(34.239.150.57) 您好!臺灣時間:2021/04/18 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許政群
論文名稱:非平衡磁控濺鍍沉積鈦/氮化鈦多層薄膜之微結構與性質研究
論文名稱(外文):A Study of the Microstructure and Properties of Ti/TiN Multilayers Prepared by Unbalanced Magnetron Sputtering
指導教授:薛富盛薛富盛引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:多層膜氮化鈦磁控濺鍍微結構
外文關鍵詞:multilayertitanium nitridemagnetron sputteringmicrostructure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,許多研究鈦/氮化鈦多層膜的相關報導,在適當的厚度週期時,多層膜的排列方式能進一步提昇氮化鈦鍍膜的性質,包括增加其硬度、附著性、抗腐蝕性及耐磨耗性。本研究以非平衡磁控濺鍍系統沉積5組不同週期之鈦/氮化鈦多層膜,並鍍著單層鈦薄膜及單層氮化鈦薄膜作為對照組。利用奈米壓痕系統量測多層膜之硬度,並以壓痕試驗及刮痕試驗比較鍍膜之附著性。此外,利用X光繞射儀、掃描式電子顯微鏡、穿透式電子顯微鏡及原子力顯微鏡進行鍍膜的微結構與成分分析。
奈米壓痕量測的結果,氮化鈦薄膜的硬度為24.36 GPa,鈦薄膜的硬度為7.28 GPa,而不同週期多層膜之硬度均介於氮化鈦與鈦之間,鈦層與氮化鈦層的厚度比例影響多層膜的硬度。壓痕試驗的結果發現各組試片均為附著性良好之HF1形式。而以刮痕試驗量測附著性時,因為影響刮痕試驗的因素過多,不容易由刮痕形貌判斷各組試片附著性之優劣。
X光繞射的結果發現鈦/氮化鈦多層膜的組成皆為Ti與TiN相,且具有TiN(111)之優選方位。從掃描式電子顯微鏡的平面影像及原子力顯微鏡的結果得知,多層膜的鍍著方式能降低鍍膜的表面粗糙度。由穿透式電子顯微鏡橫截面影像發現,多層膜能抑制鍍膜柱狀結構直徑的成長,並減少鍍膜過程中所產生的裂紋。
In recent years, Ti/TiN multilayers have drawn great attention in many sectors of industry. It was reported that multulayers with a suitable period can improve the characteristics of TiN films, including increases in hardness, adhesion, corrosion-resistance and wear-resistance. In this study, five types of Ti/TiN multilayers with different period were prepared by a unbalanced magnetron (UBM) sputtering system, and their properties were compared with Ti and TiN single layers. Hardness of the multilayers was measured by a nano-indentation test, and adhesion was evaluated by Rockwell and scratch tests. Besides, the microstructure and composition were analyzed by XRD, SEM, TEM and AFM.
The hardness of TiN and Ti single layers was mesured to be 24.36 GPa and 7.28 GPa, respectively by nano-indentation. The hardness of the Ti/TiN multilayers lies between that of TiN and Ti single layers, and depends upon the thickness ratio of Ti to TiN. The adhesion test indicates that all specimens have good adherence and belong to HF1 type.
From the XRD analysis, it shows that all the Ti/TiN multilayers are composed of Ti and TiN phases and exhibit TiN(111) preferred orientation. The multilayer structure can reduce the surface roughness of the specimens, as observed by plan-view SEM and AFM investigations. It is also found by cross-sectional TEM that the growth of columnar structure as well as cracks can be suppressed by the multilayer structure.
