(18.204.2.190) 您好!臺灣時間:2021/04/19 07:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐敏惠
研究生(外文):Min-Hui Hsu
論文名稱:稀釋飼糧對白羅曼鵝生長性能與消化器官之影響
論文名稱(外文):Effect of diluted diets on growth performance and digestive organs in White Roman goslings
指導教授:詹德芳詹德芳引用關係
指導教授(外文):Der-Fang Jan
學位類別:碩士
校院名稱:國立中興大學
系所名稱:畜產學系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:稀釋飼糧消化器官生長性能
外文關鍵詞:goslingdiluted dietdigestive organgrowth performance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:196
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
壹、中文摘要
本研究旨在探討不同程度稀釋飼糧對白羅曼鵝生長性能與消化器官發育之影響,分三個子試驗進行,於各試驗結束時測定消化器官重量與長度。
試驗一旨在探討飼糧稀釋程度對0至4週齡白羅曼鵝生長性能與消化器官之影響。60隻1日齡雛鵝依性別分配至五個處理組,分別餵與完全精料飼糧(2900 kcal ME/kg, 20﹪CP)及添加10、20、30或40﹪尼羅草粉之稀釋飼糧(ME依序為2700、2550、2380、2200 kcal/kg,熱能蛋白比固定為145) 。結果顯示,0-4週齡白羅曼鵝之增重或飼料效率均與飼糧稀釋程度呈負相關(P < 0.001),飼糧稀釋程度至20﹪對鵝隻之增重與飼料效率仍無顯著影響。四週齡白羅曼鵝之砂囊相對重量、小腸與盲腸相對長度均與飼糧稀釋程度呈正相關(P < 0.001),腹脂或肝臟相對重量則呈負相關(P < 0.001)。
試驗二旨在探討飼糧稀釋程度對5至8週齡白羅曼鵝生長性能與消化器官之影響。選取80隻五週齡之白羅曼鵝(體重1990 ± 193 g),依性別分配至四組,分別餵與完全精料飼糧(3011 kcal ME/kg, 15.0﹪CP)及添加10、20或30﹪尼羅草粉稀之稀釋飼糧 (ME依序為2826、2640、2455 kcal/kg,熱能蛋白比固定為200)。結果顯示,餵飼稀釋飼糧各組之白羅曼鵝增重均與對照組者無顯著差異,飼料消耗量則與飼糧稀釋程度呈正相關(P < 0.001)。八週齡白羅曼鵝之砂囊相對重量與飼糧稀釋程度呈正相關(P < 0.001),腹脂相對重量則呈負相關(P < 0.01)。
試驗三旨在探討不同熱能蛋白比之稀釋飼糧,對0至4週齡白羅曼鵝生長性能與消化器官之影響。96隻1日齡雛鵝依性別分配至四組,分別餵飼基礎飼糧(2900 kcal ME/kg, 20﹪CP)或稀釋飼糧。稀釋飼糧各組均添加20﹪尼羅草粉分別調配成熱能蛋白比為135、145與155 之試驗飼糧(R135、R145與R155)。結果顯示,餵飼R135飼糧之公鵝或母鵝,彼等之飼料消耗量與增重均顯著高於對照組者。各稀釋飼糧處理組鵝隻之胰臟、砂囊相對重量或小腸相對長度均與對照組者無顯著差異,餵飼R145飼糧鵝隻之肝臟或腹脂相對重量顯著低於對照組者,然餵飼R135或R155飼糧之鵝隻者則與對照組者無顯著差異。
捌、英文摘要
Effect of Diluted Diets on Growth Performance and Digestive Organs
in White Roman Goslings.
Min-Hui Hsu
Summary
The purpose of this study was to determine the effect of different diet dilution levels on growth performance and digestive organ development in White Roman goslings. Three trails were conducted. The weight or length of digestive organs were measured at the end of each trail.
The object of trail one was to determine the diet dilution level effect on growth performance and digestive organs in White Roman goslings during 0 to 4 wk-old. Sixty day old White Roman goslings were divided into five treatments by sex. Goslings were fed a total concentrate diet (2900 kcal ME/kg, 20﹪CP) or diet diluted with 10, 20, 30, 40﹪ nilegrass meal (ME were 2700, 2550, 2380, 2200 kcal/kg, with the ME to CP ratio constant at 145). The results indicated that the weight gain or feed efficiency of the goslings exhibited a negative linear relation with the diet dilution level (P < 0.001). The weight gain or feed efficiency were not affected when the diet dilution level was up to 20﹪(P < 0.05). The relative weight of gizzard, small intestine and caecum had a positive linear relation with the diet dilution level (P < 0.001). However, the abdominal fat and liver exhibited a negative linear relation with the diet dilution level (P < 0.001).
The object of trial two was to determine the diet dilution level effect on growth performance and digestive organs in White Roman goslings during 5 to 8 wk-old. Eighty 5 wk-old White Roman gosling were selected (body weight 1990 ± 193 g), and divided into four treatments. Goslings were fed a total concentrate diet (3011 kcal ME/kg, 15﹪CP), or diets diluted with 10, 20, 30﹪ nilegrass meal (2826, 2640, 2455 kcal ME/kg. The ME to CP ratio was constant at 200). The results indicated that the weight gain in goslings fed diluted diets was not different from the control group (P > 0.05). The feed consumption had a negative linear relation with the diet dilution level (P < 0.001). The relative weight of gizzard had a positive linear relation with the diet dilution level (P < 0.001). However, the relative weight of abdominal fat or liver had a negative relation with the diet dilution level (P < 0.01).
