically engineered baculovirus insecticides containing the Bacillus thuringiensis subsp. kurstaki HD-73 d-endotoxin. J. Gen. Virol. 71: 1535-1544.
58.Murphy, R. C., and Stevens, S. E., Jr. 1992. Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 58: 1650-1655.
59.Murray, E. E., Lotzer, J., and Eberle, M. 1989. Codon usage in plant genes. Nucleic Acids Res. 17: 477-498.
60.Murray, E. E., Rocheleau, T., Eberle, M., Stock, C., Sekar, V., and Adang, M. 1991. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol. Biol. 16: 1035-1350.
61.Myasnik, M., Manasherob, R., Ben-Dov, E., Zaritsky, A., Margalith, Y., and Barak, Z. 2001. Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp. Curr. Microbiol. 43: 140-143.
62.Nester, E. W., Thomashow, L. S., Metz, M., and Gordon, M. 2002. 100 years of Bacillus thuringiensis: a critical scientific assessment. American Academy of Microbiology. Washington, DC, USA. 16 pp.
63.Obukowicz, M. G., Perlak, F. J., Kusano-Kretzmer, K., Mayer, E. J., Bolten, S. L., and Watrud, L. S. 1986. Tn5-mediated integration of the d-endotoxin gene from Bacillus thuringiensis into the chromosome of root-colonizing Pseudomonads. J. Bacteriol. 168: 982-989.
64.Obukowicz, M. G., Perlak, F. J., Kusano-Kretzmer, K., Mayer, E. J., and Watrud, L. S. 1986. Integration of the d-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of Pseudomonads using Tn5. Gene 45: 327-331.
65.Parrott, W. A., All, J. N., Adang, M. J., Bailey, M. A., Boerma, H. R., and Stewart, C. N., Jr. 1994. Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. kurstaki insecticidal gene. In Vitro Cell Dev. Biol., Plant. 30P: 144-149.
66.Perlak, F. J., Deaton, R. W., Armstrong, T. A., Fuchs, R. L., Sims, S. R., Greenplate, J. T., and Fischhoff, D. A. 1990. Insect resistant cotton plants. Bio/Technol. 8: 939-943.
67.Perlak, F. J., Fuchs, R. L., Dean, D. A., McPherson, S. L., and Fischhoff, D. A. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88: 3324-3328.
68.Perlak, F. J., Stone, T. B., Muskopf, Y. M., Petersen, L. J., Parker, G. B., McPherson, S. A., Wyman, J., Love, S., Reed, G., and Biever, D. 1993. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol. Biol. 22: 313-321.
69.Poncet, S., Delecluse, A., Anello, G., Klier, A., and Rapoport, G. 1994. Transfer and expression of the cryIVB and cryIVD genes of Bacillus thuringiensis subsp. israelensis in Bacillus sphaericus 2297. FEMS Microbiol. Lett. 117: 91-96.
70.Porcar, M., and Juarez-Perez, V. 2003. PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol. Rev. 26: 419-432.
71.Rammler, D. H., Gaertner, F. H., and Edwards, D. L. 1994. Pseudomonas hosts transformed with Bacillus endotoxin genes. USA patent no.5281532.
72.Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., and Dean, D. H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
73.Schnepf, H. E., and Whiteley, H. R. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 2893-2897.
74.Skot, L., Harrison, S. P., Nath, A., Mytton, L. R., and Clifford, B. C. 1990. Expression of insecticidal activity in Rhizobium containing the d-endotoxin gene cloned from Bacillus thuringiensis subsp. tenebrionis. Plant Soil 127: 285-295.
75.Smith, G. P., and Ellar, D. J. 1994. Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CryIC d-endotoxin affects insecticidal specificity. Biochem. J. 302: 611-616.
76.Soares, G. G., and Quick, T. C. 1992. MVP, a novel bioinsecticide for the control of diamondback moth. pp. 129-137. In: N. S. Talekar, ed. Diamondback moth and other crucifer pests: proceedings of the second international workshop. AVRDC publication no. 92-368, December 10-14, 1990, Asian Vegetable Research and Development Center, Tainan, Taiwan, ROC.
77.Soltes-Rak, E., Kushner, D. J., Williams, D. D., and Coleman, J. R. 1993. Effect of promoter modification on mosquitocidal cryIVB gene expression in Synechococcus sp. strain PCC 7942. Appl. Environ. Microbiol. 59: 2404-2410.
78.Srivastava, V., and Ow, D. W. 2001. Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol. Biol. 46: 561-566.
79.Stevens, S. E., Jr., Murphy, R. C., Lamoreaux, W. J., and Coons, L. B. 1994. A genetically engineerred mosquitocidal cyanobacterium. J. Appl. Phycol. 6: 187-197.
80.Stock, C. A., McLoughlin, T. J., Klein, J. A., and Adang, M. J. 1990. Expression of a Bacillus thuringiensis crystal protein gene in Pseudomonas cepacia 526. Can. J. Microbiol. 36: 879-884.
81.Tabashnik, B. E., Liu, Y. B., Malvar, T., Heckel, D. G., Masson, L., Ballester, V., Granero, F., Mensua, J. L., and Ferre, J. 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94: 12780-12785.
82.Tang, W., Luo, X. Y., and Sanmuels, V. 2001. Gene silencing: double-stranded RNA mediated mRNA degradation and gene inactivation. Cell Res. 11: 181-186.
83.Thanabalu, T., Hindley, J., Brenner, S., Oei, C., and Berry, C. 1992. Expression of the mosquitocidal toxins of Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis by recombinant Caulobacter crescentus, a vehicle for biological control of aquatic insect larvae. Appl. Environ. Microbiol. 58: 905-910.
84.Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
85.Thompson, M. A., Schnepf, H. E., and Feitelson, J. S. 1995. Structure, function and engineering of Bacillus thuringiensis toxins. Genet. Eng. (NY) 17: 99-117.
