(3.238.250.105) 您好!臺灣時間:2021/04/20 06:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周志誠
研究生(外文):Chih-Cheng Chou
論文名稱:蒙脫土與Jeffamine®聚醚胺之離子交換反應
論文名稱(外文):Ionic Exchange Reactions of Montmorillonite with Jeffamine® Amine Quaternary Salts
指導教授:林江珍
指導教授(外文):Jieng-Jen Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:55
中文關鍵詞:黏土聚醚胺奈米複合材料插層
外文關鍵詞:claypoly(oxyalkylene)-aminenanocompositeintercalation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中共分四個章節,討論商業化聚醚胺(Jeffamine® poly(oxyalkylene)-amine)藉由離子交換反
應插層蒙脫土,探討改質後蒙脫土之物理結構、化學性質與表面型態。
(1) 聚醚胺(poly(oxyalkylene)-amine)藉由離子交換反應改質蒙脫土,改質後的蒙脫土可增加與
高分子基材的相容性。利用親水性聚乙烯醚胺(ploy(oxyethylene)-amine; POE-amine)親油性
聚丙烯醚胺(ploy(oxypropylene)-amine; POP-amine)改質蒙脫土後,使蒙脫土層間展現出兩
種不同物理結構。分子量大於2000 及具親油性質的聚丙烯醚胺,可製備層間距離較高的有
機黏土。設計五種不同變素: 1.不同分子量的聚丙烯醚胺(Mw 230 ~ 5000)、2.親水/親油作
用力、3.分子結構與4.四級胺與胺基的比例。層間距被控制在20 到92 Å,同時有機含量
從23 到72 wt % 。經改質後的蒙脫土可自我排列於甲苯與水界面並形成薄膜,利用掃描式
電子顯微鏡(TEM)與穿透式電子顯微鏡(SEM)可觀察到次序性的排列結構。
(2) 分子量是控制層間距的重要因素之一,利用親水性聚乙烯醚胺(ploy(oxyethylene)-amine;
POE-amine)親油性聚丙烯醚胺(ploy(oxypropylene)-amine; POP-amine)進一步說明不同程度
的親水/親油作用力亦是重要的因素。利用TGA 與X-ray 的分析結果,推導公式證明蒙脫
土層間距離與蒙脫土層間有機含量之間的相依性質。數學公式符合TGA 與X-ray 的分析結
果,此公式可進一步推算插層程度。
(3) 證明聚丙烯醚胺插層蒙脫土, 實際的程序是經由臨界分子型態改變機制(critical
conformation change mechanism)。黏土與四級胺鹽進行離子交換反應是置備高分子黏土奈
米複合材料的基本步驟,一般而言改質後的有機黏土的層間距離約在20~30 Å 之間。若利
用聚丙烯醚插層蒙脫土可發現層間距離臨界轉折變化,蒙脫土的層間距由12.4 Å 撐層至19
Å,最後急劇轉變58 Å 並且達85 %離子交換率。急劇轉變的現象意味著臨界分子型態改
變,無定型的聚丙烯醚胺分子從任意盤繞型態轉變為具規則性的分子型態。聚丙烯醚胺的
胺基吸附在蒙脫土表面,聚丙烯醚主鏈自我排列並藉由親油吸引力拉伸層間限制。臨界轉折變化點前後的層間體積的變化接近五倍。利用臨界方法控制分子型態的急劇轉變可置備
新穎性有機黏土奈米材料。
(4) 分子量400-5000 Mw 的聚丙烯醚三胺基藉由離子交換的方式改質蒙脫土,控制四級胺鹽與
胺基的比例改變分子型態進一步控制黏土層間距離。若利用分子量5000 Mw 的聚丙烯醚三
胺基(POP-triamine),層間距離可被提高至80 Å 與有機含量提升至75 wt %。聚丙烯醚主鏈
不但大幅層間距離並改變蒙脫土的性質。利用聚丙烯醚三胺改質之有機黏土可均勻分散在
有機溶劑並呈現雙性性質在低濃度的甲苯/水的界面。
In this dissertation, four parts (5.1~5.4) of studies involving the intercalation of poly(oxyalkylene)-
amine (POA-amine) into sodium montmorillonite (Na+-MMT) were prepared by an ionic exchange
reactions, and their physical, chemistry and morphology were included.
(1) Smectic montmorillonite (MMT) was modified by the ionic exchange reaction with
poly(oxyalkylene)-amines to improve its compatibility with organic substrates. Hydrophilic
poly(oxyethylene)- (POE) and hydrophobic poly(oxypropylene)- (POP) amines were intercalated
into MMT in two markedly different modes. Only hydrophobic POP-amines with multiple amine
functionalities and a molecular weight over 2000 Mw could afford organoclays with a wide
interlayer gallery. The basal spaces from 20 to 92 Å and organic contents from 23 to 72 wt % were
tailored mainly by varying the molecular weight, hydrophobic/hydrophilic interaction, molecular
configuration and quaternary amine functionalities of the intercalating amines. The modified clay
self-assembled at the toluene/water interface into a film, which exhibits an aligned fine structure
as revealed by TEM and SEM.
