(3.236.228.250) 您好!臺灣時間:2021/04/17 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:石燕鳳
研究生(外文):Yeng-Fong Shih
論文名稱:含膨脹型活性碳阻燃劑之環氧樹脂/不飽和聚酯互穿網狀型高分子材料之研究
論文名稱(外文):Carbon Black Flame Retardant Containing IPNs based on Epoxy/Unsaturated Polyester
指導教授:鄭如忠
指導教授(外文):Ru-Jong Jeng
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:187
中文關鍵詞:活性碳環氧樹脂不飽和聚酯互穿網狀型高分子阻燃劑
外文關鍵詞:carbon blackepoxyunsaturated polyesterIPNflame retardant
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1579
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:151
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討含膨脹型耐燃劑之不飽和聚酯/環氧樹脂在不同比例下所製得的互穿網狀型高分子結構(IPN),其互相摻合所產生的微相不均勻相容特性,使得材料呈現寬頻高阻尼抗振且耐燃的特性。並研究分析材料的熱劣解行為,以及探討材料掺混之相容性。
由固態碳十三核磁共振光譜儀及霍氏紅外線光譜儀分析則發現不飽和聚酯與環氧樹脂之間有氫鍵作用力存在,且在某些混合比例時二者會有較佳的氫鍵作用力形成,因此具有較好的相容性。由動態力學分析(DMA)結果顯示,隨著不飽和聚酯添加量的增加,材料的阻尼溫度範圍逐漸拉寬並移向較低溫度。熱重分析(TGA)及調制型熱重分析(MTGA)則發現在互穿網狀型高分子材料中,不飽和聚酯和環氧樹脂的的分解反應係接近各自獨立進行、不會互相干擾的模式。而在加入膨脹型耐燃劑後,材料的熱裂解活化能提高,且活化能隨轉化率變化之曲線與未添加活性碳阻燃劑的IPN材料有明顯的不同。由熱裂解氣相層析/質譜儀分析也發現在加入活性碳阻燃劑後劣解產物種類明顯減少,且其中高分子量產物之含量增加,低分子量產物之比例則相對降低。DMA、 熱重分析(TGA)及耐燃性分析(LOI)皆顯示加入膨脹型耐燃劑後不僅提高材料的耐燃性,並改善材料的制振及機械性質。

A series of carbon black containing interpenetrating polymer networks (IPNs) based on unsaturated polyester/epoxy have been developed in this endeavor. Scanning electronic microscopy exhibits that the compatibility was decreased and the morphology seemed to become less rigid as the content of unsaturated polyester increased in IPNs. The results also indicate that the flame retardants were uniformly distributed in the IPN matrices. The compatibility and interaction behavior of these IPNs have been investigated by DMA, DSC, FTIR and solid-state NMR spectroscopies. The Tg’s of IPNs were decreased and their transitions became broader as the content of unsaturated polyester increased in IPNs based on DMA and DSC study. Moreover, DSC measurements reveal that the Tg of the IPN sample became indistinct as the carbon black was added. This is due to the increase of inorganic content. Hydrogen bonding is present between the unsaturated polyester and epoxy as indicated by the FTIR investigation. Insufficient degree of hydrogen bonding brought about immiscibility between IPN components. The analysis of proton spin-lattice relaxation time in the rotating frame (TH1ρ) of the IPNs was also utilized to investigate molecular interaction between unsaturated polyester and epoxy. From relaxation curves, phase separation was found for the IPN samples with unsaturated polyester content higher than 30%. This was also observed by DMA study. Further DMA investigation indicates that the storage moduli were greatly enhanced with the addition of the carbon black to the IPN samples. Moreover, the loss modulus peaks became broader and more distinguished after addition. Based on the above, the addition of carbon blacks to IPN samples does greatly enhance the damping properties (at a wider temperature range) as well as the mechanical properties.
