跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 08:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅文政
研究生(外文):Wen-Zheng Lo
論文名稱:氮化鋯鍍膜在高溫控制氣氛下劣化之研究
論文名稱(外文):Degradation of ZrN Films at High Temperature under Controlled Atmosphere
指導教授:呂福興
指導教授(外文):Fu-Hsing Lu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:134
中文關鍵詞:氮化鋯退火殘留應力
外文關鍵詞:zirconium nitrideannealingresidual stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要是探討氮化鋯薄膜於不同氣氛(空氣、氮氣及N2/H2=9混合氣包含真空)高溫熱處理後劣化現象,熱處理溫度範圍為300∼1200℃,持溫時間為0.5~12小時,劣化現象包含了鍍膜顏色變化及形成巨觀缺陷等。
氮化鋯薄膜在上述氣氛400℃以上,表面皆會出現直徑大小約5-10 mm圓形凸狀物(A型)之巨觀缺陷,凸狀物部分已有破裂現象,此時薄膜外觀顏色與剛鍍著之氮化鋯薄膜相同,呈現金黃色澤。到達700-800℃時,薄膜表面除了A型圓形凸狀物外,另出現B型緻密不規則凸狀物之缺陷,此時薄膜顏色皆呈現粉紅色,但在真空處理未發現此缺陷,由於真空下薄膜並不會產生氧化反應,因此確定B型不規則凸狀物缺陷與氧化有密切地關係。
另外,以X光繞射儀及拉曼光譜儀分析氮化鋯薄膜於三種氣氛(空氣、氮氣及N2/H2=9混合氣)退火後之晶體結構變化,在空氣及氮氣中600℃以上開始出現單斜晶系氧化鋯,而在N2/H2=9混合氣中700℃以上才開始出現,並觀察鍍膜橫截面變化,利用熱力學分析薄膜氧化變化。
使用掃描式雷射曲率法量測薄膜退火後之應力變化,剛鍍著時應力為-4.5 GPa,在本研究選用N2/H2=9混合氣及真空氣氛下皆在400℃應力增大(-7.2 GPa),因此研判A型較大圓形凸狀物之巨觀缺陷為薄膜之殘留應力所致。並利用XRD測量薄膜退火後之應變與殘留應力關係,可求得氮化鋯薄膜之楊氏係數為250± 80 GPa,與文獻報導相符。

The objective of this research is to investigate degradation of ZrN films annealed in the controlled atmosphere. The ZrN films were deposited onto (100) Si substrates by unbalanced magnetron sputtering. The films were then annealed in air, N2, N2/H2=9, and vacuum which possess dramatically different pN2/pO2 ratios. Annealing was conducted over temperatures of 300-1200°C for 0.5-12 h.
Large blisters denoted as A-type defects appeared on the film surface above 400°C in all the atmosphere. The top of many blisters has broken surface. Small blisters denoted as B-type defects showed up above 700℃ in all atmosphere except vacuum. Such blisters resulted from oxidation of the films. X-ray diffraction and Raman spectroscopy results showed that monoclinic ZrO2 existed above 600°C both in air and N2 while appeared above 700°C in N2/H2=9. Oxidation kinetics was discussed.
Residual stresses were measured by a scanning laser curvature technique. Residual stress of the as-deposited ZrN films was —4.5 GPa and was decreased to -7.2 GPa at 400℃. Such pronounced residual stress change was responsible for the formation of A-type large blisters. The Young’s modulus of ZrN films could be deduced from the stress-strain relation. The obtained value was 250±80 GPa, which is compatible with the data available in the literature.

