(3.234.221.67) 您好!臺灣時間:2021/04/11 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧宗祺
論文名稱:不同長度之傳染性華氏囊病毒VP2蛋白所形成似病毒顆粒之表現及結構分析
論文名稱(外文):Expression and Structural Characterization of Particles Formed by Infectious Bursal Disease Virus VP2 Mutants
指導教授:王敏盈
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:傳染性華氏囊病毒似病毒顆粒大腸桿菌表現系統
外文關鍵詞:IBDVVLPE. coli
相關次數:
  • 被引用被引用:2
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用大腸桿菌表現傳染性華氏囊病毒 (IBDV)的主要結構蛋白VP2及其前趨物VPX,以探討VP2的成熟如何影響組裝機制、如何造成型態上的改變及如何形成VLP的分子開關。本實驗共構築了VPX、VPXΔC11、VPXΔC46、mVP2、mVP2H及mVP2ΔN10等6個可表現蛋白的質體。經轉入大腸桿菌中,以IPTG誘導表現及經純化後發現VPX及VPXΔC11的表現量相當低,不適合進一步進行其特性化分析。VPXΔC46在穿透式電子顯微鏡(TEM)下觀察到約15 nm大小的結構,mVP2則形成30 nm的VLP。可利用IMAC純化的mVP2H則形成20 nm的VLP。由結果發現VPX的C端會影響VLP的組裝,同時也找到了主要影響組裝的胺基酸片段。除了VP2的C-端會影響到構形的改變,表現N端去掉10個胺基酸的mVP2HΔN10會有兩種VLPs(分別是20及12 nm大小)的產生。本研究也同時評估大腸桿菌所表現的mVP2H是否也如桿狀病毒表現的VP2蛋白一樣具有當作次單位疫苗的潛力,結果顯示大腸桿菌所表現的mVP2H會誘發幼雞對抗IBDV的中和性抗體,而且具有良好的保護效果。為提高mVP2蛋白在大腸桿菌中的表現量,以GST融合在其N端,結果仍無法改善表現量或增加蛋白水溶性,但由TEM的觀察結果顯示融合29 kDa的GST並不會破壞VLP的形成,這使得IBDV VLP在未來應用上更有潛力。
The truncated capsid proteins of both VP2 and its precursor, VPX of Infectious Bursal Disease Virus were cloned and expressed in E. coli to investigate whether they were capable of forming icosahedral virus-like particles (VLPs) and demonstrate the molecular mechanism of the formation of VLPs. The mutants, VPX, VPXΔC11, VPXΔC46, mVP2, mVP2H and mVP2HΔN10 were constructed and expressed in E. coli. The expression level of VPX and VPXΔC11 was too low to be further characterized. The expressed proteins of VPXΔC46 and mVP2 purified by ultracentrifugation formed particles of 15 and 30 nm in diameter, respectively. mVP2H protein purified by IMAC formed particle of 20 nm. The N-terminal truncated protein, mVP2HΔN10 can form VLPs of different sizes 20 and 12 nm in diameter.
Chicken protection assays demonstrated that mVP2H could elicit high titer of neutralize antibodies, indicating that mVP2H has subunit vaccine potential to prevent IBDV infection.
Fusion of the 29 kDa GST at the N-terminus of mVP2 does not improve the protein solubility and expression level in E. coli. However, GST does not interfere in VLP assembly.