In the aspect of flame retardancy, the carbon black flame retardants would expand as heated over 220℃. Thermal degradation behavior and kinetic parameters of this system were analyzed by conventional and modulated thermogravimetric analysis (MTGA). It was found that the epoxy and unsaturated polyester components decomposed individually in the polymer network. Furthermore, the activation energy calculated from Ozawa method is somewhat lower than that of MTGA method.
This implies that the decomposition reaction is not a single reaction. Moreover, the activation energy of decomposition increased as carbon black flame retardants were added. The curves of activation energy versus residual mass varied in shape and position as the carbon black flame retardants were added. This indicates that the decomposition mechanism of carbon black-containing IPNs was different from that of the pristine IPNs. It was also found from adiabatic calorimeter that the heat of combustion (HOC) of the IPN sample was decreased by the addition of carbon black flame retardants. Moreover, the results of Py-GC-MS study reveal that the degradation of IPNs was derived from the non-interfering thermal decomposition processes of the respective IPN components. The degradation process of IPN was inhibited with the addition of the carbon black. This led to the lower content of low molecular weight compounds and fewer species of degradation products. In summary, the flame resistance, damping and mechanical properties were all improved simultaneously by the addition of the "plate-shaped" carbon black flame retardants to the unsaturated polyester/epoxy IPNs.

誌謝------------------------------------------------------------------------------
中文摘要------------------------------------------------------------------------
Abstract ------------------------------------------------------------------------
目錄------------------------------------------------------------------------------
圖目錄---------------------------------------------------------------------------
表目錄------------------------------------------------------------------------
流程目錄--------------------------------------------------------第一章 緒論
第一節 互穿網狀型高分子材料(IPNs)簡介---------------------------
第二節 制振材料簡介
第三節 環氧樹脂/不飽和聚酯互穿網狀型高分子材料------------
第四節 高分子材料的阻燃技術
第五節 材料非等溫劣解動力學
第六節 極限需氧量指數與測定
第七節 分子運動、分子形態及分子作用力分析
第八節 玻璃轉移溫度(Tg)之量測
第二章 實驗方法與分析步驟
第一節 材料
第二節 IPN的製造方法
第三節 分析方法與條件
第三章 結果與討論
第一節 制振性能及機械性質探討
第二節 分子相容性及相互作用力之探討
第三節 熱分析
第四節 動力學分析
第五節 熱劣解產物分析
第四章 結論
參考文獻
附錄―著作表

1. S. C. Kim and L. H. Sperling, “IPNs Around the World”, John Wiley & Sons, Chichester, 1997
2. J. W. Aylsworth, US Pat. 1,111,284 (1914)
3. J. R. Miller, J. Chem. Soc., 1311 (1960)
4. L. H. Sperling and D. W. Friedman, J. Polym. Sci. A, 2(7), 425 (1969)