目 次
第一章 緒 論 1
1-1 前言 1
1-2 研究動機 1
1-3 研究目的 2
第二章 鍍著理論與文獻回顧 3
2-1 鍍著原理 3
2-2 文獻回顧 5
2-2-1 氮化鋯之鍍著文獻 5
2-2-2氮化鋯之氧化與劣化文獻 9
第三章 研究方法 12
3-1 實驗流程圖 12
3-2 氮化鋯的鍍著 12
3-3 試片準備 12
3-4 控制氣氛下退火處理 13
3-5 分析儀器 14
3-5-1 光學顯微鏡及立體顯微鏡 14
3-5-2 X光繞射分析儀(XRD) 14
3-5-3 掃瞄式電子顯微鏡(SEM) 15
3-5-4 歐傑電子能譜儀(AES) 16
3-5-5 拉曼光譜儀(RS) 16
3-5-6 薄膜應力量測 17
第四章 結果與討論 18
4-1 氮化鋯薄膜鍍著後之分析 18
4-1-1 微結構分析 18
4-1-2 成分分析 19
4-1-3 表面粗糙度分析 20
4-2 氮化鋯鍍膜在控制氣氛下退火後之劣化現象 20
4-2-1 顏色變化 21
4-2-2 巨觀缺陷 22
4-2-3 綜合整理 25
4-3 氮化鋯鍍膜退火後之晶體結構分析 26
4-3-1 空氣 26
4-3-2 氮氣 27
4-3-3 氮氫混合氣(N2/H2=9) 28
4-3-4 真空 29
4-4 氮化鋯鍍膜退火後之橫截面分析 31
4-4-1 空氣 31
4-4-2 氮氣 33
4-4-3 氮氫混合氣(N2/H2=9) 34
4-5 氮化鋯鍍膜退火後之應力分析 35
4-5-1 氮氫混合氣(N2/H2=9) 36
4-5-2 真空 39
第五章 結 論 41
參考文獻 43
表 目 錄
表1-1 氮化鋯之基本物性 5 0
表2-1 氮化鋯之鍍著文獻整理 51
表2-2 氮化鋯氧化/劣化研究文獻整理 56
表3-1 氮化鋯鍍膜鍍著條件 12
表3-2 本實驗所使用的氣氛成份及氧分壓 13
表3-3 X光繞射儀的操作條件 15
表4-1 文獻中氧化鋯之拉曼散射光譜位置 58
表4-2 鋯、矽、氧及氮元素之特性X-ray能量 58
圖 目 錄
圖2-1 磁控濺射磁路分佈示意圖(a)傳統平衡式(b)非平衡式 59
圖2-2 薄膜沈積機構示意 60
圖2-3 Thomton 鍍膜結構模式 61
圖2-4 Messier鍍膜結構模式 62
圖3-1 實驗流程圖 63
圖3-2 非平衡磁控濺射系統示意圖 64
圖4-1 剛鍍著之氮化鋯鍍膜X光繞射結果與JCPDS比對分析 65
圖4-2 剛鍍著之氮化鋯鍍膜之歐傑電子原子百分比縱深分佈圖[Physical Electronic Auger 670 PHI Xi] 66
圖4-3 鋯-氮相圖 67
圖4-4 剛鍍著氮化鋯鍍膜之掃描式探針顯微鏡(SPM)表面分析 68
圖4-5 剛鍍著之氮化鋯鍍膜之粗糙度(Roughness)分析 69
圖4-6 氮化鋯鍍膜於空氣氣氛下之劣化圖(顏色變化及A型B型凸狀物 生成情形) 70
圖4-7 氮化鋯鍍膜於氮氣氣氛下之劣化圖(顏色變化及A型B型凸狀物 生成情形) 71
圖4-8 氮化鋯鍍膜於N2/H2=9混合氣下之劣化圖(顏色變化及A型B型凸狀物生成情形) 72
圖4-9 氮化鋯鍍膜(a)剛鍍著,在空氣(b)400℃,(c)700℃,(d)1200℃退火2小時之表面形貌 73
圖4-10 氮化鋯鍍膜於空氣(a)700℃,(b)900℃,(c)1200℃退火2小時之B型不規則凸狀物橫截面形貌 75
圖4-11 氮化鋯鍍膜在氮氣(a)400℃,(b)600℃,(c)700℃,(d)1200℃退火2小時之表面形貌 77
圖4-12 氮化鋯鍍膜於氮氣(a)700℃,(b)900℃,(c)1200℃退火2小時之B型不規則凸狀物橫截面形貌 79
圖4-13 氮化鋯鍍膜在N2/H2=9氣氛(a)400℃,(b)700℃,(c)800℃,(d)1200℃退火2小時之表面形貌 81
圖4-14 氮化鋯鍍膜於N2/H2=9氣氛下退火2小時400℃之A型凸狀物橫截面 83
圖4-15 氮化鋯鍍膜於N2/H2=9氣氛下退火2小時(a)800℃,(b)1000℃,(c)1200℃之B型凸狀物橫截面 83