86.Tomasino, S. F., Leister, R. T., Dimock, M. B., Beach, R. M., and Kelly, J. L. 1995. Field performance of Clavibacter xyli subsp. cynodontis expressing the insecticidal protein gene cryIA(c) of Bacillus thuringiensis against European corn borer in field corn. Biol. Controls 5: 442-448.
87.Udayasuriyan, V., Nakamura, A., Masaki, H., and Uozumi, T. 1995. Transfer of an insecticidal protein gene of Bacillus thuringiensis into plant-colonizing Azospirillum. World J. Microbiol. Biotechnol. 11: 163-167.
88.Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., Beuckeleer, M. d., Dean, C., Zabeau, M., Montagu, M. V., and Leemans, J. 1987. Transgenic plants protected from insect attack. Nature 328: 33-37.
89.Van Mellaert, H., Hofte, H., Reynaerts, A., and Vaeck, M. 1989. Insect-resistant transgenic plants expressing Bacillus thuringiensis genes. Plant-Microb. Interactions 3: 3-10.
90.Wei, J. Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S. C., and Aroian, R. V. 2003. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA 100: 2760-2765.
91.Widner, W. R., and Whiteley, H. R. 1989. Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J. Bacteriol. 171: 965-974.
92.Wong, E. Y., Hironaka, C. M., and Fischhoff, D. A. 1992. Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants. Plant Mol. Biol. 20: 81-93.
93.Wright, S. A., Zumoff, C. H., Schneider, L., and Beer, S. V. 2001. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl. Environ. Microbiol. 67: 284-292.
94.Zhang, Z. L., Ren, Y. G., Shen, Y. X., Shan, S., Fan, G. C., Wu, X. F., Qian, K. X., and Shen, G. F. 2000. Expression of Bacillus thuringiensis (Bt) crystal toxin gene in the chloroplast of tobacco. Acta Genet. Sinica 27: 270-277.
Chapter 2 (20 references)
1.Adetuyi, F. C. 1990. Studies of the antifungal compounds produced by Erwinia herbicola. Indian J. Pathol. Microbiol. 33: 48-52.
2.Beattie, G. A., and Lindow, S. E. 1999. Bacterial colonization of leaves: a spectrum of strategies. Phytopathol. 89: 353-359.
3.Cantwel, G. 1967. Inactivation of biological insecticides by irradiation. J. Invertebr. Pathol. 9: 138-140.
4.Crickmore, N., Zeigler, D. R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Bravo, A., and Dean, D. H. 2002. Bacillus thuringiensis toxin nomenclature. http://www.biols.susx.ac.uk/home/ Neil_Crickmore/Bt/index.html (March 12, 2002)
5.Downing, K. J., Leslie, G., and Thomson, J. A. 2000. Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl. Environ. Microbiol. 66: 2804-2810.
6.Estruch, J. J., Carozzi, N. B., Desai, N., Duck, N. B., Warren, G. W., and Koziel, M. G. 1997. Transgenic plants: an emerging approach to pest control. Nat. Biotechnol. 15: 137-141.
7.Gavini, F., Mergaert, J., Beji, A., Mielcarek, C., Izard, D., Kersters, K., and De Ley, J. 1989. Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int. J. System. Bacteriol. 39: 337-345.
8.Gawron-Burke, C., and Baum, J. A. 1991. Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria. Genet. Eng. (NY) 13: 237-263.
9.Gill, S. S., Cowels, E. A., and Pietrantonio, P. V. 1992. The mode of action of Bacillus thuringiensis endotoxin. Annu. Rev. Entomol. 37: 615-636.
10.Graham, T. L. 1988. Genetic engineering of soil microorganisms for pest control. Agric. Ecosys. Environ. 24: 317-323.
11.Kempf, H. J., and Wolf, G. 1989. Erwinia herbicola as a biocontrol agent of Fusarium culmorum and Puccinia recondita f. sp. tritici on wheat. Phytopathol. 79: 990-994.
12.Lacy, G. H., and Sparks, R. B., Jr. 1979. Transformation of Erwinia herbicola with plasmid pBR322 deoxyribonucleic acid. Phytophathol. 69: 1293-1297.
13.Lin, C. H., Huang, W. C., Tzeng, C. C., and Chen, L. J. 2002. Insecticidal activity and plasmid retention of the epiphytic Erwinia herbicola strains transformed with the Bacillus thuringiensis cry1Aa1 gene. Plant Prot. Bull. 44: 21-36.
14.Murphy, R. C., and Stevens, S. D. 1992. Cloning and expression of cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 58: 1650-1655.
15.Obukowicz, M. G., Perlak, F. J., Kusano-Kretzmer, K., Mayer, E. J., and Watrud, L. S. 1986. Integration of the d-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of pseudomonads using Tn5. Gene. 45: 327-331.
16.Rammler, D. H., Gaertner, F. H., and Edwards, D. L. 1994. Pseudomonas hosts transformed with Bacillus endotoxin genes. U.S. patent no. 5,281,532.
17.Shelton, A. M., Zhao, J. Z., and Roush, R. T. 2002. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol. 47: 845-881.
18.Winkelmann, G., Lupp, R., and Jung, G. 1980. Herbicolins — New peptide antibiotics from Erwinia herbicola. J. Antibiot (Tokyo). 33: 353-358.
19.Wright, S. A., Zumoff, C. H., Schneider, L., and Beer, S. V. 2001. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl. Environ. Microbiol. 67: 284-292.
20.Zhang, L., and Birch, R. G. 1997. Mechanisms of biocontrol by Pantoea dispersa of sugarcane leaf scald disease caused by Xanthomonas albilineans. J. Appl. Microbiol. 82: 448-454.
Chapter 3 (21 references)
1. 費雯綺、王玉美 編。2000。植物保護手冊。行政院農業委員會農業藥物毒物試驗所 編印。台中。764頁。
2. 劉達修、王雪香、杜德一。1997。葉菜類:十字花科。葉10頁。蔬菜病蟲害綜合防治專輯。行政院農業委員會、台灣省政府農林廳 編印。南投。
3. Christov, N. K., Imaishi, H., and Ohkawa, H. 1999. Green-tissue-specific expression of a reconstructed cry1C gene encoding the active fragment of Bacillus thuringiensis d-endotoxin in haploid tobacco plants conferring resistance to Spodoptera litura. Biosci. Biotechnol. Biochem. 63: 1433-1444.
