(3.230.143.40) 您好!臺灣時間:2021/04/23 16:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建憲
研究生(外文):Chien-Hsien Chen
論文名稱:PAAc-PNIPAAm-PEG接枝高分子之製備與水溶液中相轉移行為之探討
論文名稱(外文):Preparation and phase transition behavior of PAAc-PNIPAAm-PEG graft copolymers in aqueous solution
指導教授:邱信程
指導教授(外文):Hsin-Cheng Chiu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:94
中文關鍵詞:微胞熱敏感性聚氮異丙基丙烯醯胺雙性接枝
外文關鍵詞:micellethermal sensitivityPNIPAAmamphiphilicgraft
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於PEG具有排斥的作用,而PNIPAAm具有溫度敏感之特性,因此我們設計一雙性高分子,以polyAAc作為主鏈,mPEG及PNIPAAm作為側鏈之接枝共聚合高分子,此高分子具有溫度應答之特性,且同時帶有親水性鏈段及疏水性鏈段,可因溫度變化產生可逆性相轉移之特性使此高分子於高溫水相中自我排列形成微胞結構。我們以相同分子量、不同比例之PNIPAAm製備不同高分子,並利用FTIR、1H-NMR確定其結構並定出其組成,再以密度儀、螢光光譜儀、1H-NMR、動態光散射儀探討高分子隨溫度變化之關係。研究中我們發現,不同組成之接枝高分子,其LCST會有些微的不同,約為33~34℃,但與PNIPAAm比較起來,LCST的改變非常小,而相轉移的溫度範圍會變寬。隨著溫度的增加,高分子會形成微胞結構,其臨界微胞濃度會隨著PNIPAAm含量的增加而變大。從螢光的分析實驗中也發現不同組成之高分子所形成的微胞結構,其內部之親疏水性也會有所不同,當疏水鏈段比例較大,形成微胞後之疏水性較強。另外從1H-NMR中可看出高分子微胞之PNIPAAm含量會隨著溫度的升高先些微升高而後降低,升高的部分是因為溫度升高導致spin-lattice relaxation time升高,形成微胞後,因PNIPAAm進入核層造成流動性降低,導致偵測到的含量下降,但是我們發現核層內之PNIPAAm會有流動程度不同的情形,流動性較差之部分屬於solid-like core,流動性較佳的部分屬於liquid-like layer,這項發現與其他文獻僅有solid-like core或liquid-like core有很大的不同。此外我們還發現,當溫度低於LCST時,性質之變化與高分子濃度較有關係,而溫度高於LCST時,由於高分子已形成微胞,因此結構的影響則較為重要,且PNIPAAm含量越高,相轉移的程度較為明顯,且其過程也較短,所形成之結構也較為緻密。粒徑測量的結果也顯示微胞在高溫下能達到平衡,且粒徑不再繼續變化,這表示我們所加入的PEG具有排斥的作用,可以防止微胞之間進一步的聚集。

The graft polymer composed of polyAAc as polymeric mainchain, PEG and PNIPAAm as grafting sidechain at an elevated temperature in aqueous solution can self-assemble to form micelle structure with innercore and outershell. The chemical structure and composition of copolymer were characterized by FTIR and NMR. Other properties depended on temperature were measured by density analyzer, florescence spectroscopy, NMR, and DLS.
Under the LCST, the phase transition behavior of copolymer in aqueous solution was dependent on PNIPAAm concentration, but it was depended on composition of copolymer above the LCST. It was also observed that the contents of PNIPAAm in the polymeric micelle core at high temperature were not disappeared completely from NMR. The result suggests that there are two kinds of degree of mobility in the micelle core for PNIPAAm. The region of greater mobility was defined as liquid-like interface layer, and that of less mobility was solid core.
Moreover, we also found that the diameter of micelle was decreased with temperature increased, and stabilized without intermolecular aggregation at high temperature, owing to a PEG shell induced to the micelle.