The object of trail three was to determine the energy to protein ratio effect of diluted diets on growth performance and digestive organs in White Roman goslings during 0 to 4 wk-old. Ninety-six day old White Roman goslings were divided into four treatments by sex. Goslings were fed a total concentrate diet (2900 kcal ME/kg, 20﹪CP), or diluted diets. Each diluted diet was supplied with 20﹪ nilegrass meal. The ME to CP ratios were 135, 145, or 155 (R135, R145, or R155). The results indicated that male or female goslings fed the R135 diet had higher feed consumption and weight gain than those fed the control diet. The relative weights of pancreas and abdominal fat, or relative length of small intestine in goslings fed the diluted diet were not significantly different from those in the control. The relative weight of liver or abdominal fat weight in goslings fed the R145 diet were lower than those in the control group. However, goslings fed the R135 or R155 diet were not significantly different from the control group.
目錄
壹、中文摘要-----------------------------------------------------------------------1
貳、前言----------------------------------------------------------------------------2
參、文獻檢討----------------------------------------------------------------------3
一、鵝之介紹-----------------------------------------------------------------3
I、鵝之分佈---------------------------------------------------------------3
II、飼養管理--------------------------------------------------------------3
III、鵝之生長曲線--------------------------------------------------------3
IV、鵝屠體、羽毛及皮膚之特徵---------------------------------------5
V、鵝肉生產成本--------------------------------------------------------5
二、鵝隻消化道型態--------------------------------------------------------7
I、鵝隻消化道構造-------------------------------------------------------7
II、鵝隻消化道食糜移動之型態-------------------------------------10
三、孵出後家禽消化系統之發育---------------------------------------11
I、孵出後家禽消化系統之發育--------------------------------------11
II、影響孵出後家禽消化道發育之因素----------------------------12
四、飼糧纖維對鵝隻生長性能與盲腸醱酵型態之影響------------14
I、飼糧纖維之定義與份化--------------------------------------------14
II、鵝之纖維需要量----------------------------------------------------16
III、鵝利用飼糧纖維之方式------------------------------------------16
IV、飼糧纖維對鵝隻生長性能之影響------------------------------18
V、飼糧纖維來源及含量對鵝隻盲腸醱酵型態之影響----------18
VI、飼糧纖維來源對鵝腸道型態之影響---------------------------19
VII、尼羅草之特性-----------------------------------------------------19
五、早期限飼方法與代償性生長---------------------------------------20
I、代償性生長-----------------------------------------------------------20
II、早期限飼之方法----------------------------------------------------20
III、限飼對能量代謝之影響------------------------------------------22
IV、早期限飼對脂肪細胞發育與脂肪蓄積之影響---------------23
V、早期限飼對消化器官發育之影響-------------------------------23
肆、材料與方法------------------------------------------------------------------25
一、試驗飼糧設計及製備------------------------------------------------25
二、試驗動物與飼養管理------------------------------------------------25
三、試驗設計---------------------------------------------------------------29
四、生長性能---------------------------------------------------------------29
五、消化器官性狀---------------------------------------------------------29
六、血液性狀---------------------------------------------------------------29
七、化學分析---------------------------------------------------------------30
八、統計分析---------------------------------------------------------------31
伍、結果與討論------------------------------------------------------------------33
一、稀釋飼糧對0至4週齡白羅曼鵝生長性能、消化器官、血液性狀與盲腸醱酵型態之影響(試驗一)---------------------------33
二、稀釋飼糧對5至8週齡白羅曼鵝生長性狀、消化器官與血液性狀(試驗二)---------------------------------------------------------46
三、稀釋飼糧之熱能蛋白比對0至4週齡白羅曼鵝生長性能與血液性狀之影響(試驗三)---------------------------------------------55
陸、結論---------------------------------------------------------------------------66
柒、參考文獻---------------------------------------------------------------------67
捌、英文摘要---------------------------------------------------------------------80