4. Crickmore, N., Zeigler, D. R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J, Bravo, A., and Dean, D. H. 2002. Bacillus thuringiensis toxin nomenclature. http://www.biols.susx.ac.uk /Home/Neil_Crickmore/Bt/index.html. (August 29,2002)
5. Gill, S. S., Cowels, E. A., and Pietrantonio, P. V. 1992. The mode of action of Bacillus thuringiensis endotoxin. Annu. Rev. Entomol. 37: 615-636.
6. Greenberg, S. M., Sappington, T. W., Legaspi, Jr., B. C., Liu, T. X., and Setamou, M. 2001. Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Ann. Entomol. Soc. Am. 94: 566-575.
7. Hofte, H., and Whiteley, H. R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255.
8. Hosny, M. M., Topper, C. P., Moawad, G. M., and El-Saadany, G. B. 1986. Economic damage thresholds of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) on cotton in Egypt. Crop Prot. 5: 100-104.
9. Hruska, A. J., and Gould, F. 1997. Fall armyworm (Lepidoptera: Noctuidae) and Diatraea lineolata (Lepidoptera: Pyralidae): impact of larval population level and temporal occurrence on maize yield in Nicaragua. J. Econ. Entomol. 90: 611-622.
10. Kalman, S., Kiehne, K. L., Libs, J. L., and Yamamoto, T. 1993. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl. Environ. Microbiol. 59:1131-1137.
11. Lin, C. H., Huang, W. C., Tzeng, C. C., and Chen, L. J. 2002. Insecticidal activity and plasmid retention of the epiphytic Erwinia herbicola strains transformed with the Bacillus thuringiensis cry1Aa1 gene. Plant Prot. Bull. 44: 21-36.
12. Lin, C. H., Chang, M. L., Tzeng, C. C., and Chen, L. J. 2002. Co-transformation of the synthetic cry1A(c) and wild-type cry1C genes encoding Bacillus thuringiensis endotoxins into tobacco and the bipartite expression effect on insecticidal efficacy. Plant Prot. Bull. 44: 157-180.
13. Loguercio, L. L., Santos, C. G., Barreto, M. R., Guimaraes, C. T., and Paiva, E. 2001. Association of PCR and feeding bioassays as a large-scale method to screen tropical Bacillus thuringiensis isolates for a cry constitution with higher insecticidal effect against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Lett. Appl. Microbiol. 32: 362-367.
14. Martinez, C., and Caballero, P. 2002. Contents of cry genes and insecticidal toxicity of Bacillus thuringiensis strains from terrestrial and aquatic habitats. J. Appl. Microbiol. 92: 745-752.
15. Prasad, S. S. 2001. Country report for India. In: Meeting of the Programme Advisory Committee (PAC), November 26-28, 2001, Ayutthaya, Thailand. 9 pp.
16. Smith, G. P., and Ellar, D. J. 1994. Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis Cry1C d-endotoxin affects insecticidal specificity. Biochem. J. 302: 611-616.
17. Smith, G. P., Merrick, J. D., Bone, E. J., and Ellar, D. J. 1996. Mosquitocidal activity of the Cry1C d-endotoxin from Bacillus thuringiensis subsp. aizawai. Appl. Environ. Microbiol. 62: 680-684.
18. Strizhov, N., Keller, M., Mathur, J., Koncz-Kalman, Z., Bosch, D., Prudovsky, E., Schell, J., Sneh, B., Koncz, C., and Zilberstein, A. 1996. A synthetic cry1C gene, encoding a Bacillus thuringiensis d-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc. Natl. Acad. Sci. USA 93: 15012-15017.
19. Van Rie. J. 2000. Bacillus thuringiensis and its use in transgenic insect control technologies. Int. J. Med. Microbiol. 290: 463-469.
20. Visser, B., Munsterman, E., Stoker, A., and Dirkse, W. G. 1990. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172: 6783-6788.
21. Waterhouse, D. F. 1997. The major invertebrate pests and weeds of agriculture and plantation forestry in the southern and western Pacific. ACIAR Monograph No. 44, 99 pp.
Chapter 4 (64 references)
1.陳彥宇。1995。蘇力菌殺蟲晶體蛋白基因在轉基因植物表現之研究。國立中興大學分子生物學研究所碩士論文。84頁。
2.陳鵬文。1992。蘇力菌殺蟲晶體蛋白基因之分離及應用。國立中興大學分子生物學研究所碩士論文。80頁。
3.張中林、任延國、沈燕新、山松、范國昌、吳祥甫、錢凱先、沈桂芳。2000。蘇云金芽孢 (Bt) 桿菌晶體毒蛋白基因在菸草葉綠體中的表達。遺傳學報 27:270-277。
4.趙存友、袁正強、秦紅敏、田潁川。2001。轉雙抗蟲基因菸草的研究。生物工程學報 17:273-277。
5.Adang, M. J., Staver, M. J., Rocheleau, T. A., Leighton, J., Barker, R. F., and Thompson, D. V. 1985. Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36: 289-300.
6.Bechtel, D. B., and Bulla, L. A. 1976. Electron microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis. J. Bacteriol. 127: 1472-1481.
7.Carozzi, N. B., Warren, G. W., Desai, N., Jayne, S. M., Lotstein, R., Rice, D. A., Evola, S., and Koziel, M. G. 1992. Expression of a chimeric CaMV 35S Bacillus thuringiensis insecticidal protein gene in transgenic tobacco. Plant Mol. Biol. 20: 539-548.
8.Chak, K. F., Tseng, M. Y., and Yamamoto, T. 1994. Expression of the crystal protein gene under the control of the a-amylase promoter in Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60: 2304-2310.
9.Chen, L. J., Liang, Y. J., Jeng, S. T., Orozco, E. M., Gumport, R. I., Lin, C. H. and Yang. M. T. 1995. Transcription termination at the Escherichia coli tha terminator by spinach chloroplast RNA polymerase in vitro is influenced by downstream DNA sequences. Nucleic Acids Res. 23: 4690-4697.