總目錄
中文摘要………………………………………………………………...Ⅰ
英文摘要………………………………………………………………...Ⅱ
總目錄…………………………………………………………………...Ⅲ
圖目錄…………………………………………………………………...Ⅴ
表目錄…………………………………………………………………...Ⅷ
第一章 緒論……………………………………………………………..1
1.1 研究動機…………………………………………………………….1
1.2 研究目的…………………………………………………………….3
第二章 文獻回顧與理論背景…………………………………………..6
2.1 Ti/TiN多層膜研究現況…………………………………………….6
2.1.1 硬度相關文獻……………………………………………….6
2.1.2 磨耗與附著性相關文獻…………………………………….8
2.1.3 腐蝕相關文獻………………………………………………10
2.2 物理氣相沉積法……………………………………………………11
2.3 濺鍍…………………………………………………………………13
2.3.1 濺鍍原理……………………………………………………13
2.3.2 濺射產率……………………………………………………14
2.3.3 反應性濺鍍…………………………………………………15
2.3.4 濺鍍的優點與缺點…………………………………………16
2.4 磁控濺鍍……………………………………………………………17
2.4.1 發展沿革…………………………………………………….17
2.4.2 磁控濺鍍…………………………………………………….18
2.4.3 非平衡磁控濺鍍…………………………………………….19
2.5 薄膜沉積……………………………………………………………20
2.6 鍍膜結構……………………………………………………………22
第三章 實驗方法與步驟……………………………………………….34
3.1 實驗流程…………………………………………………………..34
3.2 鍍膜設備…………………………………………………………..35
3.3 Ti/TiN多層膜製程條件…………………………………………..36
3.4 奈米壓痕量測……………………………………………………..38
3.5 鍍膜附著性測試…………………………………………………..39
3.5.1 壓痕試驗…………………………………………………….39
3.5.2 刮痕試驗…………………………………………………….40
3.6 鍍膜微結構分析…………………………………………………..41
3.6.1 X光繞射………………………………………………………41
3.6.2 穿透式電子顯微鏡………………………………………….41
3.6.3 掃描式電子顯微鏡………………………………………….42
3.6.4 原子力顯微鏡……………………………………………….42
第四章 結果與討論…………………………………………………….49
4.1 奈米壓痕量測………………………………………………………49
4.2 附著性測試…………………………………………………………54
4.3 X光繞射分析……………………………………………………….58
4.4 掃描式電子顯微鏡分析……………………………………………59
4.5 原子力顯微鏡分析…………………………………………………61
4.6 穿透式電子顯微鏡分析……………………………………………63
第五章 結論……………………………………………………………105
第六章 參考文獻………………………………………………………106
圖目錄
圖2.1 濺鍍過程中入射粒子與靶面的交互作用……………………..24
圖2.2 反應性氣體分壓與靶中毒之關係……………………………..25
圖2.3 電子受電場與磁場作用之運動路徑…………………………..26
圖2.4 電子沿靶面作螺旋式運動……………………………………..27
圖2.5 Window等人使用的不均勻磁場強度之配置………………....28
圖2.6 薄膜沉積步驟分解圖…………………………………………..29
圖2.7 Mochan及Demchishin提出的結構區域模型………………....30
圖2.8 Thornton將氬氣的影響導入結構區域模型…………………..31
圖2.9 Messier將基材偏壓的影響導入結構區域模型……………...32
圖3.1 實驗流程圖……………………………………………………..43
圖3.2 本實驗使用的UBM系統簡圖……………………………….....44
圖3.3 壓痕深度對薄膜及基材的影響………………………………..45
圖3.4 壓痕試驗標準圖………………………………………………..46
圖3.5 刮痕試驗機簡圖………………………………………………..47
圖3.6 刮痕試驗之破裂模式…………………………………………..48
圖4.1 奈米壓痕試驗測得之硬度值…………………………………..68
圖4.2 具有明顯臨界週期之Ti/TiN多層膜文獻……………………..69
圖4.3 硬度隨著週期變小而大幅增加之Ti/TiN多層膜文獻………..70
圖4.4 Ti/TiN多層膜硬度均小於TiN硬度之文獻…………………...71
圖4.5 多層膜硬度量測值與計算值之比較…………………………..72
圖4.6 奈米壓痕試驗測得之彈性模數………………………………..73
圖4.7 彈性模數與硬度之關係………………………………………..74
圖4.8 壓痕形貌(OM)…………………………………………………..75
圖4.9 壓痕形貌(SEM)………………………………………………...76
圖4.10 TiN、M4/36刮痕形貌(OM 200x)……………………………..77
圖4.11 M4/16、M4/12刮痕形貌(OM 200x)…………………………..78
圖4.12 M4/06、M4/04刮痕形貌(OM2 00x)…………………………..79
圖4.13 Ti刮痕形貌(OM 200x)……………..………………………..80
圖4.14 各試片在刮痕起始處之比較(OM 800x)...………………...81
圖4.15 各試片在刮痕5mm處之比較(OM 800x)………………….....82
圖4.16 影響刮痕試驗的因素………………………………………...83
圖4.17 鍍膜厚度對刮痕試驗的影響………………………………...84
圖4.18 X光繞射圖…………………………………………………....85