(2) The use of POE- and POP-amines further reveals the hydrophobic/hydrophilic interaction as an
important factor besides molecular weight for controlling interlayer space. By these detailed
analyses, we deduced a new mathematical equation that predicts very well for the X-ray basal
spacing from the amount of organics intercalated in the MMT. The mathematical equation, which
correlates the silicate basal spacing with the intercalated organics, was deduced to predict the
degree of MMT intercalation.
(3) We demonstrate that the intercalation of smectic montmorillonite (MMT) actually proceeds by a
critical conformation change mechanism. The ion exchange of clay with organic ammonium ions
is the essential step in preparation of clay/polymer nanocomposites. Commonly, the intercalation
results in a layered aluminosilicate with enlarged basal spacings (20 ~ 30 Å) and organophilic
properties. The use of requisite poly(oxypropylene)diamines (POP-amine, 2000 Mw) allows us to
observe a critical transition in the widening of the interlayer gallery, from 12.4 Å, to a 19 Åplateau and then a sharp increase to 58 Å when reaching 85 % of the ion exchange. The sharp
transition implicates a critical conformation change of the amorphous POP-amines from random
coils to an orderly aligned configuration. With the telechelic amines anchoring to silicate surface,
the POP backbones self-assemble and stretch the silicate confinement through hydrophobic
interactions. The nanostructures, before and after the critical transformation, are approximate in
mass but differ in volume by nearly five-fold. Controlling the molecular shape transformation in a
critical manner allows the preparation of new silicate/polymer nanomaterials and the
understanding of two complementary, but distinct noncovalent bond interactions in a confined
space.
(4) Smectic montmorillonite (MMT) was modified via the cation exchange with poly(oxypropylene)-
triamines (POP-triamine) of 400-5000 g/mol molecular weight (Mw). Three possible quaternary
ammonium salts can form for each POP-triamine and intercalate into the silicate interlayer in
different molecular conformations. Unusually wide silicate basal spaces up to 80 Å and high
organic fractions up to 75 wt % were observed by adopting the 5000 Mw POP-T5000 as the
intercalating agent. The incorporated POP organics not only contribute to the widening of the
silicate interlayer but also alter the MMT hydrophilic nature. The POP-intercalated clays such as
POP-T5000/MMT become highly dispersible in organic solvents and exhibit the amphiphilic
property of lowering interfacial tension of toluene/water. These properties are attributed to the
different POP conformations existed in the silicate gallery.
CONTENTS
Abstract …………………………………………………………...………………… i
摘要…………………………………………………………………………… iii
Acknowledgement …………………………………………………………………………… v
Chapter 1 Introduction…………………………………………………………… 1
Chapter 2 Scientific and Technical Literature Review
2.1 Organically Modified Layered Silicate…………………………… 4
2.2
Design Organically Modified Layered Silicate of High Basal
Spacing……………………………………………………………… 5
2.3 Exfoliation synthesis Novolac/Layered Silicate Nanocomposites…7
2.4
Commercial Organically Modified Layered Silicate
Nanocomposites……………………………………………………7
Chapter 3 Fundamental Data and Working Principle
3.1 The Naturally Occurring Layered Silicate………………………… 9
3.2 Organically Modified Layered Silicate Nanocomposites…………13
3.3 Polymer Layered Silicate Nanocomposites …………………………15
Chapter 4 Experimental Section
4.1 Materials……………………………………………………………19
4.2 Experimental Procedures……………………………………………22
4.3 Analytical Instruments and Measurement………………………… 24
Chapter 5 Results and Discussion
5.1
Preparation, Organophilicity and Self-Assembly of
Poly(oxyalkylene)amine-Clay Hybrids……………………………26
5.2 Correlation between MMT Basal Spacing and Intercalated Organics 35
5.3
Observation of Critical Conformational Change of
Poly(oxypropylene)diamines in Layered Aluminosilicate
Confinement………………………………………………………… 38
5.4
Conformational Change of Tri-functional Poly(oxypropylene)amine
Intercalated in Layered Silicate Confinement……………………… 43
Chapter 6 Conclusions ……………………………………………………………51
References …………………………………………………………………………53
References
1. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular Self-Assmbly and
Nanochemistry: a Chemical Strategy for the Synthesis of Nanostructures. Science 254,
1312-1319 (1991).
2. Stupp, S. I.; LeBonheur, V.; Walker, K.; Li. L. S.; Huggins, K. E.; Keser, M.; Amstutz,
A. Supermolecular Materials: Self-Oganized Nanostructures. Science 276, 384-389
(1997).
3. Wang, C.; Shim, M.; Sionnest, P. G. Electrochromic Nanocrystal Quantum Dots.
Science 291, 2390-2392 (2001).
4. Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D. Organic-Inorganic Hybrid Materials
as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science 286,
945-947 (1999).
5. Muthukumar, M.; Ober, C. K.; Thomas, E. L. Competing Interactions and Levels of
Ordering in Self-Organizing Polymeric Materials. Science 277, 1225-1232 (1997).