10.Chen, L., Marmey, P., Taylor, N. J., Brizard, J. -P., Espinoza, C., D’Cruz, P., Huet, H., Zhang, S., de Kochko, A., Beachy, R. N., and Fauquet, C. M. 1998. Expression and inheritance of multiple transgenes in rice plants. Nat. Biotechnol. 16: 1060-1064.
11.Cheng, X., Sardana, R., Kaplan, H., and Altosaar, I. 1998. Argobacterium- transformed rice plants expressing synthetic cry1A(b) and cry1A(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. USA 95: 2767-2772.
12.Chistensen, A. H., Sharrock, R. A., and Quail, P. H. 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18: 675-689.
13.Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., and Dean, D. H. 1998. Revision of nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807-813.
14.Crickmore, N., Zeigler, D. R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Bravo, A., and Dean, D. H. 2002. Bacillus thuringiensis toxin nomenclature. http://www.biols.susx.ac.uk /home/Neil_Crickmore/Bt/index.html (March 12, 2002).
15.Daniell, H. 1999. The next generation of genetically engineered crops for herbicide and insect resistance: containment of gene pollution and resistant insects. AgBiotechNet 1: 1-7.(http://www.agbiotechnet.com)
16.Daniell, H. 2000. Genetically modified food crops: current concerns and solutions for next generation crops. Biotechnol. Genet. Eng. Rev. 17: 327-352.
17.Daniell, H., Datta, R., Varma, S., Gray, S., and Lee, S. B. 1998. Containment of herbicide resistance though genetic engineering of the chloroplast genome. Nat. Biotechnol. 16: 345-348.
18.Davey, M. R., Rech, E. L., and Mulligan, B. J. 1989. Direct DNA transfer to plant cells. Plant Mol. Biol. 13: 273-285.
19.De Cosa, B., Moar, W., Lee, S. B., Miller, M., and Daniell, H. 2001. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol. 19: 71-74.
20.De Rocher, E. J., Vargo-Gogola, T. C., Diehn, S. H., and Green, P. J. 1998. Direct evidence for rapid degradation of Bacillus thuringiensis toxin mRNA as a cause of poor expression in plants. Plant Physiol. 117: 1445-1461.
21.Diehn, S. H., Chiu, W. -L., De Rocher, E. J., and Green, P. J. 1998. Premature polyadenylation at multiple sites within a Bacillus thuringiensis toxin gene-coding region. Plant Physiol. 117: 1433-1443.
22.Finer, J. J., Finer, K. R., and Ponappa, T. 1999. Particle bombardment mediated transformation. Curr. Top. Microbiol. Immunol. 240: 59-80.
23.Fischhoff, D. A., Bowdish, K. S., Perlak, F. J., Marrone, P. G., McCormick, S. M., Niedermeyer, J. G., Dean, D. A., Kusano-Kretzmer, K., Mayer, E. J., Rochester, D. E., Rogers, S. G., and Fraley, R. T. 1987. Insect tolerant transgenic tomato plants. Bio/Technol. 5: 807-813.
24.Fujimoto, H., Itoh, K., Yamamoto, M., Kyozuka, J., and Shimamoto, K. 1993. Insect resistant rice generated by introduction of a modified d-endotoxin gene of Bacillus thuringiensis. Biotechnology (NY) 11: 1151-1155.
25.Gal, S., Pisan, B., Hohn, T., Grimsley, N., and Hohn, B. 1992. Agroinfection of transgenic plants leads to viable cauliflower mosaic virus by intermolecular recombination. Virology 187: 525-533.
26.Garrick, D., Fiering, S., Martin, D. I., and Whitelaw, E. 1998. Repeat-induced gene silencing in mammals. Nat. Genet. 18: 56-59.
27.Hadi, M. Z., McMullen, M. D., and Finer, J. J. 1996. Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep. 15: 500-505.
28.Heifetz, P. B. 2000. Genetic engineering of the chloroplast. Biochimie 82: 655-666.
29.Ho, M. -W., Ryan, A., and Cummins, J. 2000. Hazards of transgenic plants containing the cauliflower mosaic viral promoter: authors'' reply to critiques of "The cauliflower mosaic viral promoter - a recipe for disaster?" Microb. Ecol. Health Dis. 12: 6-11.
30.Hofte, H., and Whiteley, H. R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255.
31.Hull, R., Covey, S. N., and Dale, P. 2000. Genetically modified plants and the 35S promoter: assessing the risks and enhancing the debate. Microb. Ecol. Health Dis. 12: 1-5.
32.John, M. E., and Keller, G. 1996. Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc. Natl. Acad. Sci. USA. 93: 12768-12773.
33.Kalman, S., Kiehne, K. L., Libs, J. L., and Yamamoto, T. 1993. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl. Environ. Microbiol. 59: 1131-1137.
34.Klee, H., Horsch, R., and Rogers, S. 1987. Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol. 38: 467-486.
35.Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C. 1987. High-velocity microprojectiles for delivery of nucleic acids into living cells. Nature 327: 70-73.
36.Kohli, A., Gahakwa, D., Vain, P., Laurie, D. A., and Chistou, P. 1999. Transgene expression in rice engineered though particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta 208: 88-97.
37.Kota, M., Daniell, H., Varma, S., Garczynski, S. F., Gould, F., and Moar, W. J. 1999. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc. Natl. Acad. Sci. USA. 96: 1840-1845.
38.Koziel, M. G., Beland, G. L., Bowman, C., Carozzi, N. B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., and Kadwell, S. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technol. 11: 194-200.
39.Maqbool, S. B., and Chistou, P. 1999. Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol. Breed. 5: 471-480.
40.Maqbool, S. B., Riazuddin, S., Loc, N. T., Gatehouse, A. M. R., Gatehouse, J. A., and Chistou, P. 2001. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol. Breed. 7: 85-93.
