跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 04:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭志奇
研究生(外文):Chih-Chi Hsiao
論文名稱:百合中參與調控花器發育基因及其機制之研究
論文名稱(外文):The Investigation of Genes Regulating Flower Development in Lily(Lilium longiflorum)
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:蕭志奇
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
百合是世界花卉市場中很重要的經濟花卉,可惜關於百合開花發育之研究卻不多。本研究從百合中選殖出兩個MADS box基因(LMADS2、LMADS3)和一個蛋白質激酶(LS6K1),並針對這些基因作深入的功能分析。我們將兩個百合之MADS box基因LMADS2、LMADS3大量表現在阿拉伯芥中,觀察到轉基因植物中都出現了植株極度早開花和花序減少的性狀。且此轉基因植物中與開花時間相關基因FT、SOC1、LD和花器分生組織決定基因LEAFY、AP1的表現時期及表現量均明顯增加。進一步進行互補試驗(Complementary Test),將LMADS2、LMADS3大量表現在晚開花突變株中,觀察到可救回gi-1、co-3、ld-1,而對於ft-1及fwa-1無效。將LMADS2、LMADS3分別接上rat glucocorticoid receptor (GR)後,大量表現在阿拉伯芥轉基因植物中,再同時處理dexamethasone (DEX) 和 cycloheximide (CHX),觀察到LMADS2、LMADS3間接活化這些與開花時間相關基因。另外,為了研究LMADS2、LMADS3在轉基因植物中的功能,利用LMADS2、LMADS3蛋白質作餌進行yeast two hybrid,觀察到LMADS2 和LMADS3可以形成heterodimers,LMADS3自己可形成homodimers。綜合以上結果,更能讓我們了解LMADS2、LMADS3在調控花器發育之分子機制中扮演的角色。在阿拉伯芥中大量表現百合p70核醣體S6激酶基因(LS6K1) 會抑制花瓣及雄蕊細胞延展,造成花瓣及雄蕊縮短的性狀。在分析序列中發現參與調控花瓣及雄蕊的基因AP3、PI和SUP,可轉錄形成5'TOP mRNAs 而受百合p70核醣體S6激酶所調控。進一步將AP3之啟動子和5’不轉譯區接上報導基因(GUS)送入阿拉伯芥中,在轉基因植株的花苞中發現LS6K1可調控GUS的活性,證實了LS6K1藉由轉譯活化5'TOP mRNAs。進一步的分析更證明了LS6K1不是藉由轉錄活化的方式來活化這些5'TOP mRNAs。這結果顯示了p70s6k在訊息傳遞中的一個新功能,藉由轉譯活化這些5'TOP mRNAs,來調控花瓣和雄蕊細胞的分裂和擴張。

第一章 百合LMADS2及LMADS3基因與植物開花啟始關係之分析及其功能分析
- 摘要 2-3
- 前言 4-15
- 材料與方法 16-40
- 結果 41-54
- 討論 55-61
- 參考文獻 62-72
- 圖表 73-103
第二章 百合p70核醣體S6激酶(LS6K1)參與調控花器形成之研究
- 摘要 105-106 - 前言 107-112
- 材料與方法 113-116
- 結果 117-122
- 討論 123-126
- 參考文獻 127-130
- 圖表 131-152

伍、參考文獻
曾才郁. 2002. 百合中參與調控花朵發育基因及其機制之研究. 國立中興大學農業生物科技學研究所博士論文
Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burge., C., Ditta, G.S., Ribas, D.P., Martinez-Castilla, L., Yanofsky, M.F. (2000b). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. 97, 5328—5333.
Alvarezm J., Guli, C.L., Yu, X.H., and Smyth, D.R. (1992). Terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2, 103-116.
Amasino, R.M. (1996). Control of flowering time in plant. Current Opinion in Genetics and Development. 6, 480-487.
Angenent, G.C., Busscher, M., Franken, J., Mol, J.N.M., and van Tunen, A.J. (1992). Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4, 983-993.
Angenent G.C., Franken J., Busscher M., Weiss D., van Tunen A.J. (1994). Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 5, 33-44.
Angenent, G.C., Franken, J., Busscher, M., van Dijken, A., van Went, J.L., Dons, H.J.M., and van Tunen, A.J. (1995). A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7, 1569-1582.
Angenent, G.C., and Colombo, L. (1996). Molecular control of ovule development. Trends Plant Sci. 1, 228-232.
Aoyama, T., and Chua, N.H.(1997). A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11, 605-612.
Arabidopsis genome Initiative. (2000). Analysis of gneome of the flowering plant Arabidopsis Thaliana. Nature 408, 796-815.
Araki, T. (2001). Transition from vegetative to reproductive phase. Curr. Opin. Plant Biol. 4, 63-68.