圖4.19 試片表面影像(FE-SEM)……………………………………...86
圖4.20 試片橫截面影像(FE-SEM)…………………………………...87
圖4.21 試片橫截面影像(FE-SEM)…………………………………...88
圖4.22 AFM量測平面圖……………………………………………....89
圖4.23 AFM量測3D立體圖…………………………………………....90
圖4.24 AFM量測不同面積之Ti試片………………………………....91
圖4.25 試片表面粗糙度之比較……………………………………...92
圖4.26 Ti (TEM plan view)………………………………………….93
圖4.27 M4/06 (TEM plan view)……………………………………..94
圖4.28 M4/12 (TEM plan view)……………………………………..95
圖4.29 M4/16 (TEM plan view)……………………………………..96
圖4.30 TiN (TEM plan view)………………………………………..97
圖4.31 M4/06 (TEM cross-section)………………………………..98
圖4.32 M4/12 (TEM cross-section)………………………………..99
圖4.33 M4/16 (TEM cross-section)……………………………….100
圖4.34 TiN (TEM cross-section)………………………………….101
圖4.35 界面對多層膜的影響………………………………………..102
圖4.36 M4/16多層膜鍍著過程中,腔體內氣體分壓之變化….....103
圖4.37 Craven等人鍍著的Ti/TiN多層膜界面處之成分分佈……..104
表目錄
表1.1 常用鍍膜材料之性質與應用……………………………….....4
表1.2 各種鍍膜的基本性質…………………………………………...5
表1.3 提升鍍膜性質之方法…………………………………………...5
表2.1 不同靶材濺射產率與濺擊氣體能量之關係…………………..33
1. H. E. Hintermann,“Thin Solid Films to combat friction, wear, and corrosion”, J. Vac. Sci. Technol., B2(4) (1984) 816.
2. 王婉純,“陰極電弧沉積氮化鉻鍍膜性質與微結構之研究”, 中興大學碩士論文, (2000).
3. F. Attar,“Hardness evaluation of thin ceramic coatings on tool steel”, Surf. Coat. Technol., 78 (1996) 78.
4. W. J. Chou, G. P. Yu, and J. H. Huang,“Mechanical properties of TiN thin film coatings on 304 stainless steel substrates”, Surf. Coat. Technol., 149 (2002) 7.
5. Y. Y. Guu, J. F. Lin, and C. F. Ai,“The tribological characteristics of titanium nitride coatings part 1. Coating thickness effects”, Wear, 194 (1996) 12.
6. H. S. Legg and K. O. Legg“Friction and wear reduction in tool steel by ion beam enhanced TiN deposition”, J. Vac. Sci. Technol., A4(6) (1986) 2844.
7. J. Stimmell,“Properties of dc magnetron reactively sputtered TiN”, J. Vac. Sci. Technol., B4(6) (1986) 1377.
8. M. Moriyama, T. Kaeazoe, M. Tanaka, and M. Murakami,“Correlation between microstructure and barrier properties of TiN thin films used Cu interconnects”, Thin Solid Films, 416 (2002) 136.
9. 經濟部技術處, “金屬加工用刀具材料及處理技術手冊”, 金屬工業研究發展中心, (2000).
10. H. Holleck,“Material selection for hard coatings”, J. Vac. Sci. Technol., A4(6) (1986) 2661.
11. 中華民國鍍膜科技研討會專題講座講義, (2002).
12. U. Helmersson, S. Todorova, S. A. Barnett, and J. E. Sundgren,“Growth of single-crystal TiN-VN strained-layer superlattices with extremely high mechanical hardness”, J. Appl. Phys., 62(2) (1987) 481.
13. H. Holleck and V. Schier,“Multilayer PVD coatings for wear protection”, Surf. Coat. Technol., 76-77 (1995) 328.
14. K. K. Shih and D. B. Dove,“Ti/Ti-N Hf/Hf-N and W/W-N multilayer films with high mechanical hardness”, Appl. Phys. Lett., 61(6) (1992) 654.
15. Y. Ding, Z. Farhat, D. O. Northwood, and A. T. Alpas,“Mechanical properties and tribological behaviour of nanolayered Al-Al2O3 and Ti/TiN composites”, Surf. Coat. Technol., 68-69 (1994) 459.