41.McBride, K. E., Svab, Z., Schaaf, D. J., Hogan, P. S., Stalker, D. M., and Maliga, P. 1995. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology (NY) 13: 362-365.
42.McLaren, J. S. 2000. Agricultural biotechnology: myth and measurement. Mol. Diagn. 5: 257-265.
43.Murray E. E., Lotzer, J., and Eberle, M. 1989. Codon usage in plant genes. Nucleic Acids Res. 17: 477-498.
44.Murray, E. E., Rocheleau, T., Eberle, M., Stock, C., Sekar. V., and Adang, M. 1991. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol. Biol. 16: 1035-1050.
45.Myasnik, M., Manasherob, R., Ben-Dov, E., Zaritsky, A., Margalith, Y., and Barak, Z. 2001. Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp. Curr. Microbiol. 43: 140-143.
46.Ohme-Takagi, M., Taylor, C. B., Newman, T. C., and Green, P. J. 1993. The effect of sequences with high AU content on mRNA stability in tobacco. Proc. Natl. Acad. Sci. USA. 90: 11811-11815.
47.Parrott, W. A., All, J. N., Adang, M. J., Bailey, M. A., Boerma, H. R., and Stewart, C. N. Jr. 1994. Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. kurstaki insecticidal gene. In Vitro Cell. Dev. Biol., 30P: 144-149.
48.Perlak, F. J., Deaton, R. W., Armstrong, T. A., Fuchs, R. L., Sims, S. R., Greenplate, J. T., and Fischhoff, D. A. 1990. Insect resistant cotton plants. Bio/Technol. 8: 939-943.
49.Perlak, F. J., Fuchs, R. L., Dean, D. A., McPherson, S. L., and Fischhoff, D. A. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88: 3324-3328.
50.Perlak, F. J., Stone, T. B., Muskopf, Y. M., Petersen, L. J., Parker, G. B., McPherson, S. A., Wyman, J., Love, S., Reed, G., and Biever, D. 1993. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol. Biol. 22: 313-321.
51.Russell, J. A., Roy, M. K., and Sanford, J. C. 1992. Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol. 98: 1050-1056.
52.Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
53.Sardana, R., Dukiandjiev, S., Giband, M., Cheng, X., Cowan K., Sauder, C., and Altosaar, I. 1996. Construction and rapid testing of synthetic and modified toxin gene sequences cry1A(b&c) by expression in maize endosperm culture. Plant Cell Rep. 15: 677-681.
54.Staub, J. M., Garcia, B., Graves, J., Hajdukiewicz, P. T., Hunter, P., Neha, N., Paradkar, V., Schlittler, M., Carroll, J. A., Spatola, L., Ward, D., Ye, G., and Russell, D. A. 2000 High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol. 18: 333-338.
55.Staub, J. M., and Maliga, P. 1992. Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4: 39-45.
56.Staub, J. M., and Maliga, P. 1993. Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J. 12: 601-606.
57.Stewart, C. N. Jr., Adang, M. J., All, J. N., Boerma, H. R., Cardineau, G., Tucker, D., and Parrott, W. A. 1996. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol. 112: 121-129.
58.Svab, Z., and Maliga, P. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90: 913-917.
59.Takeuchi, Y., Dotson, M., and Keen, N. T. 1992. Plant transformation: a simple particle bombardment device based on flowing helium. Plant Mol. Biol. 18: 835-839.
60.Tang, K., Tinjuangjun, P., Xu, Y., Sun, X., Gatehouse, J. A., Ronald, P. C., Qi, H., Lu, X., Chistou, P., and Kohli, A. 1999. Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta 208: 552-563.
61.Tang, W., Luo, X. Y., and Sanmuels, V. 2001. Gene silencing: double-stranded RNA mediated mRNA degradation and gene inactivation. Cell Res. 11: 181-186.
62.Vaeck, M., 1987. Transgenic plants protected from insect attack. Nature 328: 33-37.
63.van Hoof, A., and Green, P. J. 1997. Rare codons are not sufficient to destabilize a reporter gene transcript in tobacco. Plant Mol. Biol. 35: 383-387.
64.Wu, C. Y., Lin, C. H., and Chen, L. J. 1997. Identification of the transcription start site for the spinach chloroplast serine tRNA gene. FEBS Lett. 418: 157-161.
Chapter 5 (43 references)
1.Barton, K. A., Whiteley, H. R., and Yang, N. S. 1987. Bacillus thuringiensis d-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 1103-1109.
2.Bock, R. 2001. Transgenic plastids in basic research and plant biotechnology. J. Mol. Biol. 312: 425-438.
3.Chak, K. F., Tseng, M. Y., and Yamamoto, T. 1994. Expression of the crystal protein gene under the control of the a-amylase promoter in Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60: 2304-2310.
4.Chen, L. J., and Orozco, E. M., Jr. 1988. Recognition of prokaryotic transcription terminators by spinach chloroplast RNA polymerase. Nucleic Acids Res. 16: 8411-8431.
5.Cheng, J., Bolyard, M. G., Saxena, R. C., and Sticklen, M. B. 1992. Production of insect resistant potato by genetic transformation with a d-endotoxin gene from Bacillus thuringiensis var kurstaki. Plant Sci. 81: 83-92.
6.Cheng, X., Sardana, R., Kaplan, H., and Altosaar, I. 1998. Agrobacteria-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. USA 95: 2767-2772.
7.Christov, N. K., Imaishi, H., and Ohkawa, H. 1999. Green-tissue-specific expression of a reconstructed cry1C gene encoding the active fragment of Bacillus thuringiensis d-endotoxin in haploid tobacco plants conferring resistance to Spodoptera litura. Biosci. Biotechnol. Biochem. 63: 1433-1444.
8.Daniell, H., and Dhingra, A. 2002. Multigene engineering: dawn of an exciting new era in biotechnology. Curr. Opin. Biotechnol. 13: 136-141.
9.Daniell, H., Khan, M. S., and Allison, L. 2002. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci. 7: 84-91.
10.De Cosa, B., Moar, W., Lee, S. B., Miller, M., and Daniell, H. 2001. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19: 71-74.