圖4-16 氮化鋯鍍膜於真空(a)400℃,(b)700℃,(c)800℃,(d)1000℃退火2小時之表面形貌 85
圖4-17 氮化鋯鍍膜於空氣下400-1200℃退火2小時之XRD結果 87
圖4-18 鋯-氧相圖 88
圖4-19 氮化鋯於空氣中退火後氮化鋯與氧化鋯相對強度隨溫度變化 89
圖4-20 氮化鋯鍍膜於空氣400-1200℃退火2小時之Micro Raman光譜之分析結果 90
圖4-21 氮化鋯鍍膜於氮氣氣氛下400-1200℃退火2小時之XRD結果 91
圖4-22 氮化鋯於氮氣氣氛中氮化鋯與氧化鋯相對強度隨溫度變化 92
圖4-23 氮化鋯薄膜於氮氣氣氛下400-1200℃退火2小時之Micro Raman光譜分析結果 93
圖4-24 氮化鋯鍍膜於氮氫混合(N2/H2=9)氣氛400-1200℃退火2小時之XRD結果 94
圖4-25 氮化鋯於N2/H2=9混合氣中氮化鋯與氧化鋯相對強度隨溫度變化 95
圖4-26 氮化鋯鍍膜於N2/H2=9氣氛下500-1200℃退火2小時之Micro Raman光譜之分析結果 96
圖4-27 氮化鋯鍍膜經真空400-1000℃退火2小時之XRD結果 97
圖4-28 氮化鋯薄膜於真空400-1000℃退火後,(111)織構(texture coefficient)隨溫度變化 98
圖4-29 氮化鋯薄膜於真空退火後晶格常數隨溫度變化 99
圖4-30 不同氣氛下與粉末氧化鋯1200℃退火2小時之Micro Raman分析比較結果 100
圖4-31 氮化鋯-氧化鋯之熱力學平衡時( )equil.與溫度關係圖 101
圖4-32 氮化鋯於空氣、氮氣及N2/H2=9氣氛下550-650℃退火2小時,氧化鋯生成量與氮氧分壓關係圖 102
圖4-33 氮化鋯鍍膜 (a)剛鍍著,於空氣(b)500℃,(c)600℃,(d)700℃,(e)800℃,(f)900℃,(g)1100℃,(h)1200℃退火2小時之橫截面變化 103
圖4-34 氮化鋯鍍膜於空氣1200℃退火2小時橫截面之EDS結果(1、2、3為圖4-34(h)之偵測位置) 107
圖4-35 氮化鋯鍍膜於空氣(a)1000℃(b)1200℃退火2小時之表面形貌 108
圖4-36 氮化鋯鍍膜於氮氣(a)500℃,(b)600℃,(c)700℃,(d)800℃,(e)900℃,(f)1000℃,(g)1100℃,(h)1200℃退火2小時之橫截面變化 109
圖4-37 氮化鋯鍍膜於氮氣(a)1000℃(b)1200℃退火2小時之表面形貌 113
圖4-38 氮化鋯鍍膜於N2/H2=9氣氣(a)500℃,(b)600℃,(c)700℃,(d)800℃,(e)900℃,(f)1100℃,(g)1200℃退火2小時之橫截面變化 114
圖4-39 氮化鋯鍍膜於N2/H2=9氣氛(a)1000℃(b)1200℃退火2小時之表面形貌 117
圖4-40 氮化鋯鍍膜於不同氣氛(Air、N2及N2/H2=9)退火2小時之氧化層厚度變化 118
圖4-41 氮化鋯薄膜於空氣、氮氣及N2/H2=9混合氣600℃退火2小時之氧化鋯厚度相對量與( )結果 119
圖4-42 氮化鋯鍍膜於氮氫(N2/H2=9)混合氣下退火2小時(111)方向隨溫度之偏移情形 120
圖4-43 氮化鋯鍍膜於氮氫混合氣(N2/H2=9)退火2小時,矽粉校正 (111)繞射峰之偏移量 121
圖4-44 氮化鋯鍍膜經氮氫混合氣(N2/H2=9)退火2小時之(111)繞射峰半高寬(FWHM)變化 122
圖4-45 氮化鋯薄膜N2/H2=9氣氛退火後經雷射掃描測量曲率與應力之關係 123
圖4-46 氮化鋯薄膜N2/H2=9混合氣退火後應力隨溫度變化曲線圖 124
圖4-47 氮化鋯鍍膜於N2/H2=9氣氛下退火後之應變量變化 125
圖4-48 氮化鋯鍍膜於N2/H2=9氣氛下應力與應變量之關係圖 126
圖4-49 氮化鋯鍍膜於真空退火2小時(111)方向隨溫度之偏移情形 127