16. S. J. Bull and A. M. Jones,“Multilayer coatings for improved performance”, Surf. Coat. Technol., 78 (1996) 173.
17. M. C. Simmonds, H. Van Swygenhoven, E. Pfluger, A. Savan, R. Hauert, L. Knoblauch, and S. Mikhailov,“Magnetron sputter deposition and characterisation of Ti/TiN, Au/TiN and MoSx/Pb multilayers”, Surf. Coat. Technol., 94-95 (1997) p490.
18. Z. N. Farhat, Y. Ding, D. O. Northwood, and A. T. Alpas,“Nanoindentation and friction studies on Ti-based nanolaminated films”, Surf. Coat. Technol., 89 (1997) 24.
19. E. Kusano, M. Kitagawa, H. Nanto, and A. Kinbara,“Hardness enhancement by compositionally modulated structure of Ti/TiN multilayer films”, J. Vac. Sci. Technol., A16(3) (1998) 1272.
20. M. B. Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, and Ph. Houdy,“Nanoindentation investigation of Ti/TiN multilayers films”, J. Appl. Phys., 87(11) (2000) 7753.
21. T. Mori, S. Fukuda, and Y. Takemura,“Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering”, Surf. Coat. Technol., 140 (2001) 122.
22. T. S. Li, H. Li, and F. Pan,“Microstructure and nanoindentation hardness of Ti/TiN multilayered films”, Surf. Coat. Technol., 137 (2001) 225.
23. S. L. Lehoczky,“Strength enhancement in thin-layered Al-Cu laminates”, J. Appl. Phys., 48(11) (1978) 5479.
24. M. Larsson, M. Bromark, P. Hedenqvist, and S. Hogmark,“Deposition and mechanical properties of multilayered PVD Ti-TiN coatings”, Surf. Coat. Technol., 76-77 (1995) 202.
25. M. Bromark, M. Larsson, P. Hedenqvist, and S. Hogmark “Wear of PVD Ti/TiN multilayer coatings”, Surf. Coat. Technol., 90 (1997) 217.
26. K. J. Ma, A. Bloyce, and T. Bell,“Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multilayer coatings”, Surf. Coat. Technol., 76-77 (1995) 297.
27. C. Sant, M. B. Daia, P. Aubert, S. Labdi, and P. Houdy,“Interface effect on tribological properties of titanium—titanium nitride nanolaminated structures”, Surf. Coat. Technol., 127 (2000) 167.
28. L. A. S. Ries, D. S. Azambuja, and I. J. R. Baumvol,“Corrosion behaviour of Ti-TiN multilayer coated tool steel”, Surf. Coat. Technol., 89 (1997) 114.
29. R. Hubler,“Corrosion behavior of steel coated with thin film TiN-Ti composites”, J. Vac. Sci. Technol., A11(2) (1993) 451.
30. M. Herranen, U. Wiklund, J. O. Carlsson, and S. Hogmark,“Corrosion resistance of steel coated with Ti-TiN multilayers”, Surf. Coat. Technol., 99 (1998) 191.
31. D. M. Mattox,“Particle bombardment effects on thin-film deposition:A review”, J. Vac. Sci. Technol., A7(3) (1989) 1105.
32. 莊達人, “VLSI製造技術”, 高立圖書有限公司, (1998).
33. 國科會精密儀器發展中心, “真空技術與應用”, (2001).
34. Kiyotaka Wasa and Shigeru Hayakawa, “Handbook of Sputter Deposition Technology”, Noyes Publications, (1992)
35. I. Safi,“Recent aspects concerning DC reactive magnetron sputtering of thin films- a review”, Surf. Coat. Technol., 127 (2000) 203.
36. M. Ohring,“The Materials Science of Thin Films ”, Academic Press, (1992).
37. S. Q. Wang, J. Schlueter, C. Gondran, and T. Boden,“Step coverage comparison of Ti/TiN deposited by collimated and uncollimated physical vapor deposition techniques”, J. Vac. Sci. Technol., B14(3) (1996) 1846.
38. S. M. Kane and K. Y. Ahn,“Characteristics of ion-beam-sputtered thin films”, J. Vac. Sci. Technol., 16(2) (1979) 171.
39. J. Musil,“Recent advances in magnetron sputtering technology”, Surf. Coat. Technol., 100-101 (1998) 280.
40. R. K. Waits,“Planar magnetron sputtering”, J. Vac. Sci. Technol., 15(2), (1978), p179.
41. B. Window and N. Savvides,“Unbalanced dc magnetrons as sources of high ion fluxes”, J. Vac. Sci. Technol., A4(3) (1986) 453.