Araki, T., and Komeda, Y. (1993). Analysis of the role of the late-Flowering locus, GI, in the flowering of Arabidopsis thaliana. Plant J. 3, 231-239.
Blazquez M.A., Soowal L.N., Lee I., Weigel D. (1997). LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835-44.
Blazquez, M.A. (2000). Flower development pathways. Journal of Cell Science 113, 3547-3548
Bowman, J.L. (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J Biosci. 22, 515-527.
Bowman J.L., Smyth D.R., and Meyerowitz, E.M. (1989). Genes directing flower development in Arabidopsis. Plant Cell 1, 37-52.
Bowman, J.L., Smyth, D.R., and Meyerowitz, E.M. (1991). Genetic interaction among floral homeotic genes of Arabidopsis. Development 112, 1-20.
Bowman, J.L., Alvarez, J., Meyerowitz, E.M., and Smyth, D.R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1and interacting gene. Development 119, 721-743.
Bradley, D., Carpenter, R., Sommer, H., Hartley, N., and Coen, E. (1993).
Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72, 85-95
Burn, J.E., Smyth, D.R., Peacock, W.J., and Dennis, E.S. (1993a). Genes conferring late flowering in Arabidopsis thaliana. Genetica 90, 147-155
Clarke, J.H. and Dean, C. (1994). Mapping FRI, a locus controlling flowering time and vernalization response. Mol. Gen. Genet. 242, 81-89.
Clarke, J.H., Mithen, R., Brown, J.K.M., and Dean, C. (1995). QTL analysis of flowering time in Arabidopsis thaliana. Mol. Gen. Genet. 248, 278-286.
Coen, E.S., and Meyerowitz, E.M. (1991). The war of the whorls: genetic interactions controlling flower development. Naure 353, 31-37.
Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J.M., Angenent, G.C., and van Tunen, A.J.(1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7, 1859-1868.
Colombo, L., Franken, J., Alexander, R., van der Krol, R., Wittich, P.E., Dons, H.J.M., and Angenent, G.C. (1997a). Down regulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9, 703-715.
Colombo, L., van Tunen, A.J., Dons, H.J.M., and Angenent, G.C. (1997b). Molecular control of flower development in Petunia hybrida. Adv. Bot. Res. 26, 229-250.
Coupland, G. (1995). Genetic and environmental control of flowering time in Arabidopsis. Trends Genet. 11, 393-397.
Dalman, F.C., Scherrer, L.C., Taylor, L.P., Akil H., and Pratt, W.B. (1991). Localization of the 90 kDa heat shock protein-binding site within the hormone-binding domain of the glucocorticoid receptor by peptide competition. J. Biol. Chem. 266, 3482-3490.
Davies B., Motte P., Keck E., Saedler H., Sommer H., Schwarz-Sommer Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling .flower development. EMBO J. 18, 4023—4034.
Drews, G.N., Bowman, J.L., and Meyerowitz, E.M. (1991). Negative regulation of the Arabidopsis thaliana gene Agamous by the Apetal2 product. Cell 65, 991-1002 .
Egea-Cortines, M., Saedler, H., and Sommer, H. (1999). Ternary complex formation between MADS-box proteins SQUAMOSA, DEFICIENS, and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18, 5370-5379.
Eimert, K., Wang, S-W., Lue, W-L., and Chen, J. (1995). Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7, 1703-1712.
Goto, K., and Meyerowitz, E.M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548-1560.
Fan HY, Hu Y, Tudor M, Ma H. (1997). Speci.c interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 12, 999—1010.
Favaro R, Immink RG, Ferioli V, Bernasconi B, Byzova M, Angenent GC, Kater M, Colombo L.(2002). Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants.
Mol Genet Genomics. 268, 152-9.
Flanagan C.A., Ma H. (1994). Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol 26, 581-595.
Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane spanning domains. EMBO J. 18, 4679-4688.
Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525-529.
Huang, H., Mizukami, Y., Hu, Y., and Ma, H. (1993). Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acids Res. 21, 4769-4776.
Immink R.G.H., Gadella T.W.J., Ferrario S., Busscher M., Angenent G.C. (2002). Analysis of MADS box protein-protein interactions in living plant cells. Proc. Natl. Acad. Sci. 99, 2416-2421.
Jack, T., Brockman, L.L., and Meyerowitz, E.M. (1992). The homeotic gene APETAL3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683-688.
Jack, T. (2001). Plant development going MADS. Plant Mol Biol. 46, 515-520.
Jofuku, K.D., den Boer, B.G., Montagn, E.M., and Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETAL2. Plant Cell 6, 1211-1225.