第一章 緒論……………………………………………………… 1
1-1 前言………………………………………………………1
1-2 研究目的及實驗簡述……………………………………2
第二章 文獻回顧………………………………………………… 6
2-1雙性高分子簡介………………………………………… 6
2-2聚乙二醇之性質介紹…………………………………… 6
2-3聚氮-異丙基丙烯醯胺之性質介紹………………………8
2-4丙烯酸之性質介紹……………………………………… 9
2-5高分子微胞簡介………………………………………… 10
2-6高分子微胞之應用……………………………………… 11
2-7高分子微胞系統上分析方法之應用…………………… 13
2-8高分子微胞CMC值之測量…………………………………14
2-9高分子微胞粒徑之測量………………………………… 16
第三章 實驗部分………………………………………………… 17
3-1實驗藥品………………………………………………… 17
3-2實驗儀器及設備………………………………………… 20
3-3高分子之合成及性質檢測……………………………… 21
3-3-0 前置作業……………………………………………21
3-3-1 NAS之合成………………………………………… 22
3-3-2 NAS之性質探討…………………………………… 23
3-3-3 Poly(NAS)之合成………………………………… 23
3-3-4 Poly(NAS)之性質檢測…………………………… 24
3-3-5 PNIPAAm-NH2之合成……………………………… 25
3-3-6 PNIPAAm-NH2之性質檢測………………………… 26
3-3-7 mPEG-NH2之合成……………………………………27
3-3-7-1 mPEG-Cl之合成……………………………… 27
3-3-7-2 mPEG-N3之合成……………………………… 27
3-3-7-3 mPEG-NH2之合成………………………………28
3-3-8 mPEG之性質檢測……………………………………29
3-3-9 PNIPAAm及mPEG接枝於高分子主鏈之製備……… 29
3-3-10 NAS共聚合單體之水解反應………………………30
3-3-11接枝高分子之基本性質檢測………………………31
3-4密度分析………………………………………………… 35
3-5螢光分析………………………………………………… 37
3-6變溫1H-NMR分析………………………………………… 37
3-7螢光消光實驗…………………………………………… 38
3-8粒徑分析………………………………………………… 39
3-9 Spin-lattice relaxation time(T1)分析…………39
第四章 結果與討論……………………………………………… 40
4-1前驅高分子之性質檢測………………………………… 40
4-1-1 NAS之性質檢測…………………………………… 40
4-1-2 PolyNAS之性質檢測……………………………… 42
4-1-3 PNIPAAm之分子量測定…………………………… 45
4-1-4 PEG之性質檢測…………………………………… 46
4-2接枝高分子之基本性質檢測…………………………… 48
4-3密度分析………………………………………………… 61
4-4螢光分析………………………………………………… 68
4-5變溫1H-NMR分析………………………………………… 70
4-6螢光消光之檢測………………………………………… 74
4-7粒徑分析………………………………………………… 82
4-8 Spin-lattice relaxation time(T1)分析…………83
4-9 結論………………………………………………………89
第五章 結果與討論……………………………………………… 90
參考文獻……………………………………………………………92

1.A. D. Bangham, M. M. Standish, and J. C. Watkins, J. Mol. Biol., 13, 234 (1994).
2.M. Mishikawa, H. Hirabayashi, Y. Takakura, and M. Hashida, Drug Delivery System, 9, 173 (1994).
3.K. Yamamoto, H. Kanazawa, Y. Matsushima, N. Takai, A. Kikuchi, and T. Okano, Chromatography, 21, 209 (2000).
4.M. Yamato, O. Kwon, M. Hirose, A. Kikuchi, and T. Okano, J. Biomed. Mater. Res. 44, 137 (2000).
5.D. E. Bergbreiter, B. L. Case, Y. S. Liu, and J. W. Caraway, Macromolecules, 31, 6053 (1998).
6.S. Stewart, and G. Liu, Chem. Mater., 11, 1048 (1999).
7.H. Huang, T. Kowalewski, E. E. Remsen, R. Gertzmann, and K. L. Wooley, J. Am. Chem. Soc., 119, 11653 (1997).
8.A. S. Hoffman, Macmol. Symp., 98, 645 (1996)
9.P. W. Zhu, and D. H. Napper, Chem. Phys. Lett., 51, 256 (1996).
10.M. J. Snowden, B. A. Chowdhry, B. Vincent, and G. E. Morris, J. Chem. Soc.m Faraday Trans., 92, 5013 (1996).
11.M. Ishikawa, H. Misawa, N. Kitamura, R. Fujisawa, and H. Masuhara, Bull. Chem. Soc. Jpn., 69, 59 (1996).
12.I. Y. Galaev, and B. Mattiasson, Enzyme Microb. Technol., 15, 354 (1993).
13.K. E. L. Barrett, Dispersion Polymerization in Organic Media, Wiley, London (1975).
14.K. Ito, H. Tsuchida, and T. Kitano, Polymer Bulletin, 15, 425 (1986).
15.A. Thieery, A. and Skoulios, Makromol Chem., 177, 319 (1977).
16.S. Zalipsky, Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates, Bioconjugate Chem., 6, 150 (1995).
17.S. Zalipsky, Chemistry of polyethylene glycol conjugates with biologically active molecules, Adv. Drug Deliv. Rev., 16, 157 (1995).
18.E. W. Merril, and E. W. Salzman, ASAIO J., 6, 60 (1983).
19.S. Dreborg, and E. B. Akerblom, Immunotherapy with monomethoxypolyethylene glycfied allergens, Crit. Rev. Ther. Drug Carrier Syst., 6, 315 (1990).
20.T. Yamaoka, Y. Tabata, and Y. Ikada, Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration in mice, J. Pharm. Sci., 83, 601 (1994).
