(3.227.235.183) 您好!臺灣時間:2021/04/13 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何淑玲
研究生(外文):Shu-Ling Ho
論文名稱:台灣二葉松松針接種不同真菌對其分解之影響
論文名稱(外文):Effects of differect fungi inocula on Pinus taiwaniensis needles decomposition
指導教授:顏江河顏江河引用關係
指導教授(外文):Chiang-Her Yen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:88
中文關鍵詞:台灣二葉松松針真菌木質素
相關次數:
  • 被引用被引用:2
  • 點閱點閱:184
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本試驗探討台灣二葉松(Pinus taiwaniensis)松針接種不同真菌對其分解之影響,以減緩林地枝葉層火災燃料的過度累積。其分別接種14種由現址分離之大型真菌與松針內部與表面分離之子囊菌(2種)、不完全菌類(2種),於室內進行分解試驗。同時,將接種分離自松針內部與表面之菌種,以分解袋方式,施放於大甲溪事業區23林班林地枝葉層進行野外試驗。
各試驗中,分解0-2個月之松針分解速率最大。松針各主要成分留存率,以室內分解較野外分解情形佳,顯示菌種在適當條件下具有潛在的分解能力。不同菌種間對於松針醇苯抽出物與木質素的降解能力亦有所不同。醇苯抽出物留存率在高等大型真菌中,以1-3號菌種(55 %)較低。木質素留存率則以大型真菌(82.2 %)低於松針真菌(86.3 %)。顯示擔子菌類對於此等難以分解的物質之分解能力較強。
室內松針分解試驗中,接種大型真菌之重量留存率僅與碳濃度呈顯著負相關(R2 = -0.218)。碳、氮、磷、鉀、鈣、木質素大致上隨分解時間增加而減少,鎂、醇苯抽出物則未於分解時間上出現顯著差異。松針真菌之重量留存率則僅與木質素濃度呈顯著正相關(R2 = 0.473)。碳、氮、鉀、木質素大致上隨分解時間增加而減少,磷則呈現先增後減的趨勢,鈣呈出現先減後增的趨勢,醇苯抽出物則未隨時間增加而顯著減少。
野外試驗中,松針分解情形受溼度影響大。重量留存率僅與木質素達顯著正相關(R2 = 0.376),養分間僅氮與醇苯抽出物達顯著正相關(R2 = 0.254)。碳、氮、鉀、木質素大致上隨分解時間增加而減少,磷則呈現先減後增再下降的趨勢,鈣、醇苯抽出物呈出現先減後增的趨勢。
由室內試驗結果顯示,擔子菌類對於台灣二葉松枯黃松針之分解能力優於子囊菌與不完全菌類,然因缺乏野外試驗部分,故有待進一步研究。
Abstract
The purposes of this study are to examine the effects of different fungal inocula on pine needle decomposition to decrease the forest fire fuels accumulation. Microcosms containing sterile Pinus taiwaniensis needles were inoculated with 14 species of macrofungi (all Basidiomycetes isolated from in situ) together with 3 species of Ascomycetes and 1 species of Deuteromycetes isolated separately from interior and surface of pine needles in the laboratory. With the same time, litter bags inoculated with interior and surface fungi were placed in the litter layer of the pine plantation at Ta-Chia-His working circle.
In all experiments, During the initial stages (0-2 months), the needle had the highest decomposition rate. The needles in microcosms were decomposed faster than those were in the field, it showed that the fungi had the potential ability to decompose pine needles under the suitable condition. For recalcitrant substrates, Basidiomycetes (isolated no. 1-3) showed the lowest remaining percentage (55 %) of extract with alcohol-benzene and 82.2 % of lignin, followed by those from Ascomycetes and Deuteromycetes.
During the study period, the needles in microcosms inoculated with Basidiomycetes, the remaining mass had a significant negative correlation with C concentration (R2 = -0.218), the remaining percentage of C, N, P, K, Ca and lignin were decrease until the study end, the remaining percentage of Mg and extract with alcohol-benzene had no differences. However, those inoculated with Ascomycetes and Deuteromycetes, the remaining mass had a significant positive correlation with lignin concentration(R2 = 0.473), the remaining percentage of C, N, K and lignin were decrease until the study end.
In the field, the needle decomposition was mainly affected by moisture. The significant positive correlation was existed between remaining mass and lignin concentration(R2 = 0.376), N concentration and extract with alcohol-benzene(R2 = 0.254). The remaining percentage of C, N, K and lignin were steady decreased until the study end.