中文摘要........................................................................................................i
英文摘要.......................................................................................................ii
誌謝..............................................................................................................iii
目錄...............................................................................................................iv
圖次.............................................................................................................vii
表次............................................................................................................viii
第一章、前言...............................................................................................1
第二章、文獻回顧 ....................................................................................3
2.1 傳染性華氏囊病毒之簡介..............................................................3
2.1.1傳染性華氏囊病及其病原........................................................3
2.1.2 傳染性華氏囊病毒(IBDV)之分類學.....................................3
2.1.3 IBDV之基因體學及蛋白質體學.............................................4
2.1.4 IBDV疫苗之發展......................................................................6
2.2 似病毒粒子之研究...........................................................................7
2.3 大腸桿菌表現系統...........................................................................8
第三章、材料與方法..................................................................................10
3.1 大腸桿菌表現系統.........................................................................10
3.1.1 菌種 (E. coli strain) ...............................................................10
3.1.2 載體的取得 (vector) .............................................................10
3.1.3 基因的增幅 (PCR amplification of insert genes)...............10
3.1.4 接合作用 (ligation) ...............................................................11
3.1.5 勝任細胞之製備 (competent cell) .......................................11
3.1.6 轉型 (transformation) ............................................................12
3.1.7 瓊脂糖凝膠電泳及染色 (agarose gel and EtBr stain) ......12
3.1.8 煮沸法製備鑑定用質體 (boiling method) .........................12
3.1.9 限制酶鑑定 (identification) .................................................13
3.1.10細胞庫之建立 (cell bank) ....................................................13
3.1.11可溶性蛋白質測定 (protein solubility) ..............................13
3.1.12蛋白質之表現及取得 (protein expression) .......................13
3.1.13發酵槽培養 (fermenter) .......................................................14
3.2 桿狀病毒表現系統.........................................................................14
3.2.1細胞與病毒 (cell and virus) ...................................................14
3.2.2桿狀病毒的重組交換 (cotransfection) ................................15
3.2.3溶斑檢定 (Plaque assay) ........................................................15
3.2.4重組病毒的鑑定 (P1 viral stock identification) ..................15
3.2.5表現用病毒液的製備 (High-titer viral stock) .....................16
3.2.6細胞貼附培養 (adherent cell culture) ..................................16
3.2.7細胞懸浮培養及蛋白生產 (suspension cell culture) .........17
3.3 蛋白純化及分析.............................................................................17
3.3.1硫酸銨沈澱 (Ammonia sulfate precipitation) .....................17
3.3.2固定化金屬親和性色層層析 (IMAC) .................................17
3.3.3蔗糖離心濃縮 (sucrose cushion)...........................................18
3.3.4氯化銫等密度離心 (CsCl gradient ultracentrifugation) ....18
3.3.5穿透式電子顯微鏡觀察 (TEM)............................................18
3.3.6 SDS-聚丙烯醯胺凝膠電泳 (SDS-PAGE) ...........................18
3.3.7西法墨點法 (western blot) .....................................................18
3.3.8點墨法 (dot blot) .....................................................................19
3.3.9三氯醋酸沈澱 (TCA precipitation) ......................................19
3.4 免疫試驗 .........................................................................................20
3.4.1雞隻免疫試驗 (chicken immunization) ...............................20
3.4.2血清的取得 (serum) ...............................................................20
3.4.3華氏囊之均質化.......................................................................20
3.4.4 Antigen Capture-ELISA (AC-ELISA) ...................................21
3.4.5雞胚胎纖維芽細胞的製備 (embryo fibroblast, CEF).........21
3.4.6病毒中和性試驗 (virus neutralization assay).......................22
第四章、結果..............................................................................................23
4.1表現載體的構築..............................................................................23
4.1.1 PCR T7/CT-Topo表現質體的構築........................................23
4.1.2 pGEX-6P-1表現質體的構築..................................................23
4.2 E. coli表現寄主的選用及最適化條件的找尋............................24