表次
表1. 試驗飼糧組成分(試驗一)----------------------------------------------26
表2. 試驗飼糧組成分(試驗二)----------------------------------------------27
表3. 試驗飼糧組成分(試驗三)----------------------------------------------28
表4. 稀釋飼糧對0-4週齡白羅曼鵝隻日飼料消耗量之影響(試驗一)--------------------------------------------------------------------------34
表5. 稀釋飼糧對0-4週齡白羅曼鵝隻日增重之影響(試驗一)---------35
表6. 稀釋飼糧對0-4週齡白羅曼鵝飼料效率之影響(試驗一)--------36
表7. 稀釋飼糧對0-4週齡白羅曼鵝蹠骨生長之影響(試驗一) --------38
表8. 稀釋飼糧對四週齡白羅曼鵝肝臟、胰臟、腺胃、砂囊與腹脂相對重量之影響(試驗一)-------------------------------------------------40
表9. 稀釋飼糧對四週齡白羅曼鵝小腸、盲腸與結直腸相對長度之影響(試驗一)----------------------------------------------------------------41
表10. 稀釋飼糧對四週齡白羅曼鵝血漿總膽固醇、三酸甘油酯、鈣與磷濃度之影響(試驗一)-----------------------------------------------43
表11. 稀釋飼糧對四週齡白羅曼鵝盲腸揮發性脂肪酸濃度與組成之影響(試驗一)-----------------------------------------------------------45
表12. 稀釋飼糧對5-8週齡白羅曼鵝隻日飼料消耗量之影響(試驗二)-------------------------------------------------------------------------47
表13. 稀釋飼糧對5-8週齡白羅曼鵝隻日增重之影響(試驗二)-------48
表14. 稀釋飼糧對5-8週齡白羅曼鵝飼料效率之影響(試驗二)-------49
表15. 稀釋飼糧對八週齡白羅曼鵝肝臟、胰臟、腺胃、砂囊與腹脂相對重量之影響(試驗二)-----------------------------------------------51
表16. 稀釋飼糧對八週齡白羅曼鵝小腸、盲腸與結直腸相對長度之影響(試驗二) -------------------------------------------------------------52
表17. 稀釋飼糧對八週齡白羅曼鵝血漿中葡萄糖、總膽固醇、三酸甘油酯、鈣、磷、鉀、鈉及氯濃度之影響(試驗二)--------------------53
表18. 20﹪稀釋飼糧對0-4週齡白羅曼鵝隻日飼料消耗量之影響(試驗三)------------------------------------------------------------------------56
表19. 20﹪稀釋飼糧對0-4週齡白羅曼鵝隻日增重之影響(試驗三)--57
表20. 20﹪稀釋飼糧對0-4週齡白羅曼鵝飼料效率之影響(試驗三) -59
表21. 20﹪稀釋飼糧對0-4週齡白羅曼鵝蹠骨長度之影響(試驗三)--60
表22. 20﹪稀釋飼糧對四週齡白羅曼鵝肝臟、胰臟、腺胃、砂囊與腹脂相對重量之影響(試驗三)------------------------------------------62
表23. 20﹪稀釋飼糧對四週齡白羅曼鵝小腸、盲腸與結直腸相對長度之影響(試驗三)----------------------------------------------------------63
表24. 20﹪稀釋飼糧對四週齡白羅曼鵝血漿總膽固醇、三酸甘油酯、鈣與磷濃度之影響(試驗三)-------------------------------------------65
圖次
圖1. 家禽之生長曲線-----------------------------------------------------------4
圖2. 家鵝消化道-----------------------------------------------------------------8
圖3. 飼糧纖維之份化與組成------------------------------------------------15
圖4. 家禽消化飼糧纖維之四種方式---------------------------------------17
圖5. 白肉雞之生長模式圖---------------------------------------------------21
附表次
附表1. 稀釋飼糧對四週齡白羅曼鵝肝臟、胰臟、腺胃、砂囊與腹脂絕對重量之影響(試驗一)------------------------------------------82
附表2. 稀釋飼糧對四週齡白羅曼鵝小腸、盲腸與結直腸絕對長度之影響(試驗一)---------------------------------------------------------83
附表3. 稀釋飼糧對八週齡白羅曼鵝肝臟、胰臟、腺胃、砂囊與腹脂絕對重量之影響(試驗二)------------------------------------------84
附表4. 稀釋飼糧對八週齡白羅曼鵝小腸、盲腸與結直腸絕對長度之影響(試驗二)---------------------------------------------------------85
附表5. 20﹪稀釋飼糧對四週齡白羅曼鵝肝臟、胰臟、腺胃、砂囊、與腹脂絕對重量之影響(試驗三)---------------------------------86
附表6. 20﹪稀釋飼糧對四週齡白羅曼鵝小腸、盲腸與結直腸絕對長度之影響(試驗三)---------------------------------------------------87
附圖次
附圖1. 0-4週齡白羅曼鵝生長曲線(試驗一)-------------------------------88
附圖2. 5-8週齡白羅曼鵝生長曲線(試驗二)-------------------------------89
附圖3. 0-4週齡白羅曼鵝生長曲線(試驗三)-------------------------------90
柒、參考文獻
中國國家標準(CNS)。1987。配合飼料,總號3027,類號N2026。經濟部中央標準局。
王勝德、葉力子、楊錫坤。1998。長光照與短光照對母鵝生殖之影響。中畜會誌。27(增刊):64。
呂秀英。1988。台灣養鵝產銷之研究,飼養鵝之運通路線與運銷商之經營利潤分析。台灣省畜產試驗所。台南。
許振忠。2000。鵝最適上市週齡之研究。行政院農業委員會89年度總結報告。
陳佳靜。2002。餵飼盤固草與早期禁食對白羅曼鵝生長性能及屠體品質之影響。碩士論文。國立中興大學。台中。
陳盈豪、許振忠、余碧、陳添福。1993。苜蓿粉與大麥麩糠為主要日糧纖維來源對生長鵝生長性狀、腸道醱酵與纖維素酶活性之影響。中畜會誌。22:1-10。
陳盈豪、許振忠、劉琳琳。1991。高低日糧纖維含量對鵝食糜通過消化道之影響。東海學報。32:765-774。
陳盈豪。1991。日糧纖維對生長鵝生長性狀、腸道醱酵與纖維素酶活性之影響。碩士論文。國立中興大學。台中。
陳添福、許振忠、陳盈豪。1994。飼糧代謝能含量對白羅曼鵝生長性狀與血液脂質成分之影響。中畜會誌。23:11-12。
楊清白、林再興。1975。家鵝對纖維質飼料之利用,II.盲腸對纖維素消化之功用。中畜會誌。4:41-46。
盧金鎮、徐阿里。1989。飼糧型態與加工方式對生長鵝生長性能及圖體性狀的影響。畜產研究。2:9-19。
蕭素碧、羅國棟、林正斌。1999。尼羅草不同割期對產量及品質之影響。畜產研究。32:349-357。
蘇聯家畜飼養標準和日糧。1990。顏禮复譯,周梅卿校。中國農業科技出版社。
蘇瓊珍、許振忠、余碧。1995。飼糧纖維含量對生長鵝飼料中營養成分利用率之影響。I.胺基酸之利用率。中畜會誌。24:19-30。
蘇瓊珍、許振忠、余碧。1996。飼糧纖維含量對生長鵝飼料中營養成分利用率之影響。II.乾物質、粗脂肪、能量、中洗纖維及酸洗纖維之利用率。中畜會誌。25:129-138。
Akiba, Y., T. W. Hah, H. Murakami, M. Horiguchi, and M. Yamazaki. 1993. Metabolizable energy value and effect on amino acid availability of medium-chain triglycerides in diets fed to chickens of different ages. Anim. Feed Sci. Technol. 43: 259-268.