Kang, H.G., Noh, Y.S., Chung, Y.Y., Costa, M.A., An, K., and An, G. (1995). Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Mol Biol. 29, 1-10.
Kater, M.M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M.M., and Angenent, G.C. (1998). Multiple AGAMOUS homologs from cucumber and petunia differ in their abilityto induce reproductive organ fate. Plant Cell 10, 171-182.
Kempin, S.A., Mandel, M.A., and Yanofsky, M.F. (1993). Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol. 103, 1041-1046.
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960-1962.
Koornneef, M., Alonso-Blanco, Peeters, A.J., and Soppe, W. (1998). Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 345-370.
Koornneef, M., Hanhart, C.J., and van der Veen, J.H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57-66.
Koornneef, M., and van der Veen, J.H.(1980). Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L) Heynh. Theor. Appl. Genet. 58, 257-263.
Kyozuka, J., Harcourt, R., Peacock, W.J., and Dennis, E.S. (1997). Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol. Biol. 35, 573-584.
Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D., Weaver, L.M., John, M.C., Feldmann, K.A., and Amasino, R.M. (1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6, 75-83.
Lee, I., Bleecker, A. and Amasino, R.M. (1993). Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol. Gen. Genet. 237, 171-176.
Levy, Y.Y. and Dean, C. (1998). The transition to flowering. Plant Cell 10, 1973-1990.
Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S., and Yanofsky, M.F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11, 1007-1018.
Lloyd, A.M., Schena, M., Walbot, V., and Davis, R.(1994). Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science 266, 436-439.
Lopez-Dee Z.P., Wittich P., Enrico Pe M., Rigola D., Del Buono I., Gorla M.S., Kater M.M., Columbo L. (1999). OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev. Genet. 25, 237-244.
Ma H., Yanofsky M.F., Meyerowitz E.M. (1991)AGL1—AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5, 484-495.
Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360, 273-277.
Mandel, M.A., and Yanofsky, M.F. (1995). A gene triggering flower formation in Arabidopsis. Nature 377, 522-524.
Mandel M.A., Yanofsky M.F. (1998). The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod 11, 22-28.
Martinez-Zapater, J.M., Coupland, G., Dean, C., and Koornneef, M. (1994). The transition to flowering in Arabidopsis. In “Arabidopsis” (C.R. Somerville and E. M. Meyerowitz, Eds.), pp.403-434. Cold Spring Harbor Laboratory Press, New York.
Miller J.H. (1992). A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and related Bacteria. Cold Spring Harbor Laboratory Press, New York.
Mizukami Y., and Ma, H. (1992). Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71, 119-131.
Mizukami Y., and Ma H. (1997). Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9, 393-408.
Moon Y.H., Kang H.G., Jung J.Y., Jeon J.S., Sung S.K., An G. (1999). Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol. 120, 1193—1204.
Münster T., Pahnke J., Di Rosa A., Kim J.T., Martin W., Saedler H., Theissen G. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci 94, 2415-2420.
Okada, K., and Shimura, Y. (1994). Genetic analyses of signaling in flower development using Arabidosis. Plant Mol. Biol. 26, 1357-1377.
Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A., and Nam, H.G. (1999). Control of circadian rhythms and photoperiodic control of flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579-1581.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200-203.
Pnueli L., Abu-Abeid M., Zamir D., Nacken W., Schwarz-Sommer Z., Lifschitz E. (1991). The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1, 255-266.
Pnueli, L., Hareven, D., Rounsley, S.D., Yanofsky, M.F., and Lifschitz, E. (1994). Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6, 163-173.
Pollock, R., and Treisman, R. (1991). Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 5, 2327-2341.
Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinic finger transcription factors. Cell 80, 847-857.
Reeves, P.H., and Coupland, G. (2000). Response of plant development to environment: control of flowering by daylength and temperature. Curr. Opin. Plant Biol. 3, 37-42.
Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biol Chem. 378, 1079-1101.
Rounsley, S.D., Ditta, G.S., and Yanofsky, M.F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259-1269.
Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Cote, C., Bosnich, W., Kauffeldt, C., Sunohara, G., Seguin, A., and Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J. 15, 625-634.
Sablowski R.W., Meyerowitz E.M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92, 93-103.
Sanda, S.L., and Amasino, R.M. (1996). Ecotype-specific expression of a flowering mutant phenotype in Arabidopsis thaliana. Plant Physiol. 111, 641-744.
Sanchez-Fernandez, R., Ardiles-Diaz, W., Van Montagu, M., Inze, D., and May, M.J. (1998). Cloning of a novel Arabidopsis thaliana RGA-like gene, a putative member of the VHIID-domain transcription factor family. J. Exp. Bot. 49, 1609-1610.
Sanger F., Nicklen S., and Coulson A.R. (1997). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74, 5463-5467.