5. H. L. Frisch, D. Klempner and K. C. Frish, Polym. Eng. Sci., 14(9), 646 (1974)
6. L. H. Sperling and R. R. Arnts, J. Appl. Polym. Sci., 15, 2317 (1971)
7. L. H. Sperling, J. Polym. Sci. Macromol. Rev., 12, 141 (1977)
8. 鈴木康弘、兜玉峰一,高分子加工,第三十七卷一號, 30頁(1988)
9. 陳育玄, ”制振、防振高分子材料的市場動向”,材料與社會,第78卷,頁115~119,民國82年6月。
10. 趙坤城,高分子工業,41期,58頁,1992年。
11. W. B. Huang, and F. C. Zhan, J. Appl. Polym. Sci., 50, 277 (1993)
12. 陳原振、謝國煌,化工技術,第五卷第五期,144~150頁,1997年。
13. D. Klempner, L. Berkowski, K. C. Frisch, K. H. Hsieh and R. Ting, Polym. Mater. Sci. Eng., 52, 57 (1985)
14. M. C. O. Chang, D. A. Thomas and L. H. Sperling, J. Polym. Sci. Polym. Phy. Ed., 26, 1627 (1988)
15. K. H. Hsieh, Y. C. Chiang, Y. C. Chern, W. Y. Chiu and C. C. M. Ma, Angew. Makromol.Chem., 194, 15 (1992)
16. M. S. Lin, K. T. Jeng, K. Y. Huang, and Y. F. Shih, J. Polym. Sci. Part A: Polym. Chem., 31, 3317 (1993)
17. 謝國煌、陳原振、曾勝茂,”動態機械分析儀之應用分析”,科儀新知,第十八卷,第四期,頁32,1997年。
18. 高旭聖,”動態機械分析儀DMA的原理”,立源公司,NewsLetter(15),頁15~17,Feb. 2000。
19. 廖平喜,聚合物化學,高立書局,433頁,82年修訂二版
20. M. C. O. Chang, D. A .Thomas and L. H Sperling, J. Appl. Polym. Sci., 34, 409 (1987)
21. 林建中,”高分子化學原理”,歐亞書局,10版,台北市,72年
22. 史瑞生, ”高分子制振材料的發展趨勢”,化工技術,第64卷,頁154~158,民國87年7月。
23. W. G. Potter, “Epoxide Resin”, Springer-Verlag New York Inc., London ILIFFE Books, 1970
24. 蔡信行,”聚合物化學(下冊)”,文京圖書有限公司,第一版,頁23~631,民國82年2月5日。
25. J. K. Gillham, Polym. Eng. Sci., 19, 676 (1979)
26. P. F. Bruins, “Unsaturated Polyester Technology”, Gordon & Breach Science Publishers, New York, 1976
27. 蘇明照,”不飽和聚酯樹脂之製程及基本特性”, 強化塑膠,第67/68期,頁20~35,民國85年9月。
28. 林水泉,印染整理與特殊加工,第 31 期,89/01
29. S. Hörold, Polym. Degrad. Stab., 64, 427 (1999)
30. L. Lewin, S. M. Atas, and E. M. Pearce, Flame-Retardant Polymeric Materials, Plenum Press, New York, 1975
31. P. J. Wakelyn, Recent Advances in Flame Retardancy of Polymeric Materials, Volume Ⅴ, Business Communications Inc., Stamford, 1994
32. J. Jang, H. Chung , M. Kim and H. Sung, Polym. Test., 19, 269 (2000)
33. S. R. Owen, J. F. Harper, Polym. Degrad. Stab., 64, 449 (1999)
34. 經濟部工業局88年下半年及89年度工業技術人材培訓計畫講義(防火樹脂系列研討會)。
35. A. R. Horrocks, Polym. Degrad. Stab., 54, 143 (1996)
36. D. A. Saravanos and C. C. Chamis, Polym. Comp., 11(6), 328 (1990)
37. S. Varughese and D. K. Tripathy, J. Appl. Polym. Sci., 44, 1847 (1992)
38. A. Baudry, J. Dufay, N. Regnier and B. Mortaigne, Polym. Degrad. Stab., 61, 441 (1998)
39. N. Regnier and C. Guibe, Polym. Degrad. Stab., 55, 165 (1997)
40. M. M. M. Abd EI-Mahab, Thermochim Acta, 256, 271(1995)
41. T. C. Chang and K. H. Wu, Polym. Degrad. Stab., 60, 161 (1998)
42. C. N. Cascaval, D. Rosu and I. Agherghinei, Polym. Degrad. Stab. , 52, 253 (1996)
43. W. J. Wang, L. H. Perng, G. H. Hsiue and F. C. Chang, Polymer, 41, 6113 (2000)