圖4-50 氮化鋯鍍膜於真空退火處理,矽粉校正(111)繞射峰之偏移量 128
圖4-51 氮化鋯鍍膜經真空退火2小時之(111)繞射峰半高寬(FWHM)變化 129
圖4-52 氮化鋯鍍膜真空退火之晶粒尺寸變化 130
圖4-53 氮化鋯薄膜真空退火後經雷射掃描測量曲率與應力之關係 131
圖4-54 氮化鋯薄膜真空退火後應力隨溫度變化曲線圖 132
圖4-55 氮化鋯鍍膜於真空下退火後之應變量變化 133
圖4-56 氮化鋯鍍膜於真空下應力與應變量之關係圖 134

參考文獻
1. Encyclopedia of Chemical Technology, 4th ed. Edited by M. Howe-Grant (New York, 1996), Vol.17, 108-113.
2. H. Holleck, “Material Selection For Hard Coatings,” J. Vac. Sci. Technol. A4 (1986) 2661-2669.
3. 汪建民主編,陶瓷技術手冊(下),中華民國粉末冶金協會,第二十三章:氮化物(黃肇瑞),第777~804頁,民國八十三年。
4. I. N. Frantsevich, E. A. Zhurakovskii, and A. B. Lyashchenko, “Elastic Constants and Characteristics of The Electron Structure of Certain Classes of Refractory Compounds Obtained by The Metal-Powder Method,” Inorg. Mater., 3 (1967) 6-12.
5. A. J. Perry, “A Contribution to The Study of Poisson’s Ratios and Elastic Constant of TiN, ZrN, and HfN,” Thin Solid Films, 193/194 (1990) 463-471.
6. N. Alexandre and M. Desmaison-Brut, ”Mechanical Properties of Hot Isostatically Pressed Zirconium Nitride Materials,” J. Mater. Sci., 28 (1993) 2385-2390.
7. K. Kobayashi, “First-Principles Study of The Electronic Properties of Transition Metal Nitride Surfaces,” Surf. Sci., 493 (2001) 665-670.
8. Y.K. Rao, Stoichiometry and Thermodynamics of Metallurgical Processes, Cambridge University Press, Cambridge, 1985, p.883, 888.
9. J. Gu, G. Barber, S. Tung, and R.-J. Gu, “Tool Life and Wear Mechanism of Uncoated and Coated Milling Inserts,” Wear, 225-229 (1999) 273-284.
10. J. V. Stebut, A. Darbeida, J. Lepage, J. M. Brion, B. Sander, G. Pierson, and J. Bellot, “Coating-Workpiece Optimization of Free Cutting Steels: Turning with TiCN-, ZrO2-, and ZrN-Coated Cemented Carbide Tools,” Surf. Coat. Technol., 68-69 (1994) 762-769.