42. S. Kadlec and J. Musil,“Optimized magnetic field shape for low pressure magnetron sputtering”, J. Vac. Sci. Technol., A13(2) (1995) 389.
43. J. Musil, A. Rajsky, A. J. Bell, J. Matous, M. Cepera, and J. Zeman,“High-rate magnetron sputtering”, J. Vac. Sci. Technol., A14(4) (1996) 2187.
44. J. A. Thornton,“Magnetron sputtering- basic physics and application to cylindrical magnetrons”, J. Vac. Sci. Technol., 15(2) (1978) 171.
45. B. Window and N. Savvides ,“Charged particle fluxes from planar magnetron sputtering sources”, J. Vac. Sci. Technol., A4(2) (1986) 196.
46. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol., 11 (1974) 666.
47. J. A. Thornton, “Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings”, J. Vac. Sci. Technol., 12 (1975) 831.
48. R. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure”, J. Vac. Sci. Technol., 2 (1984) 502.
49. H. Freller and H. P. Lorenz,“Electrochemically measured porosity of magnetron sputtered TiN films deposited at various substrate orientations”, J. Vac. Sci. Technol., A4(6) (1986) 2691.
50. 謝存毅,“奈米壓痕/奈米刮痕技術的測量原理及其在材料科學中的應用”, 專題演講簡介, (2002).
51. S. Simunkova, O. Blahova, and I. Stepanek,“Mechanical properties of thin film—substrate systems”, Journal of Materials Processing Technology, 133 (2003) 189.
52. W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, and E. Brozeit,“Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests”, Thin Solid Films, 270 (1995) 431.
53. 黃世耀, “碳化鉻硬質薄膜在封裝模具之應用研究”, 中興大學碩士論文, (1999).
54. A. Duck, N. Gamer, W. Gesatzke, M. Griepentrog, W. Osterle, M. Sahre, and I. Urban,“Ti/TiN multilayer coatings: deposition technique, characterization and mechanical properties”, Surf. Coat. Technol., 142-144 (2001) 579.
55. L. Hultman, L. R. Wallenberg, M. Shinn, and S. A. Barnett,“Formation of polyhedral voids at surface cusps during growth of epitaxial TiN-NbN superlattice and alloy films”, J. Vac. Sci. Technol., A10(4) (1992) 1618.
56. A. Madan, Y. Y. Wang, S. A. Barnett, C. Engstrom, H. Ljungcrantz, L. Hultman, and M. Grimsditch,“Enhanced mechanical hardness in epitaxial nonisostructural Mo-NbN and W-NbN superlattices”, J. Appl. Phys., 84(2) (1998) 776.
57. A. J. Carven, C. P. Scott, M. Mackenzie, P. Hatto, and C. Davies, “Advance in the characterisation of multilayer coatings using electron energy loss spectroscopy in the transmission electron microscope”, Surf. Coat. Technol., 108-109 (1998) 217.
58. F. Attar and T. Johannesson,“Adhesion evaluation of thin ceramic coatings on tool steel using the scratch testing technique”, Surf. Coat. Technol., 78 (1996) 87.
59. A. Rodrigo and Hiroshi,“Analytical correlation of hardness and scratch adhesion for hard films”, Surf. Coat. Technol., 148 (2001) 8.
60. L. J. Meng and M. P. dos Santos,“Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures”, Surf. Coat. Technol., 90 (1997) 64.
61. R. Banerjee, K. Singh, P. Ayyub, and M. K. Totlani, “Influence of the Ar/N2 ratio on the preferred orientation and optical reflectance of reactively sputter deposited titanium nitride thin films”, J. Vac. Sci. Technol., A21(1) (2003) 310.
62. T. Q. Li, S. Noda, Y. Tsuji, T. Ohsawa, and H. Komiyama,“Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111)”, J. Vac. Sci. Technol., A20(3) (2002) 583.
63. S. Guruvenket and G. M. Rao,“Effect of ion bombardment and substrate orientation on structure and properties of titanium nitride films deposited by unbalanced magnetron sputtering”, J. Vac. Sci. Technol., A20(3) (2002) 678.
64. Z. J. Lin, N. Jiang, Y. G. Shen, and Y. W. Mai,“Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films”, J. Appl. Phys., 92(7) (2002) 3559.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