21.G. Blume, and G. Cevc, molecular mechanism of the lipid vesical longevity in vivo, Biochem. Biophys. Acta., 157, 1146 (1993).
22.K. Antosen, and A. S. Hoffman, Water structure of PEG solutions by differential scanning calorimetry measurements, In J. M. Harris (eds.), Poly(ethylene glycol): Biotechnical and Biomedical Apprication, Plenum Press, New York, 1992, pp. 15-28.
23.S. I. Jeon, J. H. Lee, J. D. Andrade, and P. G. de Gennes, J. Colloid Interdace Sci., 142, 149 (1991).
24.J. Virtanen, C. Baron, and H. Tenhu, Macromolecules, 336 (2000).
25.J. Ricka, and T. Tanaka, Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecus, 17, 2916 (2001).
26.H. Bader, H. Ringsdorg, and B. Schmidt, Angew. Chem., 123/124, 457(1984).
27.J. E. Chung, M. Yokoyama, T. Okano, J. Control. Release, 65, 93 (2000).
28.X. Qiu, and C. Wu, Macromolecules, 30, 6090 (1997).
29.V. Butun, X. S. Wang, and M. V. de Paz Banez, K. L. Robinson, N. C. Billingham and S. P. Armes, Macromolecules 33, 1 (2000).
30.V. Butun, N. C. Billingham, and S. P. Armes, J. Am. Chem. Soc., 120, 12135 (1998).
31.D. B. Cairns, S. P. Armes, and L. G. B. Bremer, Langmuir, 15, 8052 (1999).
32.V. Butun, A. B. Lowe, N. C. Billingham, and S. P. Armes, J. Am. Chem. Soc., 121, 4288 (1999).
33.A. S. Lee, A. P. Gast, V. Butun, and S. P. Armes, Macromolecules, 32, 4302 (1999).
34.M. Vamvakaki, N. C. Bilingham, and S. P. Armes, Macromolecules 32, 2088 (1999).
35.D. Gan, and L. A. Lyon, J. Am. Chem. Soc., 123, 7511(2001).
36.J. Wang, D. Gan, L. A. Lyon, M. A. El-Sayed, J. Am. Chem. Soc., 123, 11284 (2001).
37.D. Gan, and L. A. Lyon, Macromolecules, 35, 9634 (2002).
38.K. N. Prasad, T. T. Luong, A. T. Florence, J. Pharis, C. Vauton. M. Seiller, and F. Puisieux, J. Colloid and Interface Science, 69 (2), 225 (1979).
39.K. Nakamura, R. Endo, and M. Takeda, J. Polym. Sci. Polym. Phys. Ed., 14, 136 (1976).
40.K. Nakamura, R. Endo, and M. Takeda, J. Polym. Sci. Polym. Phys. Ed., 14, 1287 (1976).
41.P. Lianos, J. Lang, J. Sturm, and R. Zana, J. Phys.Chem., 88, 17, 1103(1979).
42.C. L. Zhao, M. A. Winnik, G. Riess, and M. D. Croucher, Langmuir, 6, 514 (1990).
43.S. Califano, and G. Abbondonza, J. Chem. Phys., 39, 1016 (1963).
44.K. Kalyanasundaram, and J. K. Thomas, J. Am. Chem. Soc., 99, 2039 (1977).
45.M. Wilhelm, C. L. Zhao, Y. Wang, R. Xu, and M. A. Winnk, Macromolecules, 24, 1033 (1991).
46.O. Adalsteinsson, A. Lamotte, R. F. Baddour, C. K. Colton. A. Pollak. and G. M. Whitesides, J. Molecular Catalysis, 6, 199 (1979).
47.T. Miron, and M. Wilchek, Analytical Biochemistry, 126, 433 (1982).
48.Y. Kaneko, K. Sakai, A. Kikuchi, R. Yoshida, Y. Sakurai, and T. Okano, Macromolecules, 28, 7717 (1995).
49.L. C. Mokrash, Anal. Biochem., 18, 64 (1967).
50.S. Zalipsky, C. Gilon, and A. Zilkha, J. Polym. Sci. Symp., 19, 1177 (1983).
51.C. R. Heald, S. Stolnik, K. S. Kujawinski, C. D. Matteis, M. C. Garnett, L. Illum, S. S. Davis, S. C. Purkiss, R. J. Barlow, and P. R. Gellert, Langmuir, 18, 3669 (2002).
52.M. V. Deshmukh, A. A. Vaidya, M. G. Kulkarni, P. R. Rajamohanan, and S. Ganapathy, Polymer, 41, 7951 (2000).
53.J. S. Hrkash, M. T. Peracchia, A. Domb, N. Lotan, and R. Langer, Biomaterials, 18, 27 (1997).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