Allen, N. K. 1983. Nutrition of growing geese. Revue Avicole (France). 93: 97-98.
Annison, E. F., K. J. Hill, and R. Kenworth. 1968. Volatile fatty acids in the digestive tract of the fowl. Br. J. Nutr. 22: 207-216.
Anthony, N. B., E. A. Dunnington, and P. B. Siegei. 1989. Embyro growth of normal and dwarf chickens from lines seclected for high and low 56-day body weight. Archiv für Geflügelkunde. 53: 116-122.
Asp, N. G., T. F. Schweizer, D. A. T. Southgate, and O. Theander. 1992. Dietary fibre analysis. pp. 57-101. In: Dietary Fiber-A Component of Food Nutritional Function in Health and Disease. Ed. by Schweizer, T. F. and C. A. Edwards. Springer, Berlin.
Bach Knudsen, K. E. 1997. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol. 67: 319-338.
Bach Knudsen, K. E. 2001. The nutritional significance of dietary fibre analysis. Anim. Feed Sci. Technol. 90: 3-20.
Baranyiova, E. and J. Holman. 1976. Morphological changes in the intestinal wall in fed and fasted chicken in the first week after hatch. Acta Veterinaria. 45: 151-158.
Bayer, R. C., C. B. Chawan, F. H. Bird, and S. D. Musgrave. 1975. Characteristics of the absorptive surface of small intestine of the chicken from day 1 to 14 weeks of age. Poultry Sci. 54: 155-169.
Björnhag, G. 1979. Growth in newly hatched birds. Swed. J. Agric. Res. 9: 121-125.
Buchsbaum, R., J. Wilson, and I. Valiela. 1986. Digestibility of plant constituents by Canada geese and Atlantic brant. Ecology. 67: 386-393.
Calvert, C. C., J. P. McMurtry, R. W. Rosebrough, and R. G. Campbell. 1987. Effect of energy level on the compensatory growth response of broilers following early feed restriction. Poultry Sci. 66(Suppl. 2): 75 (abstract).
Carter, J. W., W. E. Hardman, and D. W. Heitman. 1998. Type and amount of individual dietary fiber on: serum lipid profiles, serum glucose concentration and energy intake in rats. Nutr. Res. 18: 1743-1756.
Chen, Y. H., H. K. Hsu, and J. C. Hsu. 2002. Studies on the fine structure of caeca in domestic geese. Asian-Aus. J. Anim. Sci. 15: 1018-1021.
Chiou, P. W. S., T. W. Lu, J. C. Hsu, and B. Yu. 1996. Effects of different sources of fibre on the intestinal morphology of domestic geese. Asian-Aus. J. Anim. Sci. 9: 539-550.
Clemens, E. T., C. E. Stevens, and M. Southworth. 1975. Sites of organic acid production and pattern of digesta movement in the gastrointestinal tract of geese. J. Nutr. 105: 1341-1350.
Cohn, C. 1963. Feeding frequency and body composition. Ann. N.Y. Acad. Sci. 110: 395-409.
Combs, G. F. 1964. Predicting amino acid requirements of chicks based on growth rate, body size and body composition. Fed. Proc. 23: 46-51.
Cook, R and F. Bird. 1973. Duodenal villus area and epithelial cellular migration in conventional and germ free chicks. Poultry Sci. 52: 2276-2280.
Crawford, R. D. 1990. Origin and history of poultry species. pp. 1-14. In: Poultry Breeding and Genetics. Ed. by Crawford, R. D. Elsevier Science Publishers B. V., Amsterdam.
Deaton, J. W., F. N. Reece, L. F. Kubena, B. D. Colt, and J. D. May. 1973. The ability of broiler to compensate for early growth depression. Poultry Sci. 52: 262-265.