4.3成熟VP2蛋白的研究......................................................................25
4.3.1 mVP2蛋白的表現、純化及TEM觀察.................................25
4.3.2 mVP2H蛋白的表現、純化及TEM觀察.............................25
4.3.3 GST-mVP2蛋白的表現、純化及TEM觀察.........................26
4.4 VPX C端對VLP形成之影響........................................................27
4.4.1 VPX及VPXΔ11蛋白表現、純化及特性化分析................27
4.4.2 VPXΔ46蛋白的表現、純化及特性化分析...........................28
4.5 VP2 N-端對VLP形成之探討........................................................29
4.5.1 mVP2H ΔN10蛋白的表現、純化及特性化分析.................29
4.5.2 VP2 N端對VLP形成之探討.................................................29
4.6雞隻之免疫試驗..............................................................................30
4.7表現系統對VLP形成之影響.........................................................31
4.7.1桿狀病毒的構築.......................................................................31
4.7.2桿狀病毒表現的VPXΔ46蛋白...............................................32
第五章、討論...............................................................................................33
第六章、結論...............................................................................................37
第七章、參考文獻......................................................................................38
圖..................................................................................................................48
表..................................................................................................................64
附錄..............................................................................................................69
附錄一、IBDV P3009 strain VPX之核酸序列.......................................69
附錄二、IBDV P3009 strain VPX之胺基酸序列...................................70
附錄三、TEM下所觀察到的VLP............................................................71
配方一覽表 ................................................................................................72
圖 次
圖1. E. coli表現載體pCR®T7/CT-TOPO®...............................................48
圖2. E. coli表現載體pGEX-6P-1...............................................................49
圖3.表現質體經限制酵素處理後的結果..................................................50
圖4.各個截切的VPX及VP2蛋白之長度示意圖..................................51
圖5. mVP2H蛋白表現於不同寄主的西方點墨結果..............................52
圖6.最適表現條件的尋找...........................................................................53
圖7. mVP2硫銨沉澱及氯化銫等密度離心之結果.................................54
圖8. VPXΔ46、mVP2 、mVP2H及GST-mVP2在TEM下觀察的結果.............................................................................................................55
圖9. mVP2H經IMAC純化之結果............................................................56
圖10. GST- mVP2蛋白之表現...................................................................57
圖11. GST- mVP2經氯化銫等密度離心之結果......................................58
圖12. VPX及VPXΔ11之硫銨沉澱結果...................................................59
圖13. VPXΔ46之硫銨沉澱結果................................................................60
圖14. VPXΔ46經氯化銫等密度離心之結果...........................................61
圖15. mVP2HΔ N10之純化的結果...........................................................63
圖16. mVP2HΔ N10在電顯下觀察之結果...............................................64
圖17.利用西方墨點法分析攻毒後的華氏囊...........................................65
圖18. bac- VPXΔ46之表現及氯化銫等密度離心之結果......................66
表 次
表1. 所用到的PCR引子序列....................................................................67
表2. 在E. coli中使用小於1%的密碼......................................................68
表3. 免疫後各週的血清力價(GMT) ........................................................69
林育江。2003。傳染性華氏囊病病毒結構蛋白VP2之C端特性及免疫分析。國立中興大學農業生物科技學研究所碩士論文。
李政忠。2002。雞華氏囊病病毒重組結構蛋白rVP2H似病毒顆粒的純化與X-ray晶體繞射之研究。國立中興大學農業生物科技學研究所碩士論文。
沈炳成。2002。傳染性華氏囊病毒VP2似毒粒子免疫效能之探討。國立中興大學農業生物科技學研究所碩士論文。
蔡倩妞。2002。傳染性雞華氏囊病毒的VP2蛋白於大腸桿菌中組裝成次微米級似病毒顆粒之研究。國立中興大學農業生物科技學研究所碩士論文。
Araujo, A. P., Oliva, G., Henriqe, F. Garratt, R. C., Caceres, O., Beltramini, L. M. 2000. Influence of the histidine tail on the structure and activity of recombinant chlorocatechol 1,2-dioxygenase. Biochem. Biophys. Res Commun. 272:480-484
Azad, A. A., Jagadish, M. N., Brown, M. A., Judson, P. J. 1987. Deletion mapping and expression in Escherichia coli of the large genomic segment of a Binavirus. Virology. 161:145-152
Azad, A. A., Mckern, N. M., Macreadie, I. G., Failla, P., Heine, H. G., Chapman, A., Ward, C. W., Fahey, K. J. 1991. Physicochemical and immunological chaacterization of recombinant host-protective antigen (VP2) of infectious bursal disease virus. Vaccine. 9:715-722.
Arias, A. F., Martĺnez, S., Rodrĺguez, J. F. 1997. The major antigenic protein of infectious bursal disease virus, VP2, is an apoptotic inducer. J. Virol. 71:8014-8018
Barnes, H. J., Wheeler, J., and Reed, D. 1982. Serological evidence of infectious bursal disease virus infection in Iowa turkey. Avian Dis. 26:560-565.
Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology. 10:411-421
Berg van den T. P.. 2000. Acute infectious bursal disease in poultry: a review. Avian Pathol. 29:175-194. Review.
Böttcher, B., Kiselev, N. A., Stel’Mashchuk, V. Y. and Perevozchikova, N. A. 1997. Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J. Virol. 71:325-330.
Boot, H. J., Huurne, A. H. M., Peeters, B. P. H. 2000. Generation of full-length cDNA of the two genomic dsRNA segments of infectious bursal disease virus. J. Virol. Methods. 84:49-58
Brunn, A. D., Brand, M., Reichhuber, C., Wortmann, C. M., Deinhardt, F., Schödel, F. 1993. Principal neutralizing domain of HIV-1 is highly immunogenic when expressed on the surface of hepatitis B core particles. Vaccine. 11:817-824
Casal, J. I. 1999. Use of parvovirus-like particles for vaccination and induction of multiple immune respones. Biotechnol. Appl. Biochem. 29: 141-150.
Castón, J. R., Martínez-Torrecuadrada, J. L., Maraver, A., Lombardo, E., Rodricuez, J. F., Casal J. I. And Carrascosa J. L. 2001 C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J. Virol. 75:10815- 10828.
Charpilienne, A., Nejmeddine, M., Berois, M., Parez, N., Neumann, E., Hewat, E., Trugnan, G., Cohen J. 2001. Individual Rotavirus-like particles containing 120 molecules of fluorescent protein are visible in living cell. J. Biol. Chem. 276:29361-29367
Chevalier, C., Lepault, J., Erk, I,. Costa, B. D., and Delmas, B. 2002. The maturation process of pVP2 requires assembly of infectious bursal disease virus capsids. J. Virol. 76:2384-2392.
Chung, C. T., Niemela, S. L., Hiller, R. H. 1989. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. U. S. A. 86:2172-2175
Clemens, S. C., Klaus, U. 1995. Improved expression of toxic protein in E. coli. BioTechnique. 19:147-149
Corse, E., Machamer, C. 2000. Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J. Virol. 74:4319-4326.
Costa, B. D., Chevalier, C., Henry, C., Huet, J. C., Petit, S., Lepault J., Boot H. and Delmas B. 2002. The capsid of infectious bursal disease virus contains serveraal small peptides arising from the maturation process of pVP2. J. Virol. 76:2393-2402.
Delpeyroux, F., Chenciner, N., Lim, A., Malpiece, Y., Blongel, B., Crainic, R., Werf, S. V. D., Streeck, R. E. 1986. Science. 233:472-475.
Dong, X. F., Natarajan, P., Tihova, M., Johnson, J. E., Schneemann, A. 1998. Particle polymorphism caused by deletion of a peptide molecular switch in a quasiequivalent icosahedral virus. J. Virol. 72:6024-6033.
Fahey, K. J., Katrina, E., Jennifer C. 1989. A conformational immunogen on VP-2 of Infectious Bursal Disease Viurs that induces virus-neutralizing antibodies that passively protect chickens. J. Gen. Virol. 70:1473-1481
Glover, D. M., Hames, B. D.1995. DNA Cloning 2: expression systems a practical approach. Oxford University Press. New York.
Goldmann, C., Petry, H., Frye, S., Ast, O., Ebitsch ,S., Jentsch, J. D., Kaup, F. J., Weber, F., Trebst, C., Nisslein, T., Hunsmann, G., Weber T., Kűke, W. 1999. Molecular cloning and expression of major structural protein VP1 of the human Polyomavirus JC virus: formation of virus-like particles useful for immunological and therapeutic studies. J. Virol. 73:4465-4469
Hu, Y. C., Bentley, W. E., Edward, G. H., Vakharia, V. N. 1999. Chimeric infectious brusal disease virus-like particles expressed in insect cell and purified by immobilized metal affinity chromatography Biotechnol. Bioeng. 63:721-729.
