跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張嘉方
研究生(外文):Chia-Fang Chang
論文名稱:多元醇液化木材及其應用於聚胺基甲酸酯發泡體之製造
論文名稱(外文):Polyhydric Alcohol Liquefied Wood and Its Application in the Manufacturing of Polyurethane Foam
指導教授:李文昭李文昭引用關係
指導教授(外文):Wen-jau Lee
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:112
中文關鍵詞:多元醇聚胺基甲酸酯液化木材發泡體
外文關鍵詞:Polyhydric AlcoholPolyurethaneLiquefied WoodFoam
相關次數:
  • 被引用被引用:4
  • 點閱點閱:639
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:1
本研究將杉木(Cunninghamia lanceolata;China fir)及相思樹(Acacia confusa;Taiwan acacia)木材於多元醇(Polyhydric alcohol)液體中以H2SO4為催化劑進行液化處理,探討樹種、聚乙二醇(Polyethylene glycol;PEG)分子量、PEG/Glycerol (丙三醇)比例、催化劑添加量及液化處理時間等對液化效果之影響,並進一步將不同液化木材與HDI (Hexamethylene diisocyanate)、PMDI (Polymeric methylene diphenylene diisocyanate)、Desmodur N (HDI trimer)、Desmodur L (Toluene diisocyanate and trimethylol propane adduct)等四種異氰酸酯反應製造聚胺基甲酸酯(Polyurethane;PU)發泡體,探討不同種類液化木材、異氰酸酯、添加劑及各成分混合比等對PU發泡體性質之影響。
由試驗結果得知,木材以PEG為溶劑進行液化處理時,樹種、PEG分子量及PEG/Glycerol比例等為影響液化效果之主要因素,其中杉木之液化效果優於相思樹,且杉木以PEG-400/Glycerol比例為90/10、H2SO4添加量為3 %有最佳之液化效果,液化處理時間75 min時幾已完全溶解。由FT-IR之結果得知木材於PEG中進行液化時,部分PEG與木材產生化學結合。
液化木材應用於PU發泡體製造時,木材之液化條件、異氰酸酯種類、兩者之調配比例(R)、發泡劑及界面活性劑添加量等均影響其所製造PU發泡體之性質。不同異氰酸酯與液化木材反應時,其發泡體形成速度為PMDI>HDI>Desmodur N>Desmodur L。液化木材採用之PEG分子量較大者,其所製造PU發泡體之發泡程度較高;液化木材中Glycerol比例較高者,則其PU發泡體性質較硬脆。四種異氰酸酯中以PMDI與液化木材所製造之PU發泡體最為優良,且加工性良好;以脂肪族異氰酸酯Desmodur N所製造之PU發泡體較為柔軟,而以HDI與Desmodur L製造之PU發泡體則發泡效果不佳。又PU發泡體製造時,以水為發泡劑者其發泡效果優於異丙醚,添加較多界面活性劑則使發泡體之氣泡較為完整且均勻,提高NCO/(OH+COOH)比例會使PU發泡體之壓縮強度、拉伸強度及耐溶劑性增大。
SUMMARY
China fir (Cunninghamia lanceolata) and Taiwan acacia (Acacia confusa) wood were liquefied in polyhydric alcohol at the presence of H2SO4 as catalyst. The effects of wood species, molecular weight of polyethylene glycol (PEG), PEG/Glycerol ratio, catalyst content, and treatment time on liquefaction result were investigated in this study. In preparation of polyurethane(PU) foam, these liquefied woods were further reacted with four kinds of isocyanate, such as HDI (Hexamethylene diisocyanate)、PMDI (Polymeric methylene diphenylene diisocyanate)、Desmodur N (HDI trimer) and Desmodur L (Toluene diisocyanate and trimethylol propane adduct) respectively. The effects of the kinds of liquefied wood, isocyanates, additives and each component ratio on the properties of PU foam were also investigated.
From the results of the studies were observed that the factors such as wood species, molecular weight of PEG and PEG/Glycerol ratio affected the properties of liquefied wood when wood was liquefied in PEG. The performance of liquefaction of China fir was better than that of Taiwan acacia. The best liquefaction conditions of China fir were the PEG-400/Glycerol by weight of 90/10 ratios and 3 % H2SO4 content. Wood could be almost liquefied thorough within 75 min in the PEG and parts of PEG chemical combined with wood were found by FT-IR analysis.
The properties of PU foam made from liquefied wood, would be influenced by the conditions of wood liquefaction, the kinds of isocyanate, the ratio of NCO/(OH+COOH) and in addition of surfactant and blowing agent. When various isocyanate were reacted with liquefied wood, the rate of foaming were at the order of PMDI>HDI>Desmodur N>Desmodur L. The PU foam prepared from liquefied wood with higher PEG molecular weights had the higher degree of foaming and with higher Glycerol content was harder and more brittle. Among of four kinds of isocyanates, PU foam prepared from PMDI and liquefied wood had the best performance and good processing. PU foam prepared from aliphatic isocyanate such as Desmodur N was soft talent. In addition, PU foam prepared from HDI and Desmodur L had inferior of blowing results. PU foam prepared with water as blowing agent had better than that with Isopropyl ether. The bubbles of PU foam would be more completely and uniformly by addition of more surfactant. The higher compression strength, tensile strength and solvent resistance would be getted with more NCO/(OH+COOH) ratio of PU foam.