Based of the microcosms test, the decomposition abilities of Basidomycetes are batter than Ascomycetes and Deuteromycetes. However, further work involving the effects of different fungal inocula on pine needle decomposition in field is needed to confirm this conclusion.
目 錄
中文摘要---------------------------------------------------------------------- I
英文摘要---------------------------------------------------------------------- II
目錄---------------------------------------------------------------------------- IV
表目次------------------------------------------------------------------------- VI
圖目次------------------------------------------------------------------------- VIII
壹、前言----------------------------------------------------------------------- 1
貳、前人研究----------------------------------------------------------------- 3
參、材料與方法-------------------------------------------------------------- 8
一、樣區概況-------------------------------------------------------------- 8
二、菌種分離-------------------------------------------------------------- 8
(一)大型真菌子實體
(二)松針真菌
三、不同菌種間對松針之分解能力測定----------------------------- 9
(一)大型真菌
(二)松針真菌
四、菌種對松針分解速率之野外試驗-------------------------------- 10
五、松針養分分析-------------------------------------------------------- 11
(一) 碳與氮
(二) 鉀、鈣、鎂、磷
(三) 醇苯抽出物
(四) 木質素
六、氣象資料-------------------------------------------------------------- 12
七、數據分析-------------------------------------------------------------- 12
肆、結果----------------------------------------------------------------------- 13
一、菌種分離-------------------------------------------------------------- 13
二、菌種間分解能力測定----------------------------------------------- 14
(一) 大型真菌對松針分解能力之測定
(二)松針真菌分解能力之室內試驗
三、野外分解試驗-------------------------------------------------------- 44
(一) 重量留存率
(二) 養分留存率
(三) 相關性檢定
四、松針真菌於室內與野外分解能力之比較----------------------- 55
(一) 重量留存率
(二) 醇苯抽出物
(三) 木質素
伍、討論----------------------------------------------------------------------- 59
一、不同菌種與松針之重量留存率----------------------------------- 58
二、處理因子與留存率-------------------------------------------------- 59
三、醇苯抽出物----------------------------------------------------------- 61
四、木質素----------------------------------------------------------------- 62
陸、結論----------------------------------------------------------------------- 66
柒、引用文獻----------------------------------------------------------------- 68
捌、附錄----------------------------------------------------------------------- 76
柒、引用文獻
吳聲華、周文能、王也珍 (2002) 台灣高等真菌─子囊菌與擔子菌的認識。國立自然科學博物館出版,台中市。頁:1-210。
林昭遠、陳明義 (1993) 台中港木麻黃防風林斥水土層之研究。中華林學季刊 26 (3):31-40。
林朝欽 (1999) 台灣二葉松林燃燒機率之模式推導。台灣林業科學 14(3):339-344。
張東柱、周文能、王也珍、朱宇敏 (2001) 大自然的魔法師─台灣大型真菌。行政院農業委員會出版,台北市。頁:1-542。
劉興旺、郭幸榮 (1993) 針葉林林地枯枝落葉及腐植質之養分釋出。台大實驗林研究報告7 (3):99-113。
Agosin, E. and E. Odier (1985) Soild-state fermentation lignin degradation and resulting digestibility of wheat straw fermented by selected white —rot fungi. Appl. Microbiol. Biotechnol. 21:397-403.
Agosin, E., J.J.Dandin and E. Odier (1985) Screening of white rot fungi on 14C-lignin-labelled and 14C-whole labelled sheat straw. Appl. Microbiol. Biotechnol. 22:132-138.
Berg, B (2000) Litter decomposition and organic matter turnover in north forest soils. For. Ecol. Mana. 133: 13-22.
Berg, B. and B. Wessen (1984) Changes in organic chemical components and ingrowth of fungal mycelium in decomposed birch leaf litter as compared to pine needles. Pedobiologia 26: 285-298.
Berg, B., H. Staaf and B. Wessen (1987) Decomposition and nutrient release in nedle litter from nitrogen-fertilized Scots pine (Pinus sylvestris) stands . Scand. J. Forest Res. 2:399-415.
Bonnarme, P. and T. W. Jeffries (1990) Mn (Ⅱ) regulation of libnin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Applied and Environmental Microbiology 56(1): 210-217.
Cairney, J. W. G. and R. M. Burke (1998) Do ecto- and ericoid mycorrhizal fungi produce peroxidase activity. Mycorrhiza 8: 61-65.
Colombo, J. C., M. Cabello and A. M. Arambarri (1996) Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure cultures of impect and lignoltic fungi. Environment Pollution 94(3): 355-362.