Demigne, C., C. Yacoub, and C. Remesy. 1986. Effects of absorption of large amounts of volatile fatty acids on rat liver metabolism. J. Nutr. 116: 77-86.
Dickerson, G. E. 1978. Animal size and efficiency: basic concepts. Anim. Production. 27: 367-379.
Donaldson, W. E., G. F. Combs, and R. L. Romoser. 1956. Studies on energy levels in poultry rations. 1. The effect of calorie: protein ratio on growth, nutrient utilization and body composition of chicks. Poultry Sci. 35: 1100-1105.
Dror, Y., I. Nir, and Z. Nitsan. 1977. The relative growth of internal organs in light and heavy breeds. Poultry Sci. 18: 493-496.
Duckworth, J., J. M. Naftalin, and A. C. Dalgarno. 1950. Digestibility of linseed oil and mutton fat by chick. J. Agric. Sci. 40: 39-43.
Ebihara, K. and B. O. Schneeman. 1989. Interaction of bile acids, phospholipids, cholesterol and triglyceride with dietary fibers in the small intestine of rat. J. Nutr. 119: 1100-1106.
Emmans, G. C. 1977. The nutrient intake of laying hens given a choice of diets in relation to their protein requirement. Br. Poult. Sci. 18: 227-236.
Farrell, D. J. 1974. Effects of dietary energy concentration on utilization of energy by broiler chickens and on body composition determined by carcass analysis and predicted using tritium. Br. Poult. Sci. 15: 25-41.
Ferrer, R., J. M. Planas, M. Durfort, and M. Moreto. 1991. Morphological study of the caecal epithelium of the chicken (Gallus Gallus Domesticus L.). Br. Poult. Sci. 32: 679-691.
Fisher, C. 1984. Fat deposition in broilers. pp. 437-470. In: Fats in Animal Nutrition. Ed. by Wiseman, J. Proceedings of 37th Easter School in Agricultural Science, University of Nottingham, Butterworths, London.
Fisher, C. 1989. Energy developments in poultry rations. pp. 27-53. In: Recent Developments in Poultry Nutrition. Ed. by Cole, D. J. A. and W. Haresign. Butterworths, London.
Forbes, J. M. and F. Shariatmadari. 1996. Short-term effects of food protein content on subsequent diet selection by chickens and the consequences of alternate feeding of high- and low-protein foods. Br. Poult. Sci. 37: 597-607.
Forsum, E., P. E. Hillman, and M. C. Nesheim. 1981. Effect of energy restriction on total heat production, basal metabolic rate, and specific dynamic action of food in rats. J. Nutr. 111: 1691-1697.
Gasaway, W. C. 1976. Seasonal variation in diet, volatile fatty acid production and size of the cecum of rock ptarmigan. Comp. Biochem. Physiol. 54A: 109-114.
Gooch, p., J. D. Summers, and E. T. Moran, Jr. 1971. Effect of varying nutrient concentrations on broiler performance using computer formulated rations. pp. 11-16. Proc. Univ. Guelph Nutr. Conf.
Grigsby, K. N., M. S. Kerley, J. A. Paterson, and J. C. Weigel. 1992. Site and extent of nutrient digestion by steers fed a low-quality bromegrass hay diet with incremental levels of soybean hull substitution. J. Anim. Sci. 70: 1941-1949.
Guy, G. and R. Timmler. 1999. Further considerations about grass utilisation by growing geese. pp. 137-144. Symposium INRA/COA on Scientific Cooperation in Agriculture. Toulouse, France.
Hammond, J. 1955. Progress in the Physiology of Farm Animals. pp. 437. Butterworths, London.
Harris, R. S. B. and R. J. Martin. 1984. Recovery of body weight from below set point in mature female rats. J. Nutr. 114: 1143-1150.
Henneberg, W., F. Stohmann. 1859. Über das Erhaltungsfutter voljährigen Rindvieh. J. Landwirtsch. 3: 485-551.
Hollister, A. G., H. S. Nakaue, and G. H. Arscott. 1984. Studies with confinement-reared goslings. I. Effects of feeding high levels of dehydrated alfalfa and Kentucky bluegrass to growing goslings. Poultry Sci. 63: 532-537.
Hood, R. L. and C. E. Allen. 1977. Cellularity of adipose tissue: effects of growth and adiposity. J. Lipid Res. 18: 275-284.
Hsu, J. C., T. W. Lu, P. W. S. Chiou, and B. Yu. 1996. Effects of different sources of dietary fibre on growth performance and apparent digestibility in geese. Anim. Feed Sci. Technol. 60: 93-102.
Hsu, J. C., L. I. Chen, and B. Yu. 2000. Effects of levels of crude fiber on growth performances and intestinal carbohydrases of domestic goslings. Asian-Aus. J. Anim. Sci. 10: 1450-1454.
Iji, P. A., A. Saki, and D. R. Tivey. 2001. Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. Br. Poult. Sci. 42: 505-513.
Jamroz, D., K. Jakobsen, J. Orda, J. Skorupinska, and A. Wiliczkiewicz. 2001. Development of the gastrointestinal tract and digestibility of dietary fibre and amino acids in young chickens, ducks and geese fed diets with high amounts of barley. Comp. Biochem. Physiol. Part A. 130: 643-652.