11. C. Brugnoni, F. Lanza, G. Macchi, R. Műller, E. Parnisari, M. F. Stroosnijder, and J. Vinhas, “Evaluation of The Wear Resistance of ZrN Coatings Using Thin Layer Activation,” Surf. Coat. Technol., 100-101 (1998) 23-26.
12. E. Gariboldi, “Drilling A Magnesium Alloy Using PVD Coated Twist Drills,” J. Mater. Proc. Technol., 134 (2003) 287-295.
13. M. B. Takeyama, T. Itoi, E. Aoyagi, and A. Noya, “ High Performance of Thin Nano-Crystalline ZrN Diffusion Barrier in Cu/Si Contact Systems,” Appl. Surf. Sci., 190 (2002) 450-454.
14. M. B. Takeyama, A. Noya, and K. Sakanishi, “Diffusion Barrier Properties of ZrN Films in The Cu/Si Contact Systems,” J. Vac. Sci. Technol. B, 18 (2000) 1333-1337.
15. M. Takeyama, S. Kagomi, A. Noya, and K. Sakanisni, “Application of Amorphous Cu-Zr Binary Alloy as Diffusion Barrier in Cu/Si Contact Systems,” J. Appl. Phys., 80 (1996) 569-573.
16. H. Hirano, K. Kuramoto, Y. Domoto, S. Kiyama, and S. Tsuda, “Low Temperature Fabrication of ZrN Thin Films Using an Ion Beam and Application to a VCR Cylinder,” International Journal of the Japan Society for Precision Engineering, 30 (1996) 140-141.
17. T. Nozawa and T. Suzuki, “Zirconium Nitride Thin-Films Resistors with High Thermal Durability,” IEEE Trans. Components Hybrids and Manu. Tech., 8 (1985) 512-516.
18. 陳弘穎, 控制氣氛下退火對銅基材上氮化鈦鍍膜微結構之影響, 國立中興大學材料工程研究所碩士論文, 1997.
19. 許進明, 科儀新知, 第13卷, 第5期, 1992
20. B. Window and N. Savvides, “Charged Particle Fluxes From Planar Magnetron Sputtering Sources,” J. Vac. Sci. Technol., A4 (1986) 196-202.
21. J. A. Thronton, “Influence of Apparatus Geometry and Deposition Conditions on The Structure and Topography of Thick Sputtered Coatings,” J. Vac. Sci. Technol., 11 (1974) 666-670.
22. R. Messier, A. P. Giri, and R. A. Roy, “Revised Structure Zone Model For Thin Film Physical Structure,” J. Vac. Sci. Technol., A 2 (1984) 500-503.
23. S. Horita, M. Kobayashi, H. Akahori, and T. Hata, “Material Properties of ZrN Film on Silicon Prepared by Low-Energy Ion-Assisted Deposition,” Surf. Coat. Technol., 66 (1994) 318-323.
24. V. N. Zhitomirsky, I. Grimberg, R. L. Boxman, N. A. Travitzky, S. Goldsmith, and B. Z. Weiss, “Vacuum Arc Deposition and Microstructure of ZrN-Based Coatings,” Surf. Coat. Technol., 94-95 (1997) 207-212.
25. D. Wu, Z. Zhang, W. Fu, X. Fan, and H. Guo, “Structure, Electrical and Chemical Properties of Zirconium Nitride Films Deposited by DC Reactive Magnetron Sputtering,” Appl. Phys. A 64 (1997) 593-595.
26. K. A. Gruss and R. F. Davis, “Adhesion Measurement of Zirconium Nitride and Amorphous Silicon Carbide Coatings to Nickel and Titanium Alloys,” Surf. Coat. Technol., 114 (1999) 156-168.
27. K. A. Gruss, T. Zheleva, R. F. Davis, and T. R. Watkins, “Characterization of Zirconium Nitride Coatings Deposited by Cathodic Arc Sputtering,” Surf. Coat. Technol., 107 (1998) 115-124.
28. Y. Gotoh, T. Shiigi, M. Nagao, H. Tsuji, and J. Ishikawa, “Influence of Ambient Nitrogen Pressure on The Property of Zirconium Nitride Thin Films in Ion Beam assisted Deposition,” IEEE Trans. Components Hybrids and Manu. Tech., 11 (1992) 1125-1128.