44. T. C. Chang, C. L. Liao, K. H. Wu, H. B. Chen and J. C. Yang, Polym. Degrad. Stab., 66, 127 (1999)
45. D. Das, S. S. Nayak and S. K. Das, Thermochim Acta, 297, 101 (1997)
46. Siddaramaiah, P. Mallu and A. Varadarajulu, Polym. Degrad. Stab., 63, 305 (1999)
47. J. H. Flynn and L. A. Wall, Polym. Lett., 4, 323 (1966)
48. J. H. Flynn, in: R. F. Schwenker, P. D. Garn(Eds.), Thermal Analysis, Vol. 2, Academic Press, New York,1969
49. J. H. Flynn and B. Dickens, Thermochim Acta, 15, 1 (1976)
50. G. Clint and D. Naba, Thermochim Acta, 367, 185 (2001)
51. R. L. Blaine, J. Therm. Anal., 54, 695 (1998)
52. Y. L. Liu, G. H. Hsiue and Y. S. Chiu, J. Appl. Polym. Sci., 58, 579 (1995)
53. C. P. R. Nair, G. Clouet and Y. Guilbert, Polym. Degrad. Stab., 26, 305 (1989)
54. T. Yamanobe, “Solid State NMR of Polymers”, Elservier, Amsterdam, 1998
55. A. F. Colin, “Solid State NMR for Chemists”, C. R. C. Press, Guelph, Ontario, Canada, 1983
56. J. L. Koenig, “Spectroscopy of Polymers”, American Chemical Society, Washington, DC, 1992
57. J. Schaefer, M. D. Sefcik, E. O. Stejskal and R. A. Mckay, Macromolecules, 14, 188 (1981)
58. E. O. Stejskal, J. Schaefer, M. D. Sefcik, and R. A. Mckay, Macromolecules, 14, 275 (1981)
59. P. P. Chu and H. D. Wu, Polymer, 41, 101 (2000)
60. X. Zhang, K. Takegoshi and K. Hikichi, Macromolecules, 24, 5756 (1991)
61. R. A. Grinsted and J. L. Koenig, J. Polym. Sci., Part B: Polym. Phys ., 28, 177 (1990)
62. K. S. Jack and A. K. Whittaker, Macromolecules, 30, 3560 (1997)
63. M. C. S. Perera, U. S. Ishiaku and Z. A. M. Ishak, Eur. Polym. J., 37, 167 (2001)
64. M. M. Coleman, D. J. Skrovanek and P. C. Painter, Makromol. Chem., Macromol. Symp., 5, 21 (1986)
65. P. P. Chu, H. D. Wu and C. T. Lee, J. Polym. Sci., Part B: Polym. Phys., 36, 1647 (1998)
66. H. D. Wu, P. P. Chu, C. C. M. Ma and F. C. Chang, Macromolecules, 32, 3097 (1999)
67. C. C. M. Ma, H. D. Wu and C. T. Lee, J. Polym. Sci., Part B: Polym. Phys., 36, 1721 (1998)
68. H. D. Wu, C. C. M. Ma, P. P. Chu, H. T. Tseng and C. T. Lee, Polymer, 39, 2859 (1998)
69. N. Parizel, G. Meyer and G. Weill, Polymer, 36, 2323 (1995)
70. F. M. Mulder, W. Heinen, M. van Duin, J. Lugtenburg and H. J. M. de Groot, Macromolecules, 33, 5544 (2000)
71. M. Kobayashi, S. Kuroki, I. Ando, K. Yamauchi, H. Kimura, K. Okita, M. Tsumura and K. Sogabe, J. Mol. Struc., 602, 321 (2002)
72. D. R. Anderson and R. U. Acton, ”Encyclopaedia of Polymer Science and Technology” vol. 13, Wiely, New York, 1970
73. A. W. Birley and D. C. F. Couzens, “Thermoplatics: Properties and Design”, Wiely, London, 1974
74. J. Branddrup and E. H. Immergut, “Polymer Handbook”, Wiely, New York, 1975
75. D. E. Kline and D. Hansen, “Thermal Chacracteration Techniques”, Dekker, New York, 1970
76. G. Ross and A. W. Birley, J. Phys.D. : Appl. Phys., 6, 795 (1973)