Hurtado, A., Rueda, P., Nowicky, J., Sarraseca, J., Casal, J. I. 1996. Identification of domains in canine parovirus VP2 essential for the assembly of virus-like particles. J. Virol. 70:5422-5429
Jagadish, M. N., Staton, V. J., Hudson, P.J., and Azad, A. A. 1988. Birnavirus precursor polyprotein is processed in Escherichia coli by its own virus-encoded polypeptide. J. Virol. 62:1084-1087.
Johnson, J. E., Chiu, W. . 2000. Structures of virus and virus-like particles. Curr. Opin. Struct. Biol. 10:229-235.
Kane, J. F. 1995.Effects of rare codonclusters on high-level expression of heterologous protein in Escherichia coli. Current Opinion in Biotechnology. 6:494-500
Kapust, R. B., Waugh, D. S. 1999. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Science. 8:1668-1674
Kibenge, F. S. B., Dhillon, A. S., Russell, R. G. 1988. Biochemistry and immunology of infectious bursal disease virus. J Gen. Virol. 69: 1757- 1775.
Kochan, G., Gonzalez, D., Rodriguez, J. F. 2003. Characterization of the RNA-binding activity of VP3, a major structural protein of Infectious bursal disease virus. Arch Virol. 148:723-744
Lainė, S., Salhi, S., Rossignol, J. M. 2002. Overexpression and purification of the hepatitis B e antigen precursor. J. Virol Methods. 103:67-74
Lee, C. C., Ko, T. P., Lee, M. S., Chou, C. C., Lai, S. Y., Wang A. H. J., Wang, M. Y. 2003. Purification, crystallization and preliminary X-ray analysis of immunogenic virus-like particles formed by infectious bursal disease virus (IBDV) structural protein VP2. Acta Cryst. D59:1234- 1237
Liljas, L. 1999. Virus assembly. Curr. Opin. Struct. Biol. 9:129-134.
Lejal, N., Costa, B. D., Huet, J. C., Delmas, B. 2000. Role of Ser-692 in the protease activity of infectious bursal disease VP4 and identification of its substrate cleavage sites. J. Gen. Virol. 81:983-992.
Lokesh, G. L., Gowri, T. D. S., Satheshkumar, P. S., Murthy, M. R. N., Savithri, H. S. 2002. A molecular switch in the capsid protein controls the particle polymorphism. Virology. 292:211-223.
Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. rev. 60:512-538
Maraver, A., Clemente, R., Rodriguez, J. F., Lombardo, E. 2003. Identification and molecular characterization of the RNA polymerase- binding motif of infectious bursal disease virus inner capsid protein VP3. J. Virol. 77:2459-68
Martinez-Torrecuadrada, J. L., Caston, J. R., Castro, M., Carrascosa, J. L., Rodriguez, J. F., Casal J. I. 2000. Different architectures in the assembly of infectious bursal disease virus capsid proteins expressed in insect cells. Virology. 278:322-331
Mcherran, J. B., Mcnulty, M.S., Connor, T. J., Mccrackin, Collin, D. S., G. M., and Mckillop, E. R. 1980. Isolation and serological studies with infectious bursal disease virus from fowl turkeys and ducks demonstration of second serotype. Avian Pathol. 9:395-404.
Morgan, M. M., Macreadie, I. G., Harley, V. R., Hudson, P. J., Azad, A. A. 1988. Sequence of the small double-stranded RNA genomic segment of infectious bursal disease virus and its deduced 90-kDa product. Virology. 163:240-242.