29. J. V. Ramana, S. Kumar, C. David, A. K. Ray, and V. S. Raju, “Characterisation of Zirconium Nitride Coatings Prepared by DC Magnetron Sputtering,” Mater. Lett., 43 (2000) 73-76.
30. T. Mae, M. Nose, M. Zhou, T. Nagae, and K. Shimamura, “The Effect of Si Addition on The Structure and Mechanical Properties of ZrN Thin Films Deposited by an r.f. Reactive Sputtering Method,” Surf. Coat. Technol., 142-144 (2001) 954-958.
31. M. Nose, M. Zhou, E. Honbo, M. Yokota, and S. Saji, “Colorimetric Properties of ZrN and TiN Coatings Prepared by DC Reactive Sputtering,” Surf. Coat. Technol., 142-144 (2001) 211-217.
32. H. M. Benia, M. Guemmaz, G. Schmerber, A. Mosser, and J.-C. Parlebas, “Investigation on Non-Stoichiometric Zirconium Nitrides, ” Appl. Surf. Sci., 200 (2002) 231-238.
33. R. J. Rodríguez, J. A. García, A. Medrano, M. Rico, R. Sánchez, R. Martínez, C. Labrugére, M. Lahaye, and A. Guette, “Tribological Behavior of Hard Coatings Deposited by Arc-Evaporation PVD,” Vacuum 67 (2002) 559-566.
34. J.-H. Huang, C.-Y., Hsu, S.-S. Chen, and G.-P. Yu, “Effect of Substrate Bias on The Structure and Properties of Ion-Plated ZrN on Si and Stainless Steel Substrates,” Mater. Chem. Phy., 77 (2002) 14-21.
35. E. Kelesoglu, C. Mitterer, and M. Űrgen, “Corrosion Characteristics of Plain Carbon Steel Coated with TiN and ZrN Under High-Flux Ion Bombardment,” Surf. Coat. Technol., 160 (2002) 82-86.
36. R. Hűbler, “Transition Metal Nitrides Thin Films Deposition Using a Dynamically Controlled Magnetron Sputtering Apparatus,” Surf. Coat. Technol., 158-159 (2002) 680-684.
37. L. Krusin-Elbaum and M. Wittmer, “Oxidation Kinetics of ZrN Thin Films,” Thin Solid Films, 107 (1983) 111-117.
38. S. Luridiana, and A. Miotello, “Spectrophotometric Study of Oxide Growth on Arc Evaporated TiN and ZrN Coatings During Hot Air Oxidation Test,” Thin Solid Films, 290-291 (1996) 289-293.
39. H. N. Al-Shareef, X. Chen, D.J. Lichtenwalner, and A. I. Kingon, “Analysis of The Oxidation Kinetics and Barrier Layer Properties of ZrN and Pt/Ru Thin Films For DRAM Applications,” Thin Solid Films, 280 (1996) 265-270.
40. P. Panjan, B. Navinšek, A. Cvebar, A. Zalar, and I. Milošev, “Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN Multilayer Hard Coatings Reactively sputtered at Low Temperature,” Thin Solid Films, 281-282 (1996) 298-301.
41. I. Milošev, H.-H. Strehblow, and B. Navinšek, “Comparison of TiN, ZrN and CrN Hard Nitride Coatings: Electrochemical and Thermal Oxidation,” Thin Solid Films, 303 (1997) 246-254.
42. M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo, and A. Nishiyama, “Thermally Stable Ultra-Thin Nitrogen Incorporated ZrO2 Gate Dielectric Prepated by Low Temperature Oxidation of ZrN,” IEEE Trans. Components Hybrids and Manu. Tech., 11 (2001) 1254-1260.
43. G. S. Was and V. Rotberg, “Formation of Buried TiN in Glass by Ion Implantation to Reduce Solar Load,” J. Appl. Phys., 80 (1996) 2678-2774.
44. 汪建民主編,“材料分析”,中國材料科學學會, (1998) 151-174.