77. H. J. Wintle, “The Radiation Chemistry of Macromolecules”, vol. 1, Academic Press, New York, 1972
78. J. V. Schmitz, “Testing of Polymers”, vol. 1, Interscience, New York, 1965
79. G. C. Ives, J. A. Mead and M. M. Riley, “ Handbook of Plastics Test Methods”, ILIFFE, London, for The Plastics Institute, 1971
80. L. E. Nielsen, ”Mechanical Properties of Polymers and Composites”, Vol. 1, Marcel Dekker Inc., New York, 1974
81. 2000年TA (Du Pont)熱分析儀分析技術介紹,立源興業股份有限公司
82. T. G. Fox, J. Appl. Bull. Am. Phys. Soc., 1, 123 (1956)
83. W. Hubbard, D. Scott and G. Waddington, “Experimental Thermochemistry”, Ed. F. Rossini, Vol. 1, Chapter 5. Interscience Publishers Inc., 1956
84. J. D. Ferry, “Viscoelastic Properties of Polymers”, 3rd Ed., John Wiley & Sons, New York, 1983
85. H. D. Wu, P. P. Chu, C. C. M. Ma and F. C. Chang, Macromolecules, 32, 3097 (1999)
86. K. S. Annakutty and K. Kishore , Polymer, 29, 756 (1988)
87. Y. L. Liu, G. H. Hsiue, Y. S. Chiu, R. J. Jeng and L. H. Perng, J. Appl. Polym. Sci., 61, 613 (1996)
88. V. Dave and S. C. Israel, Polym. Prepr., 31(1), 554 (1990)
89. R. Xie and B. Qu, Polym. Degrad. Stab., 71, 375 (2001)
90. J. J. Carberry, “Chemical and Catalytic Reaction Engineering”, McGraw-Hill, New York, 1976
91. H. Nakagawa, S. Tsuge and T. Koyama, J. Anal. Appl. Pyrolysis, 12, 97 (1987)
92. H. Nakagawa, S. Wajatsuka, S. Tsuge and T. Koyama, Polymer J., 20, 9 (1988)
93. N. Grassie, M. I. Guy and N. H. Tennent, Polym. Degrad. Stab., 12 ,65 (1985)
94. S. J. Evans, P. J. Haines and G. A. Skinner, J. Anal. Appl. Pyrolysis, 55, 13 (2000)
95. S. J. Evans, P. J. Haines and G. A. Skinner, Thermocnim. Acta, 291 ,43 (1997)
96. L. H. Lee, J. Polym. Sci. : Part A, 3, 859 (1965)
97. G. Audisio and F. Bertini, J. Anal. Appl. Pyrolysis, 24, 61 (1992)
98. F. Bertini, G. Audisio and J. Kiji, J. Anal. Appl. Pyrolysis, 28, 205 (1994)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 含反應型稀釋劑環氧樹脂硬化物特性及複合厚膜高頻介電性質之研究
2. 高分子奈米複合材料能量傳遞機制之研究
3. 微粒粉末在高分子連續相之分散研究
4. Dipentene型環氧樹脂之合成、特性及其高性能衍生物
5. 寬頻抗震環氧樹脂結構材料之研究
6. 由元素矽水解法合成無機二氧化矽奈米顆粒及以RAFT 活自由基聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級無機二氧化矽/有機高分
7. 由元素矽水解法合成無機二氧化矽奈米顆粒及以RAFT 活自由基聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級無機二氧化矽/有機高分子核殼型顆粒添加劑
8. 以RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級之高分子核殼型添加劑
9. 由元素矽水解法合成無機二氧化矽奈米顆粒及以RAFT 活自由基聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級無機二氧化矽/有機高分子核殼型顆粒添加劑
10. 由元素矽水解法合成無機二氧化矽奈米顆粒及以RAFT活自由基聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級無機二氧化矽/有機高分子核殼型顆粒添加劑
11. 低介電、難燃環氧樹脂/多面體倍半矽氧烷寡聚物奈米複合材料之合成與特性研究
12. 奈米級及次微米級核殼型橡膠添加劑、無機矽膠/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力及玻璃轉移溫度之影響研究
13. 奈米粉體對環氧樹脂奈米複合材料性質之影響
14. 經由Photo-Fries’重排反應的新高分子型光安定劑之研究
15. 含磷雙馬來醯胺、環氧樹脂網狀互穿材料之製備及其熱性質分析
 
系統版面圖檔 系統版面圖檔