11.Estruch, J. J., Carozzi, N. B., Desai, N., Duck, N. B., Warren, G. W., and Koziel, M. G. 1997. Transgenic plants: an emerging approach to pest control. Nat. Biotechnol. 15: 137-141.
12.Fischhoff, D. A. 1987. Insect tolerant tomato plants. Bio/Technology 5: 807-813.
13.Fujimoto, H., Itoh, K., Yamamoto, M., Kyozuka, J., and Shimamoto, K. 1993. Insect resistant rice generated by introduction of a modified d-endotoxin gene of Bacillus thuringiensis. Bio/technology 11: 1151-1155.
14.Gill, S. S., Cowles, E. A., and Pietrantonio, P. V. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636.
15.Greenberg, S. M., Sappington, T. W., Legaspi, B. C., Jr., Liu, T. X., and Setamou, M. 2001. Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Ann. Entomol. Soc. Am. 94: 566-575.
16.Heifetz, P. B. 2000. Genetic engineering of the chloroplast. Biochimie 82: 655-666.
17.Hofte, H., and Whiteley, H. R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255.
18.Hosny, M. M., Topper, C. P., Moawad, G. M., and El-Saadany, G. B. 1986. Economic damage thresholds of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) on cotton in Egypt. Crop Prot. 5: 100-104.
19.Hruska, A. J., and Gould, F. 1997. Fall armyworm (Lepidoptera: Noctuidae) and Diatraea lineolata (Lepidoptera: Pyralidae): impact of larval population level and temporal occurrence on maize yield in Nicaragua. J. Econ. Entomol. 90: 611-622.
20.Iannacone, R., Grieco, P. D., and Cellini, F. 1997. Specific sequence modifications of a cry3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol. Biol. 34: 485-496.
21.Kota, M., Daniell, H., Varma, S., Garczynski, S. F., Gould, F., and Moar, W. J. 1999. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc. Natl. Acad. Sci. USA 96: 1840-1845.
22.Koziel, M. G., Beland, G. L., Bowman, C., and Carozzi, C. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11: 194-200.
23.Lin, C. H., Chang, M. L., Tzeng, C. C., and Chen, L. J. 2002. Co-transformation of the synthetic cry1A(c) and wild-type cry1C genes encoding Bacillus thuringiensis endotoxins into tobacco and their bipartite expression effects on insecticidal efficacy. Plant Prot. Bull. 44: 209-232.
24.Lin, C. H., Huang, W. C., Tzeng, C. C., and Chen, L. J. 2002. Insecticidal activity and plasmid retention of the epiphytic Erwinia herbicola strains transformed with the Bacillus thuringiensis cry1Aa1 gene. Plant Prot. Bull. 44: 21-36.
25.McBride, K. E., Svab, Z., Schaaf, D. J., Hogan, P. S., Stalker, D. M., and Maliga, P. 1995. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology 13: 362-365.
26.McGaughey, W. H., and Whalon, M. E. 1992. Managing insect resistance to Bacillus thuringiensis toxins. Science 28: 1451-1455.
27.Nayak, P., Basu, D., Das, S., Basu, A., Ghosh, D., Ramakrishnan, N. A., Ghosh, M., and Sen, S. K. 1997. Transgenic elite indica rice plants expressing CryIAc d-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc. Natl. Acad. Sci. USA 94: 2111-2116.
28.Perlak, F. J., Deaton, R. W., Armstrong, T. A., Fuchs, R. L., Sims, S. R., Greenplate, J. T., and Fischhoff, D. A. 1990. Insect resistant cotton plants. Bio/Technology 8: 939-943.
29.Perlak, F. J., Fuchs, R. L., Dean, D. A., McPherson, S. L., and Fischhoff, D. A. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88: 3324-3328.
30.Perlak, F. J., Oppenhuizen, M., Gustafson, K., Voth, R., Sivasupramaniam, S., Heering, D., Carey, B., Ihrig, R. A., and Roberts, J. K. 2001. Development and commercial use of Bollgard cotton in the USA--early promises versus today''s reality. Plant J. 27: 489-501.
31.Perlak, F. J., Stone, T. B., Muskopf, Y. M., Peterson, L. J., Parker, G. B., Mcpherson, S. A., Wyman, J., Love, S., Reed, G., Biever, D., and Fischhoff, D. A. 1993. Genetically improved potatoes: protection from damage by colorado potato beetles. Plant Mol. Biol. 22: 313-321.
32.Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA. 1659 pp.
33.Shelton, A. M., Tang, J. D., Roush, R. T., Metz, T. D., and Earle, E. D. 2000. Field tests on managing resistance to Bt-engineered plants. Nat. Biotechnol. 18: 339-342.
34.Stewart, C. N., Jr., Adang, M. J., All, J. N., Boerma, H. R., Cardineau, G., Tucker, D., and Parrott, W. A. 1996. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol. 112: 121-129.
35.Strizhov, N., Keller, M., Mathur, J., Koncz-Kalman, Z., Bosch, D., Prudovsky, E., Schell, J., Sneh, B., Koncz, C., and Zilberstein, A. 1996. A synthetic cryIC gene, encoding a Bacillus thuringiensis d-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc. Natl. Acad. Sci. USA 93: 15012-15017.
36.Svab, Z., Hajdukiewicz, P., and Maliga, P. 1990. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA 87: 8526-8530.
37.Svab, Z., and Maliga, P. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90: 913-917.
38.Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M., and Leemans, J. 1987. Transgenic plants protected from insect attack. Nature 328: 33-37.
39.van der Salm, T., Bosch, D., Honee, G., Feng, L., Munsterman, E., Bakker, P., Stiekema, W. J., and Visser, B. 1994. Insect resistance of transgenic plants that express modified Bacillus thuringiensis cryIA(b) and cryIC genes: a resistance management strategy. Plant Mol. Biol. 26: 51-59.
40.Visser, B., Munsterman, E., Stoker, A., and Dirkse, W. G. 1990. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172: 6783-6788.