45. G. G. Stoney, Proc. R. Soc. London A, 82 (1909) 172.
46. W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Bias Effect of Ion-Plated Zirconium Nitride Film on Si(100),” Thin Solid Films, 405 (2002) 162-169.
47. 林郁洧, Effect of Bias on The Structure and Properties of Nanocrystalline ZrN Thin Film Deposited by Unbalanced Magnetron Sputtering, 國立清華大學工程與系統科學研究所碩士論文, 2003
48. E. M. Levin and H. F. McMurdie, “Phase Diagrams for Ceramists,” The American Ceramic Society, (1975) 27, 294.
49. W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Corrosion Resistance of ZrN Films on AISI 304 Stainless Steel Substrate,” Surf. Coat. Technol., 167 (2003) 59-67.
50. F.-H. Lu, H.-Y. Chen, and C.-H. Hung, “Degradation of CrN Films at High Temperature Under Controlled Atmosphere,” J. Vac. Sci. Technol., A 21 (2003) 671-675.
51. G. Štefanić, S. Musić, and A. Sekulić, “Influence of Precipitation Chemistry and Ball-milling on The Thermal Behavior of Zirconium Hydroxide,” Thermochim. Acta, 273 (1996) 119-133.
52. G. Štefanić, S. Musić, B. Gržeta, S. Popović, and A. Sekulić, “Influence of pH on The Stability of Low Temperature t-ZrO2,” J. Phys. Chem. Solids, 59 (1998) 879-885.
53. G. Štefanić, S. Musić, S. Popović, and A. Sekulić, “FT-IR and Laser Raman Spectroscopic Investigation of The Formation and Stability of Low Temperature t-ZrO2,” J. Mol. Struct., 408/409 (1997) 391-394.
54. I.I. Štefanić, S. Musić, G. Štefanić, and A. Sekulić, “Thermal Behavior of ZrO2 Precursors Obtained by Sol-Gel Processing,” J. Mol. Struct., 480/481 (1999) 621-625.
55. M. I. Zaki, and A. A. M. Ali, “A Surface Study of Zirconia-Based Solid Acids by Laser Raman Spectroscopy of Adsorbed Pyridine,” Colloids Surfaces A: Physicochem. Eng. Aspects, 119 (1996) 39-50.
56. B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. London, 1978, p 509-511.
57. C. Kral, W. Lengauer, D. Rafaja, and P. Ettmayer, “Critical Review on The Elastic Properties of Transition Metal Carbides, Nitrides and Carbonitrides,” J. Alloys and Compounds, 265 (1998) 215-233.
58. S. Y. Chiou and B. H. Hwang, ”Residual Stress and Strains of Highly Textured ZrN Films Examined by X-Ray Diffraction Methods,” J. Phys. D: Appl. Phys., 31 (1998) 349-354.
59. P. Panjan, B. Navinšek, A. Žabkar, V. Marinković, Dj. Mandrino, and J. Fišer, “Structural Analysis of Zr-N and Ti-N Films Prepared by Reactive Plasma Beam Deposition,” Thin Solid Films, 228 (1993) 233-237.
60. A. Laor, L. Zevin, and J. Pelleg, “Anisotropy in Residual Strains and The Lattice Parameter of Reactive Sputter-Deposited ZrN Films,” Thin Solid Films, 232 (1993) 143-148.
61. P. Jin and S. Maruno, “Evaluation of Internal Stress in Reactively Sputter-deposited ZrN Thin Films,” Jan. J. Appl. Phys., 30 (1991) 1463-1468.
62. A. J. Perry, “Residual Stress and Effect of Implanted Argon in Films of Zirconium Nitride Made by Physical Vapor Deposition,” J. Vac. Sci. Technol., A 10 (1992) 1446-1452.
63. W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Effect of Heat Treatment on the Structure and Properties of Ion-Plated TiN Films,” Surf. Coat. Technol., 168 (2003) 43-50.
64. A. J. Perry, “Physical Vapor-Deposited TiN on Cemented Carbide: Tempering Effects,” Surf. Coat. Technol., 34 (1988) 123-131.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top