Cortez, J., J. M. Demard, P. Bottner and L. J. Monrozier (1996) Decomposition of Mediterranean leaf litters: a microcosm experiment investigating relationships between decomposition rates and litter quality. Soil Biol. Biochem. 28(4-5): 443-452.
Couteaux, M. M., A. Aloui and C. Kurz-Besson (2002) Pinus halepensis litter decomposition in laboratory microcosm as influenced by temperature and a millipede, Glomeris marginata. Applied Soil Ecology 20: 85-96.
Couteaux, M. M., K. B. McTiernan, B. Berg, D. Szuberla, P. Dardenne and P. Bottner (1998) Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of deconposition. Soil Biol. Biochem. 30(5): 583-595.
Couteaux, M. M., P. Bottner and B. Berg (1995) Litter decomposition, climate and litter quality. Trends in Ecology and Evolution 10: 63-66.
Cox, P., S. P. Wilkinson and J. M. Anderson (2001) Effects of fungal inocula on the decomposition of lignin and structural polysaccharides in Pinus sylvestris litter. Biol. Fertil. Soils 33: 246-251.
Cuevas, E., S. Brown and A. E. Lugo (1991) Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant and Soil 135: 257-268.
Dilly, O., S. Bartsch, P. Rosenbrock, F. Buscot and J. C. Munch (2001) Shifts in physiological capabilities of the microbiota during the decomposition of leaf litter in a black alder (Alnus gluinosa (Gaertn.) L.) forest. Soil Biol. Biochem. 33: 921-930.
Dorado, J., F. W. Claassen, G. Lenon, T. A. van Beeks, G. Lenon, J. B. P. A. Wijnberg and R. Sierra-Alvarez (2000a) Elimination and detoxification of softwood extractives by White-rot fungi. Biotechnology 80: 231-240.
Dorado, J., F. W. Claassen, G. Lenon, T. A. van Beeks, J. B. P. A. Wijnberg and R. Sierra-Alvarez (2000b) Degradation and detoxification of softwood extractives by sapstain fungi. Bioresouce Technology 71: 13-20.
Dyk, M. S., V. Resburg and N. Moleleki (1998) Hydroxylation of (+)limonene, (-)alphapinene and (-)beta-pinene by a Hormonema sp.. Biotechnology Letter 20: 431-436.
Entry, J. A. and C. B. Backman (1995) Influence of carbon and nitrogen on cellulose and lignin degradation in forest soils. Can. J. For. Res. 25: 1231-1236.
Feio, S. S., B. Gigante, J. C. Roseiro and M. J. Marcelo-Curto (1999) Antimicrobial activity of diterpene resin acid derivatives. J. Microbiol. Mehtods 35: 201-206.
Fioretto, A., A. Musacchio, G. Andolfi and A. Virzo De Santo (1998) Decomposition dynamics of litters of various pine species in a Corsican pine forest. Soil Biol. Biochem. 30(6): 721-727.
Franich, R. A., P. D. Gadgil and J. Sham (1983) Fungistatic effects of Pinus radiata needles epicuticular fatty and resin acids on Dothistroma pini. Physiol. Plant Pathol. 23:183-195.
Frey, S. D., E. T. Elliott and K. Paustian (1999) Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradient. Soil Biol. Biochem. 31: 573-585.
Fu, S. Y., H. S. Yu and J. A. Buswell (1997) Effect of nutrogen and manganese on manganede peroxidase and laccase production by Pleurotus sajor-caju. FEMS Microbiology Letters 147: 133-137.
Gourciere, F., A. van Maanen and D. Debouzie (2001) Associations between three fungi on pine needles and their variation along a climatic gradient. Mycological Research 105:1101-1109.
Hammel, K. E. (1992) Oxidation of aromatic pollutants by lignin-degrading fungi and their extracellular peroxidases, p41-60. In Sigel, H. and A. Signel (ed.), Metal ions in biological systems (28), Degradation of environment pollutants by microorganisms and their metalloenzymes. Marcel Dekker, New York.
Hammel, K. E., M. Tien, B. Kalyanaraman and T. K. Kirk (1985) Mechanism of oxidative C-C cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 260: 8348-8353.
Hofrichter, M. (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology 30: 454-466.
Kainulainen, P. and J. K. Holopainen (2002) Concentrations of secondary compounds in Scots pine needles at different stages of decomposition. Soil Biol. Biochem. 34: 37-42.
King, H. G.C. and G. W. Heath (1967) The chemical analysis of small samples of leaf material and the relationship between the disapperance and composition of leaves. Pedobiologia 7:192-197.