41.Waterhouse, D. F. 1997. The major invertebrate pests and weeds of agriculture and plantation forestry in the southern and western Pacific. ACIAR Monograph No. 44, 99 pp.
42.Wu, C. Y., Lin, C. H., and Chen, L. J. 1997. Identification of the transcription start site for the spinach chloroplast serine tRNA gene. FEBS Lett. 418: 157-161.
43.Zhang, Z. L., Ren, Y. G., Shen, Y. X., Shan, S., Fan, G. C., Wu, X. F., Qian, K. X., and Shen, G. F. 2000. Expression of Bacillus thuringiensis (Bt) crystal toxin gene in the chloroplast of tobacco. Acta Genet. Sinica 27: 270-277.
Chapter 6 (74 references)
1.Adams, C. C., and Stern, D. B. 1990. Control of mRNA stability in chloroplasts by 3'' inverted repeats: effects of stem and loop mutations on degradation of psbA mRNA in vitro. Nucleic Acids Res. 18: 6003-6010.
2.Allison, L. A., Simon, L. D., and Maliga, P. 1996. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J. 15: 2802-2809.
3.Blowers, A. D., Klein, U., Ellmore, G. S., and Bogorad, L. 1993. Functional in vivo analyses of the 3'' flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. Mol. Gen. Genet. 238: 339-349.
4.Breiteneder, H., Michalowski, C. B., and Bohnert, H. J. 1994. Environmental stress-mediated differential 3'' end formation of chloroplast RNA-binding protein transcripts. Plant Mol. Biol. 26: 833-849.
5.Brennan, S. M. 1984. Ribonucleoside triphosphate concentration-dependent termination of bacteriophage SP01 transcription in vitro by Bacillus subtilis RNA polymerase. Virology 135: 555-560.
6.Chen, L. J. 1995. Quantifying termination of transcription by spinach chloroplast RNA polymerase using supercoiled templates containing tandem copies of the thra terminator. Bot. Bull. Acad. Sin. 36: 95-100.
7.Chen, L. J., and Orozco, E. M., Jr. 1988. Recognition of prokaryotic transcription terminators by spinach chloroplast RNA polymerase. Nucleic Acids Res. 16: 8411-8431.
8.Chen, L. J., Liang, Y. J., Jeng, S. T., Orozco, E. M., Gumport, R. I., Lin, C. H., and Yang, M. T. 1995. Transcription termination at the Escherichia coli thra terminator by spinach chloroplast RNA polymerase in vitro is influenced by downstream DNA sequences. Nucleic Acids Res. 23: 4690-4697.
9.Chen, Q., Adams, C. C., Usack, L., Yang, J., Monde, R. -A., and Stern, D. B. 1995. An AU-rich element in the 3'' untranslated region of the spinach chloroplast petD gene participates in sequence-specific RNA-protein complex formation. Mol. Cell. Biol. 15: 2010-2018.
10.Cheng, S. -H., Cline, K., and DeLisle, A. J. 1994. An Arabidopsis chloroplast RNA-binding protein gene encodes multiple mRNAs with different 5'' ends. Plant Physiol. 106: 303-311.
11.Cramer, P. 2002. Multisubunit RNA polymerases. Curr. Opin. Struct. Biol. 12: 89-97.
12.Das, A. 1993. Control of transcription termination by RNA-binding proteins. Annu. Rev. Genet. 62: 893-930.
13.Deng, X. W., and Gruissem, W. 1987. Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell 49: 379-387.
14.Dombrowski, S., Brennicke, A., and Binder, S. 1997. 3''-Inverted repeats in plant mitochondrial mRNAs are processing signals rather than transcription terminators. EMBO J. 16: 5069-5076.
15.Drager, R. G., Zeidler, M., Simpson, C. L., and Stern, D. B. 1996. A chloroplast transcript lacking the 3'' inverted repeat is degraded by 3''→5'' exoribonuclease activity. RNA 2: 652-663.
16.Goldschmidt-Clermont, M. 1998. Coordination of nuclear and chloroplast gene expression in plant cells. Int. Rev. Cytol. 177: 115-180.
17.Gray, M. W., and Lang, B. F. 1998. Transcription in chloroplasts and mitochondria: a tale of two polymerases. Trends Microbiol. 6: 1-3.
18.Gruissem, W. 1989. Chloroplast gene expression: how plants turn their plastids on. Cell 56: 161-170.
19.Gruissem, W., and Zurawski, G. 1985. Analysis of promoter regions for the spinach chloroplast rbcL, atpB and psbA genes. EMBO J. 4: 3375-3383.
20.Gruissem, W., and Tonkyn, J. C. 1993. Control mechanisms of plastid gene expression. Crit. Rev. Plant Sci. 12: 19-55.
21.Gruissem, W., Barkan, A., Deng, X. W., and Stern, D. 1988. Transcriptional and post-transcriptional control of plastid mRNA levels in higher plants. Trends Genet. 4: 258-263.
22.Gusarov, I., and Nudler, E. 1999. The mechanism of intrinsic transcription termination. Mol. Cell 3: 495-504.
23.Hajdukiewicz, P. T., Allison, L. A., and Maliga, P. 1997. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 16: 4041-4048.
24.Hayes, R., Kudla, J., and Gruissem, W. 1999. Degrading chloroplast mRNA: the role of polyadenylation. Trends Biochem. Sci. 24: 199-202.
25.Hedtke, B., Borner, T., and Weihe, A. 1997. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 277: 809-811.
26.Hess, W. R., and Borner, T. 1999. Organellar RNA polymerases of higher plants. Int. Rev. Cytol. 190: 1-59.
27.Hirai, A., Ishibashi, T., Morikami, A., Iwatsuki, N., Shinozaki, K., and Sugiura, M. 1985. Rice chloroplast DNA: a physical map and the location of the genes for the large subunit of ribulose 1, 5-bisphosphate carboxylase and the 32KD photosystem II reaction center protein. Theor. Appl. Genet. 70: 117-122.
28.Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C. -R., Meng, B. -Y., Li, Y. -Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K., and Sugiura, M. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217: 185-194.