Savidge B., Rounsley S.D., Yanofsky M.F. (1995). Temporal relationships between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7, 721-733.
Schmidt, R.J., Veit, B., Mandel, M.A., Mena, M., Hake, S., and Yanofsky, MF.(1993). Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5, 729-737.
Schomburg, F.M., Patton, D.A., Meinke, D.W., and Amasino, R.M. (2001). FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13, 1427-1436.
Schultz, E.A., and Haughn, G. W. (1993). Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 119, 745-765.
Shannon, S. and Meeks-Wagner, D.R. (1991). A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3, 877-892.
Shore, P., and Sharrocks, A.D. (1995). The MADS-box family of transcription factors. Eur J Biochem. 229, 1-13.
Simon, R., Igeño, M.I, and Coupland, G. (1996). Activation of floral meristem identity genes in Arabidopsis. Nature 384, 59-62.
Simpson, G.G., Gendall, A.R., and Dean, C. (1999). When to switch to flowering. Annu Rev Cell Dev Biol. 15, 519-550.
Simpson, G.G. and Dean, C. (2002). Arabidopsis, the rosetta stone of
flowering time? Science 296, 285-289.
Sommer, H., Beltrán, J.P., Huijser, P., Pape, H., Lönning, W.E., Saedler, H., and Schwarz-Sommer, Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605-613.
Soppe, W.J., Jacobsen, S.E., Alonso-Blanco, C., Jackson, J.P., Kakutani, T., Koornneef, M., Peeters, A.J. (2000). The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell. 6, 791-802.
Sun, T.P., and Kamiya, Y. (1994). The Arabidopsis ga1 locus encodes the cyclase ent-kaurene synthetase-A of gibberellin biosynthesis. Plant Cell 6, 1509-1518.
Sung, Z.R., Belachew, A., Bai, S., and Bertrand-Garcia, R. (1992). EMF, an Arabidopsis gene required for vegetative shoot development. Science 258, 1645-1647.
Theissen, G., and Saedler, H. (1995). MADS-box genes in plant ontogeny and phylogeny: Haeckel's 'biogenetic law' revisited. Current Opinion in Genetics and Development 5, 628-639.
Theissen, G., Kim J., and Saedler, H. (1996). Classification and phylogeny of the MADS-box gene subfamilies in the morphological evolution of eukaryotes. J.Mol.Evol. 43, 484-516.
Theissen, G., Becker, A., Rosa, A.D., Kanno, A., Kim J.T., Münster, T., Winter, K.U., and Saedler, H. (2000). A short history of MADS-box genes in plant. Plant Mol. Biol. 42: 115-149.
Theissen, G. (2001). Development of floral organ identity: stories from the MADS house.Curr Opin Plant Biol. 4, 75-85.
Theissen, G., and Saedler, H. (2001). Floral quartets. Nature 409, 469-471.
Theissen, G., Strater T., Fischer A., Saedler H. (1995). Structural characterization, chromosomal location and phylogenetic evaluation of two pairs of AGAMOUS-like MADS box genes from maize. Gene 156, 155-166.
Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W.E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z. (1992). GLOBOSA: A homeotic gene which interacts with DEFICIENS in control of Antirrhinum floral organogenesis. EMBO J. 11, 4693-4704.
Tzeng, T.Y., Chen, H.Y., Yang, C.H. (2002). Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol. 130,1827-36.
Wagner, D., Sablowski, R. W. M. and Meyerowitz, E. M. (1999). Transcriptional activation of APETALA1 by LEAFY. Science 285, 582-584.
Weigel, D., and Meyerowitz, E.M. (1994). The ABCs of floral homeotic genes. Cell 78, 203-209.
Wen, C.-K., and Chang, C. (2002). Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14, 87-100.
Winter, K.U., Becker, A., Münster, T., Kim, J.T., Saedler, H., and Theissen G. (1999). MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci. 96, 7342-7347.
Yang, C.H., Cheng, L.J., and Sung Z.R. (1995). Genetic regulation of shoot development in Arabidopsis: the role of EMF genes. Dev. Biol. 169, 421-435.
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E. M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35-39.
Yu, D., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A., and Teeri, T.H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J. 17, 51-62.
Yu H,, Goh C,J. (2000).Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol.123, 1325-36.
Zagotta, M. T., Shannon, S., Jacobs, C., and Meeks-Wagner, R. (1992). Early-flowering mutants of Arabidopsis thaliana. Aust. J. Plant Physiol. 19, 411-418.
Zagotta, M.T., Hick, K.A., Jacobs, C.I., Young, J.C., Hangarter, R.P., and Meeks-Wagner, R. (1996). The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 10, 691-702.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top