6. Thostensona, E. T.; Ren, Z.; Choua, T. W. Advances in the Science and Technology of
Carbon Nanotubes and Their Composites: a Review. Composites Science and
Technology 61, 1899-912 (2001).
7. Zanetti, M., Lomakin, S.; Camino, G. Polymer Layered Silicate Nanocomposites.
Macromal. Mater. Eng. 279, 1-9 (2000).
8. Giannelis, E. P. Polymer Layered Silicate Nanocomposites. Adv. Mater. 8, 29-35 (1996).
9. Alexandre, M.; Dubois, P. Polymer-Layered Silicate Nanocomposites: Preparation,
Properties and Uses of a New Class of Materials. Materials Science and Engineering 28,
1-63 (2000).
10. Glael, H. J.; Bauer, F.; Ernst, H.; Findeisen, M.; Hartmann, E.; Langguth, H.; Mehnert,
R.; Schubert, R. Preparation of Scratch and Abrasion Resistant Polymeric
Nanocomposites by Monomer Grafting onto Nanoparticles, 2 Characterization of
Radiation-Cured Polymeric Nanocomposites. Macromal. Chem. Phys. 201, 2765-2770
(2000).
11. Pinnavaia, T. J. Intercalated Clay Catalysts. Science 220, 365-371 (1983).
12. Laszlo, P. B. in Organic Chemistry Using Clays (Springer-Verlag, 1993).
13. Olphen, H. V. in Clay Colloid Chemistry (JOHN WILEY, 1977).
14. Theng, B. K. G. in Formation and Properties of Clay-Polymer Complexes (Elsever,
- 54 -
1979).
15. Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T. Three Dimensional Observations of
Structure and Morphology in Nylon-6/clay Nanocomposite. Nanoletters 1, 271-272
(2001).
16. Velde. B. in Introduction to Clay Minerals (Chapman Hall, 1992).
17. Usuki, A.; Koshitsugu, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.;
Kamigaito, O. Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8, 1179-1184 (1993).
18. Kojima, Y., Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. One-Pot
Synthesis of Nylon 6-Clay Hybrid. J. Polym. Sci. Pol. Chem. 31, 1755-1758 (1993).
19. Lan, T.; Kavairatna, P. D.; Pinnavaia, T. J. Epoxy Self-Polymerization in Smectite Clays.
J. Phys. Chem. Solids 57, 1005-1010 (1996).
20. Pinnavaia, T. J. B., G. W. in Polymer-Clay Nanocomposites (Wiley, 2000).
21. Porter, D.; Metcalfe, E.; Thomas, M. J. K. Nanocomposites Fire Retardants. Fire Mater.
24, 45-52 (2000).
22. Lin, J. J.; Cheng, I. J.; Wang, R. H.; Lee, R. J. Tailoring Basal Spacings of
Montmorillonite by Poly(oxyalkylene)diamine Intercalation. Macromolecules 34,
8832-8834 (2001).
23. Tunney, J. J.; Detellier, C. Aluminosilicate Nanocomposite Materials. Poly(ethylene
glycol)-Kaolinite Intercalats. Chem. Mater. 8, 927-935 (1996).
24. Zhu, H. Y.; Lu, G. Q. Engineering the Structure of Nanoporous Clays with Micelle of
Alkyl Polyether Surfactants. Langmuir 17, 588-591 (2001).
25. Theng, B. K. G. In The Chemistry of Clay-Organic Reactions (ed. Wiley, J.) (1966).
26. Giannelis, E. P. Polymer-Layered Silicate Nanocomposites: Synthesis, Properties and
Applications. Appl. Organometal. Chem. 12, 675-680 (1998).
27. Fu, X.; Qutubuddin, S. Polymer-Clay Nanocomposites: Exfoliation of Organophilic
Montmorillonite Nanolayers in Polystyrene. Polymer 42, 807-813 (2001).
28. Triantafillidis, C. S.; Lebaron, P. C.; Pinnavaia, T. J. Homostructured Mixed
Inorganic-Organic Ion Clays: A New Approach to Epoxy Polymer-Exfoliated Clay
Nanocomposites with Reduced Organic Modifier Content. Chem. Mater. 14, 4088-4095
(2002).
29. Beyer, F. L.; Tan, N. C. B.; Dasgupta, A.; Galvin M. E. Polymer-Layered Silicate
Nnocomposites from Model Surfactants. Chem. Mater. 14, 2983-2988 (2002).
30. Wang, H. Z., T.; Zhi, L.; Yan, Y.; Yu, Y. Synthesis of Novolac/Layered Silicate
Nanocomposites by Reaction Exfoliation Using Acid-Modified Montmorillonite.
Macromol. Rapid Commum. 23, 44-48 (2002).
31. Wilson, M. J. in Clay Mineralogy: Spectroscopic and Chemical Determinative Methods
(Chapman Hall, 1994).
32. Horch, R. A.; Golden, T. D.; D''Souza, N. A.; Riester, L. Electrodeposition of
Nickel/Montmorillonite Layered Silicate Nanocomposite Thin Films. Chem. Mater 14,
3531-3538 (2002).
33. LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Polymer Layered Silicate Nanocomposites:
an Overview. Appl. Clay Sci 16, 11-29 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