29.Huang, J., and Sousa, R. 2000. T7 RNA polymerase elongation complex structure and movement. J. Mol. Biol. 303: 347-358.
30.Igloi, G. L., and Kossel, H. 1992. The transcriptional apparatus of chloroplasts. Crit. Rev. Plant Sci. 10: 525-558.
31.Ikeda, T. M., and Gray, M. W. 1999. Identification and characterization of T3/T7 bacteriophage-like RNA polymerase sequences in wheat. Plant Mol. Biol. 40: 567-578.
32.Jeng, S. T., Gardner, J. F., and Gumport, R. I. 1990. Transcription termination by bacteriophage T7 RNA polymerase at r-independent terminators. J. Biol. Chem. 265: 3823-3830.
33.Jeng, S. T., Gardner, J. F., and Gumport, R. I. 1992. Transcription termination in vitro by bacteriophage T7 RNA polymerase: the role of sequence elements within and surrounding a r-independent transcription terminator. J. Biol. Chem. 267: 19306-19312.
34.Kanno, A., and Hirai, A. 1993. A transcription map of the chloroplast genome from rice (Oryza sativa). Curr. Genet. 23: 166-174.
35.Kapoor, S., Suzuki, J. Y., and Sugiura, M. 1997. Identification and functional significance of a new class of non-consensus-type plastid promoters. Plant J. 11: 327-337.
36.Klaff, P. 1995. mRNA decay in spinach chloroplasts: psbA mRNA degradation is initiated by endonucleolytic cleavages within the coding region. Nucleic Acids Res. 23: 4885-4892.
37.Kudla, J., Hayes, R., and Gruissem, W. 1996. Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J. 15: 7137-7146.
38.Lerbs-Mache, S. 1993. The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proc. Natl. Acad. Sci. USA 90: 5509-5513.
39.Liere, K., and Link, G. 1997. Chloroplast endoribonuclease p54 involved in RNA 3''-end processing is regulated by phosphorylation and redox state. Nucleic Acids Res. 25: 2403-2408.
40.Lin, C. H., Chen, Y. Y., Tzeng, C. C., Tsay, H. S., and Chen, L. J. 2003. Expression of a Bacillus thuringiensis cry1C gene in plastid confers high insecticidal efficacy against tobacco cutworm - a Spodoptera insect. Bot. Bull. Acad. Sin. 44: 199-210.
41.Lisitsky, I., and Schuster, G. 1995. Phosphorylation of a chloroplast RNA-binding protein changes its affinity to RNA. Nucleic Acids Res. 23: 2506-2511.
42.Lynn, S. P., Kasper, L. M., and Gardner, J. F. 1988. Contributions of RNA secondary structure and length of the thymidine tract to transcription termination at the thr operon attenuator. J. Biol. Chem. 263: 472-479.
43. Magee, A. M., and Kavanagh, T. A. 2002. Plastid genes transcribed by the nucleus-encoded plastid RNA polymerase show increased transcript accumulation in transgenic plants expressing a chloroplast-localized phage T7 RNA polymerase. J. Exp. Bot. 53: 2341-2349.
44.Mathews, D. E., and Durbin, R. D. 1990. Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and Escherichia coli. J. Biol. Chem. 265: 493-498.
45.McDowell, J. C., Roberts, J. W., Jin, D. J., and Gross, C. 1994. Determination of intrinsic transcription termination efficiency by RNA polymerase elongation rate. Science 266: 822-825.
46.Monde, R. A., Greene, J. C., and Stern, D. B. 2000. The sequence and secondary structure of the 3''-UTR affect 3''-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Mol. Biol. 44: 529-542.
47.Mullet, J. E. 1988. Chloroplast development and gene expression. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 475-502.
48.Mullet, J. E. 1993. Dynamic regulation of chloroplast transcription. Plant Physiol. 103: 309-313.
49.Nudler, E., and Gottesman, M. E. 2002. Transcription termination and anti-termination in E. coli. Genes Cells 7: 755-768.
50.Platt, T. 1986. Transcription termination and the regulation of gene expression. Annu. Rev. Biochem. 55: 339-372.
51.Rochaix, J. D. 1996. Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii. Plant Mol. Biol. 32: 327-341.
52.Rott, R., Drager, R. G., Stern, D. B., and Schuster, G. 1996. The 3'' untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. Mol. Gen. Genet. 252: 676-683.
53.Rott, R., Liveanu, V., Drager, R. G., Stern, D. B., and Schuster, G. 1998. The sequence and structure of the 3''-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Mol. Biol. 36: 307-314.
54.Sakai, A., Saito, C., Inada, N., and Kuroiwa, T. 1998. Transcriptional activities of the chloroplast-nuclei and proplastid-nuclei isolated from tobacco exhibit different sensitivities to tagetitoxin: implication of the presence of distinct RNA polymerases. Plant Cell Physiol. 39: 928-934.
55.Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, N. Y.
56.Schuster, G., and Gruissem, W. 1991. Chloroplast mRNA 3'' end processing requires a nuclear-encoded RNA-binding protein. EMBO J. 10: 1493-1502.
57.Staub, J. M., and Maliga, P. 1995. Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J. 7: 845-848.
58.Stern, D. B., and Gruissem, W. 1987. Control of plastid gene expression: 3'' inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51: 1145-1157.
59.Stern, D. B., and Gruissem, W. 1989. Chloroplast mRNA 3'' end maturation is biochemically distinct from prokaryotic mRNA processing. Plant Mol. Biol. 13: 615-625.
60.Stern, D. B., and Kindle, K. L. 1993. 3'' end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a two-step process. Mol. Cell. Biol. 13: 2277-2285.
61.Stern, D. B., Jones, H., and Gruissem, W. 1989. Function of plastid mRNA 3'' inverted repeats: RNA stabilization and gene-specific protein binding. J. Biol. Chem. 264: 18742-18750.
62.Stern, D. B., Radwanski, E. R., and Kindle, K. L. 1991. A 3'' stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3: 285-297.
63.Sugita, M., and Sugiura, M.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top