Kinkel, L. L. and J. H. Andrews (1989) Disinfestation of living leaves by hydrogen peroxide. Trans. Brit. Mycol. Soc. 91(3): 523-528.
Kirk, T. K., W. J. Connors and J. G. Zeikus (1976) Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl. Environ. Microbiol. 32: 192-194.
Kissi, M., M. Mountadar, O. Assobhei, E. Gargiulo, G. Palmiere, P. Giardina and G. Sannia (2001) Roles of two white-rot basidiomycete fungi in decolorisation and detoxification of olive mill waste water. Appl. Microbiol. Biotechnol. 57: 221-226.
Kurz, C., M. M. Couteaux and J. M. Thiery (2000) Residence time and decomposition rate of Pinus pinaster needles in a forest floor from direct field measurements under a Mediterranean climate. Soil Biol. Biochem. 32: 1197-1206.
Lang, E., F. Nerud and F. Zadrazil (1998) Production of ligninolytic enzymes by Pleurotus sp. and Dichomitus squalens in soil and lignocellulose substrate as influenced by soil microorganisms. FEMS Microbiology Letters 167: 239-244.
Malkonen, E. (1974) Annual primary production and nutrient cycle in some Scots pine stands. Commun. Inst. For. Fenn. 84(5): 1-85.
Melillo, J. M., J. D. Aber, A. E. Linlins, A. Ricca, B. Fry and K. J. Nadelhoffer (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil 115: 189-198.
Millar, C. S. (1974) Decomposition of coniferous leaf litter. In: Dickenson C. H., Pugh G. J. F. (Eds.) Biology of plant litter decomposition. Academic Press, London, pp.105-128.
MØller, J., Miller, M. and A. KjØller (1999) Fungal-bacterial interaction on beech leaves: influence on decomposition and dissolved organic carbon quality. Soil Biol. Biochem. 31: 367-381.
Moen, M. A. and K. E. Hammel (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Applied and Environmental Microbiology 60(6): 1956-1961.
Moore, P. D. and S. B. Chapman (1986) Methods in plants ecology. 2nd ed. Blackwell Scientific Publications. Oxford, London. Edinburth.
Niku-Paavola, M. L., E. Karhunen, P. Salola and V. Raunio (1988) Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem. J. 254:877-884.
Osono, T. and H. Takeda (1999) Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposiiton. Eur. J. Soil Biol. 35(2): 51-56.
Perlman, D. (1965) The chemical environment for fungi growth 2 : carbon sources. In Ainsworth, G. C. and A. S. Sussman (Eds.) The fungi ,Vol. 1, New York : Academic. pp. 470-490.
Phillips, M. A. and R. B. Croteau (1999) Resin-based defenses in conifers. Trends in Plant Science 4: 184-190.
Reid, I. D. (1991) Nutritional regulation of synthetic lignin (DHP) degradation by Phlebia (Merulius) tremellosa: effects of nitrogen. Can. J. Bot. 69: 156-160.
Rodriguez, A., F. Perestelo, A. Carnicero, V. Regalado, R. Perez, G. De la Fuente and M. A. Falcon (1996) Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiology Ecology 21:213-219.
Rutigliano, F. A., A. Virzo De Santo, B. Berg, A. Alfani and A. Fioretto (1996) Lignin decomposition in decaying leaves of fagus sylvatica and needles of Abies alba. Soil Biol. Biochem. 28(1): 101-106.
Trenois, A. M., D. H. Wall and R. A. Virginia (2002) Field and microcosm studies of decomosition and soil biota in a cold desert soil. Ecosystems 5:159-170.
Tuor, U., H. Wariishi, H. E. Schoemaker and M. H. Gold (1992) Oxidation of phenoloc arylglycerol--aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium : oxidative cleavage of an -carbonyl model compound. Biochemistry 31: 49986-49995.
Virzo De Santo, A, F. A. Rutigliano, B. Berg, A. Fioretto, G. Puppi and A. Alfani (2002) Fungal mycelium and decomposition of needle litter in three contrasting coniferous forests. Acta Oecologica 23: 247-259.
Weidenhamer, J. D., F. A. Macias, N. H. Fischer and G. B. Williamson (1993) Just how soluble are monoterpenes? J. Chem. Ecol. 19: 1799-1807.
Yamamoto, H., M. Amaike, H. Saitoh and Y. Sano (2000) Gel germination of lignin and biodegdation of the lignin gels by microorganisms. Materials Science and Engineering C 7:143-147.
Youn, H. D., Y. C. Hah and S. O. Kang (1995) Role of lacccase in lignin degradation by white-rot fungi. FEMS Microbiol. Lett. 132: 183-188.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