Jeurissen, S. H., D. Roozelaar, and E. Janse. 1991. Absorption of carbon from the yolk into gut associated lymphoid tissues of chickens. Dev. Comp. Immunol. 15: 437-442.
Jin, S. H., A. Corless, and J. L. Sell. 1998. Digestive system development in post-hatch poultry. World’s Poult. Sci. J. 54: 335-345.
Jones, G. P. D., and D. J. Farrell. 1992a. Early-life food restriction of chicken. I. Method of application, amino acid supplementation and the age at which restriction should commence. Br. Poult. Sci. 33: 579-587.
Jones, G. P. D. and D. J. Farrell. 1992b. Early-life food restriction of chicken. II. Effect of food restriction on the development of fat tissue. Br. Poult. Sci. 33: 589-601.
Klasing, K. C. 1998. Anatomy and physiology of the digestive system. Comparative Avian Nutrition. pp. 9-35. Cab International, New York.
Knížetová, H., J. Hyánek, L.Hyánková, and P. Bĕlíček. 1995. Comparative study of growth curves in poultry. Genet. Sel. Evol. 27: 365-375.
Krogdahl, A. and J. L. Sell. 1989. Influence of age on lipase, amylase, and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poultry Sci. 68: 1561-1568.
Kubena, L. F., T. C. Chen, J. W. Deaton, and F. N. Reece. 1974. Factors influencing the quantity of abdominal fat in broilers. 3. Dietary energy levels. Poultry Sci. 53: 974-978.
Leeson, S., J. D. Summers, and L. J. Caston. 1991. Diet dilution and compensatory growth in broilers. Poultry Sci. 70: 867-873.
Leveille, G. A. and H. E. Sauberlich. 1966. Mechanism of the cholesterol-depresssing effect of pectin in the cholesterol-fed rat. J. Nutr. 88: 209-214.
Lilja, C. 1981. Postnatal growth and organ development in the goose (Anser Anser). Growth. 45: 329-341.
Lin, C. Y. 1981. Relationship between increased body weight and fat deposition in broilers. World’s Poult. Sci. J. 37: 106-110.
Lu, J. J. and A. Hsu. 1990. Studies on rice hull as feedstuffs for geese. Proc. 5th AAAP Amin. Sci. Cong.Vol. III. pp. 220 (abstract).
Mattocks, J. G. 1971. Goose feeding and cellulose digestion. Wildfowl. 22: 107-113.
McDougall, G. J., I. M. Morrison, D. Stewart, and J. R. Hillman. 1996. Plant cell wall as dietary fibre: range, structure, processing and function. J. Sci. Food Agric. 70: 133-150.
McNab, J. M. 1973. The avian caeca: a review. World’s Poult. Sci. J. 29: 251-263.
Milby, T. T. and E. W. Henderson. 1937. The comparative growth rates of turkey, ducks, geese and pheasants. Poultry Sci. 16: 155-165.
Moran, E. T., Jr. 1985. Digestion and absorption of carbohydrate in fowl and events through prenatal development. J. Nutri. 115: 665-674.
Moran, E. T., Jr. 1990. Effects of egg weight, glucose administration at hatch, and delayed access to feed and water on the poult at 2 weeks of age. Poultry Sci. 69: 1718-1723.
Murakami, H., Y. Akiba, and M. Horiguchi. 1992. Growth and utilization of nutrients in newly-hatched chick with or without removal of residual yolk. Growth. 56: 75-84.
Nir, I. 1988. Fat deposition in birds. pp. 141-174. In: Leaness in Domestic Birds: Genetics, Metabolic and Hormonal Aspects. Ed. by Leclercq, B. and C. C. Whitehead. Butterworths, London.
Nir, I. and M. Levanon. 1993. Research note: effect of posthatch holding time on performance and on residual yolk and liver composition. Poultry Sci. 72: 1994-1997.
Nir, I., Z. Nitsan, and M. Mahagna. 1993. Comparative growth and development of the digestive organs and some of enzymes in broiler and egg type chicks after hatching. Br. Poult. Sci. 34: 523-532.
Nitsan, Z., A. Dvorin, and I. Nir. 1981. Composition and amino acid contentent of carcass, skin and feathers of the growing gosling. Br. Poult. Sci. 22: 79-84.
Nitsan, Z., E. A. Duntington, and P. B. Siegel. 1991. Organ growth and digestive enzyme levels to fifteen days of age in lines of chickens differing in body weight. Poultry Sci. 70: 2040-2048.
Noble, R. C. and D. Onguyemi. 1989. Lipid changes in the residual yolk and liver of the chick immediately after hatching. Biol. Neonate. 56: 228-236.
Noy, Y. and D. Sklan. 1995. Digestion and absorption in the young chick. Poultry Sci. 74: 366-373.
Noy, Y., Z. Uni, and D. Sklan. 1996. Routes of yolk utilization in the newly-hatched chick. Br. Poult. Sci. 37: 987-996.
Noy, Y. and D. Sklan. 1996. Uptake capacity in vitro for glucose and methionine and in situ for oleic acid in the proximal small intestine of posthatch chicks. Poultry Sci. 75: 998-1002.
Noy, Y. and D. Sklan. 1998. Metabolic responses to early nutrition. J. Appl. Poult. Res. 7: 437-451.