Mundt, E., Vakharia, V. N. 1996. Synthetic transcripts of double-stranded Birnavirus genome are infectious. Proc. Natl. Acad. Sci. USA. 93:11131- 11136
Mundt, E., Köllner, B., Kretzschmar, D. 1997. VP5 of infectious bursal disease virus is not essential for viral replication in cell culture. J. Virol. 71:5647-5651
Olson, P., Zhang, Y., Olsen, D., Owens, A., Cohen, P., Nguyen, K., Ye, J. J., Bass, S., Mascarenhas D. 1998. High-level expression of Eukaryotic polypeptides from bacterial chromosomes. Protein expr. purif. 14:160- 166
Ou, W. C., Wang, M., Fung, C. Y., Tsai, R. T., Chao, P. C., Hseu, T. H., Chang, D. 1999. The major capsid protein, VP1, of human JC virus expressed in Escherichia coli is able to self-assemble into a capsid —like particle and deliver exogenous DNA into human kidney cells. J. Gen. Virol. 80:39-46
Pitcovski, J., Castro, D. D., Shaaltiel, Y., Azriel, A., Gutter, B., Yarkoni, E., Michael, A., Krispel, S., Levi, B. Z. 1996. Insect cell-derived VP2 of infectious bursal disease virus confer protection against the disease in chickens. Avian Dis. 40:753-761
Rueda, P., Hurtado, A., Barrio, M., Torrecuadrada, J. L. M., Kamstrup, S., Leclerc, C., Casal, J. I. 1999. Minor displacements in the insertion site provoke major differences in the induction of antibody responses by chimeric parvovirus-like particles. Virology. 263:89-99
Salunke, D. M., Caspar, D. L. D., Garcea, R. L. 1986. Self-assembly of purified Polyomavirus capsid protein VP1. Cell. 46:895-904
Schenk, P. M., Baumann, S., Maattes, R., Steinbiβ, H. H. 1995. Improved high-level expression system for Eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs. BioTechniques. 19:196- 200
Sharma, J. M. 1999. Introduction to poultry vaccines and immunity. Adv. Vet. Sci. Comp. Med. 41:481-494.
Tacken, M. G. J., Rottier, P. J. M., Gielkens, A. L. J., Peeters, B. P. H. 2000. Interaction in vivo between the proteins of infectious brusal disease virus: capsid protein VP3 interacts with the RNA-dependent RNA polymerase, VP1. J. Gen. Virol. 81:209-218
Tsukamoto, K., Saito S., Saeki, S., Sato, T., Tanimura, N., Isobe, T., Mase, M., Imada, T., Yuasa, N., Yamaguchi S. 2002. Complete, long-lasting protection against lethal infectious bursal disease virus challenge by a single vaccination with an avian herpesvirus vector expressing VP2 antigens. J. Viorl. 76:5637-5645
Vakharia, V. N., Snyder, D. B., Junkun, H., Edwards, G. H., Savage, P. K., Whereat, S. A. M. 1993. Infectious bursal disease virus structural proteins expressed in a baculovirus recombinant confer protection in chickens. J. Gen. Virol. 74:1201-1206
Vakharia, V. N. 1997. Development of recombinant vaccines against infectious bursal disease. Biotechnology Annual Review Volume 3. 151-168
Valenzuela, P., Coit D., Angelica, M., Kuo, C. H., Nest, G. V., Burke, R. L., Bull, P., Urdea, M. S., Graves, U. P. 1985. Antigen engineering in yeast: synthesis and assembly of hybrid hepatitis B surface antigen-herpes simplex 1gD particles. Bio/technology. 3:323-326.
Wacker, M., Linton, D., Hitchen, P. G., Lazar, M. N., Haslam, S. M., North, S. J., Panico, M., Morris, H. R., Dell, A., Wren, B. W., Aebi, M. 2002. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science. 298:1790-1793
Wang, M. Y., Kuo, Y. Y., Lee, M. S., Doong, S. R., Ho, J. Y., Lee, L. H. 2000. Self-assembly of the infectious bursal disease virus capsid protein, rVP2, expressed in insect cells and purification of immunogenic chimeric rVP2H particles by immobilized metal-ion affinity chromatography. Biotechnol. Bioeng. 67:104-111.
Weickert, M. J., Dohnerty, D. H., Best, E. A., Olins, P. O. 1996. Optimization of heterologous protein production in Escherichia coli. Current Opinion in Biotechnology. 7:494-499
Wong, S., Momoeda, M., Field, A., Kajicaya, S., Young, N. S. 1999. Formation of empty B19 parvovirus capsids by the truncated minor capsid protein. J. Virol. 68:4690-4694.
Yao, K., Vakharia, V. N. 2001. Induction of apoptosis of in vitro by the 17-kDa nonstructural protein of infectious bursal disease virus: possible role in viral pathogenesis. Virology. 285:50-58
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