Noy, Y. and D. Sklan. 1999a. Different types of early feeding and performance in chicks and poults. J. Appl. Poult. Res. 8: 16-24.
Noy, Y. and D. Sklan. 1999b. Energy utilization in newly hatched chicks. Poultry Sci. 78: 1750-1756.
Noy, Y. and D. Sklan. 2001. Yolk and exogenous feed utilization in the posthatch chick. Poultry Sci. 80: 1490-1495.
Noy, Y. and D. Sklan. 2002. Nutrient use in chicks during the first week posthatch. Poultry Sci. 81: 391-399.
NRC. 1994. Nutrient Requirements of Poultry, 9th ed. pp. 40-41. National Academy Press, Washington, D. C., USA.
Oliveira, B. A. D. de., P. R. de S. Faria, S. M. Souto, A. M. Carneiro, J. Dobereiner, and S. Aronovich. 1973. Identification of tropical grassses with the C4 pathway of photosynthesis from leaf anatomy. Pesquisa Agrope Cuaria Brasileira, Agronomia. 8: 267-271.
Palo, P. E., J. L. Sell, F. J. Piquer, M. F. Soto-Salanova, and L. Vilaseca. 1995. Effect of early nutrient restriction on broiler chickens. 1. Performance and development of the gastrointestinal tract. Poultry Sci. 74: 88-101.
Phelps, P. V., F. W. Edens, and V. L. Christensen. 1987. The post-hatch physiology of the turkey poult: I. Growth and development. Comp. Biochem. Physiol. 86A: 739-743.
Pinchasov, Y. and Y. Noy. 1993. Comparison of post-hatch holding time and subsequent early early performance of broiler chicks and turkey poults. Br. Poult. Sci. 34: 111-120.
Plavnik, I. and S. Hurwitz. 1985. The performance of broiler chicks during and following a severe feed restriction at an early age. Poultry Sci. 64: 348-355.
Plavnik, I., J. P. McMurtry, and R. W. Rosebrough. 1986. Effect of early feed restriction in broilers. I. Growth performance and carcass composition. Growth. 50: 68-76.
Plavnik, I. and S. Hurwitz. 1989. Effect of dietary protein, energy and feed pelleting on the response of chicks to early feed restriction. Poultry Sci. 68: 1118-1125.
Plavnik, I. and S. Hurwitz. 1990. Performance of broiler chickens and turkey poults subjected to feed restriction or feeding of low-protein or low-sodium diets at an early age. Poultry Sci. 69: 945-952.
Plavnik, I. and S. Hurwitz. 1991. Response of broiler chickens and turkey poults to feed restriction of varied severity during early life. Br. Poult. Sci. 32: 343-352.
Plavnik, I., E. Wax, D. Sklan, I. Bartov, and S. Hurwitz. 1997. The respones of broiler chickens and turkey poults to dietary energy supplied either by fat or carbohydrates. Poultry Sci. 76: 1000-1005.
Renner, R. and F. W. Hill. 1960. The utilization of corn oil, lard and tallow by chickens of various ages. Poultry Sci. 39: 849.
Rhind, J. and D. C. W. Goodenough. 1976. The assessment and breeding of Acroceras macrum Stapf. Proceedings of the Grassland. Society of Southern Africa. 11: 115-117.
Ricke, S. C., P. J. Van Der Aar, G. C. Fahey, Jr., and L. L. Berger. 1982. Influence of dietary fibers on performance and fermentation characteristics of gut contents from growing chicks. Poultry Sci. 61: 1335-1345.
Romanov, M. N. 1999. Goose production efficiency as influenced by genotype, nutrition and production systems. World’s Poult. Sci. J. 55:281-294.
Rosiñski, A., R. Rouvier, S. Wezyk, N. Sellier, H. Bieliñska, and D. Rousseot-Pailley. 1996. Reproductive performance of geese kept in different management system. pp. 20-28. Proceedings of 10th European Symposium on Waterfowl. Halle, Germany.
Sahle, M., J. Coleou, and C. Haas. 1992. Carob pod (Ceratonia Siliqua) meal in geese diets. Br. Poult. Sci. 33: 531-541.
Saleyev, P. 1975. Ways of increasing goose meat production in the USSR. World’s Pout. Sci. J. 31: 276-287.
SAS Institute Inc. 1996. The SAS® System for Windows. Release 6.12. SAS Institute Inc., Carry, N. C., USA.
Schaller, D. 1978. Fiber content and structure in food. Am. J. Clin. Nutr. 31: S99-S102.
Sell, J. L., C. R. Angel, F. J. Piquer, E. G. Mallarino, and H. A. Al-Batshan. 1991. Development patterns of selected characteristics of the gastrointestinal tract of young turkeys. Poultry Sci. 70: 1200-1205.
Shalev, B. A. 1997. Meat production by various avian species, which is the most efficient? Hassadeh. 77: 17-21.
Shalev, B. A. and H. Pasternak. 1999. Genetic-economic evaluation of traits in a goose meat enterprise. Br. Poult. Sci. 40: 221-226.
Shariatmadari, F. and J. M. Forbes. 1993. The influences of meal composition on subsequent food selection in broiler and layer chickens. Proc. Nutr. Soc. 49: 219A.
Sklan, D., B. Shachaf, J. Baron, and S. Hurwitz. 1978. Retrograde movement of digesta in the duodenum of the chick: extent, frequency, and nutrition implication. J. Nutr. 108: 1485-1490.
Sklan, D. and Y. Noy. 2000. Hydrolysis and absorption in the small intestines of posthatch chicks. Poultry Sci. 79: 1306-1310.
Souffrant, W. B. 2001. Effect of dietary fiber on ileal digestibility and endogenous nitrogen losses in the pig. Anim. Feed Sci. Technol. 90: 93-102.
Southgate, D. A. T. 1995. Dietary fibre analysis. pp. 174. In: RSC Food Analysis Monograph. The Royal Society of Chemistry, Cambridge.
Stevenson, M. H. 1985. Effect of diets of varying energy concentrations on the growth and carcase composition of geese. Br. Poult. Sci. 26: 493-504.
Story, J. A. and D. Kritchevsky. 1976. Comparison of the binding of various bile salts in vitro by several types of fiber. J. Nutr. 106: 1292-1294.
Sturkie, P. D. 1965. In: Avian Physiology, 2th ed. pp. 284. Balliere, Tindall & Cassell, London.
Tanaka, K., S. Ohyani, and K. Shigeno. 1983a. Effect of increasing dietary energy on hepatic lipogenesis in growing chicks. I. Increasing energy by carbohydrate supplementation. Poultry Sci. 62: 445-451.
Tanaka, K., S. Ohyani, and K. Shigeno. 1983b. Effect of increasing dietary energy on hepatic lipogenesis in growing chicks. II. Increasing energy by fat or protein supplementation. Poultry Sci. 62: 452-458.
Teander, O., P. Åman, E. Westerlund, and H. Graham. 1994. Enzymatic/chemical analysis of dietary fiber. J. AOAC. 77: 703-709.
Trowell, H., D. A. T. Southgate, T. M. S. Wolever, A. R. Leeds, M. A. Gassull, and D. J. A. Jenkins. 1976. Dietary fibre redefined. Lancet. 1: 967.
Uni, Z., S. Ganot, and D. Sklan. 1998. Posthatch development of mucosal function in the broiler small intestine. Poultry Sci. 77: 75-82.
Urdaneta-Rincon, M. and S. Leeson. 2002. Quantitative and qualitative feed restriction on growth characteristics of male broiler chickens. Poultry Sci. 81: 679-688.
Van Soest, P. J. 1963. Use of detergents in the analysis of fiberous feeds. II. A rapid method for the determination of fiber and lignin. J. AOAC. 46: 829-835.
Van Soest, P. J. and R. H. Wine. 1967. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J. AOAC. 50: 50-55.
Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.
Vanderhoof, J. A. 1998. Immunonutrition: the role of carbohydrates. Nutrition. 14: 595-598.
Vergara, P., M. Jimenez, C. Ferrando, E. Fernandez, and E. Gonalons. 1989. Age influence on digestive transit time of particulate and soluble markers in broiler chickens. Poultry Sci. 68: 185-189.
Wang, S. D., C. M. Wang, Y. K. Fan, and L. R. Chen. 2002. Effect of extreme light regime on production and characteristic of egg in laying geese. Asian-Aust. J. Anim. Sci. 15: 1182-1185.
Washburn, K. W. 1991. Efficiency of feed utilization and rate of feed passage through the digestive system. Poultry Sci. 70: 447-452.
Wilson, P. N. and D. F. Osbourn. 1960. Compensatory growth after undernutrition in mammals and birds. Biol. Rev. 35: 325-363.
Winick, M. and A. Noble. 1966. Cellular response in rat during malnutrition at various ages. J. Nutr. 89: 300-306.
Yamauchi, K. E. and Y. Isshiki. 1991. Scanning electron microscopic observation on the intestinal villi in growing White Leghorn and broiler chickens from 1 to 30 days of age. Br. Poult. Sci. 32: 67-78.
Yang, M. G., K. Manoharan, and A. K. Young. 1967. Influence and degradation of dietary cellulose in cecum of rats. J. Nutr. 97: 260-264.
Yu, M. W., F. E. Robinson, M. T. Clandinin, and L. Bodnar. 1990. Growth and body composition of broiler chickens in response to different regimens of feed restriction. Poultry Sci. 69: 2074-2081.
Yu, B., C. C. Tsai, J. C. Hsu, and P. W. S. Chiou. 1998. Effect of different source of dietary fibre on growth performance, intestinal morphology and caecal carbohydrase of domestic geese. Br. Poult. Sci. 39: 560-567.
Zeuner, F. E. 1963. A History of Domesticated Animals. Hutchinson & Company, London.
Zubair, A. K. and S. Leeson. 1994a. Effect of varying period of early nutrient restriction on growth compensation and carcass characteristics of male broilers. Poultry Sci. 73: 129-136.
Zubair, A. K. and S. Leeson. 1994b. Effect of early feed restriction and realimentation on metabolic heat production and changes in digestive organs in broiler chickens. Poultry Sci. 73: 529-538.
Zubair, A. K. and S. Leeson. 1996. Compensatory growth in the broiler chicken: a review. World’s Poult. Sci. J. 52: 189-201.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