目錄…………………………………….…………………………………I
圖目次…………………………………………………………………III
表目次…………………………………………………………………VII
摘要 1
SUMMARY 3
第一章 前言 5
第二章 文獻回顧 8
壹、 生物質的液化作用 8
一、 依液化反應機制分類 8
二、 依液化溶劑種類分類 10
貳、 PU的化學原理及其應用範圍 14
第三章 木材之液化處理及其性質 19
壹、 材料與方法 19
一、 試驗材料 19
二、 試驗方法 19
貳、 結果與討論 23
一、 液化木材之基本性質 23
二、 液化木材之FT-IR光譜分析 32
第四章 液化木材製造PU發泡體 38
壹、 材料與方法 38
一、 試驗材料 38
二、 試驗方法 41
貳、 結果與討論 49
一、 PU樹脂硬化反應之DSC分析 50
二、 醇酸樹脂製造PU發泡體之性質 54
三、 液化木材-PMDI所製造PU發泡體之性質 59
四、 液化木材與不同異氰酸酯所製造PU發泡體之性質 88
五、 不同種類多元醇對PU發泡體性質之影響 100
第五章 結論 103
參考文獻 105
參考文獻
1. 丁昭義 (1990) 木材化學。國立編譯館。台北。pp.65-174。
2. 王秀華 (2002) 木材化學及其應用。國立編譯館。台北。pp.149。
3. 呂孔文(1993) 高分子紅外線光譜分析。財團法人工業技術研究院化學工業研究所。新竹。pp.44、47。
4. 何經、呂佳燕、黃勝明、葉士敏 編著 (1997) 高分子科學導論。復文書局。台南。pp.86-90。 '
5. 吳舜英 (1997) 塑膠發泡成形技術。高分子工業雜誌社。台北。 pp.17-87。
6. 李大剛、杜佾璋、賴聖淵 (1994) 聚酯二元醇結構對不黃變PU成品物性及加工性之影響。宜蘭農工學報8:47-65。
7. 李大剛、張芝慧 (1995) 二異氰酸酯結構對聚氨基甲酸酯之結構-物性之影響。宜蘭農工學報12:109-127。
8. 李文昭 (1998) 溶解相思樹樹皮製造木材膠合劑之研究。林產工業17(4):681-696。
9. 李文昭、劉正字 (2001) 液化杉木樹皮製造酚-甲醛木材膠合劑。林產工業20(3):217-226。
10. 李文昭、劉正字、侯家翔 (2002) 木材殘料之液化及其應用-杉木木材液化及液化木材膠合劑製造。林業研究季刊24(1):11-20。
11. 李育德、顏文義、莊祖煌 編著 (1988) 聚合物物性。高立圖書公司。台北。pp.163-242。
12. 李武守 (1993) 聚乙二醇對於紫檀和孟宗竹之防裂效果試驗。台灣手工業 46:10-28。
13. 林建中 (1998) 高分子材料性質與應用。高立圖書公司。台北。pp.76-172。
14. 張上鎮 (1988) 選購泡沫塑料應注意品質。現代家具工業 36(6):45-47。
15. 張上鎮、王升陽 (1997a) 臺灣產針、闊葉樹材實木散反射傅立葉紅外線光譜特性之比較。中華林學季刊30(3):329-341。
16. 張上鎮、吳季玲、王升陽、張惠婷 (1997b) 反射式傅立葉轉換紅外線光譜分析在林產化學研究之應用。林產工業16(4):825-838。
17. 張豐吉、杜明宏 (1988) 台灣產重要樹種化學性質之研究(II) 十樹種之化學性質。中華林學季刊 21(4):101-109。
18. 莊和達、李明哲 編著 (1989) 聚合反應原理(上)。復文書局。台南。pp.131-133。
19. 陳世春 編著 (1997) 塑膠物性入門-成型加工技術參考。復漢出版社。台南。pp.59-119。
20. 陳嘉明 (2000) 生物質木材膠合劑。國立編譯館。台北。pp.325-330。
21. 陳錫疇 譯著 (1989) 有機光譜分析。銀禾文化事業有限公司。台北。pp.22。
22. 傅明源、孫酣經 編著 (1994) 聚氨酯彈性體及其應用。化學工業出版社。北京。pp.16-48。
23. 曾文聰 (2001) PU發泡體的結構與性質。國立中央大學化學工程研究所碩士論文。pp.5-46。
24. 曾國輝 (1992) 化學上冊(第二版)。藝軒圖書出版社。台北。pp.471。
25. 曾勝茂、謝國煌 (2003) 和我們形影不離的聚胺酯製品。科學發展月刊 326:22-25。
26. 賀孝雍 譯著 (1998) 有機化合物之光譜鑑別法。眾光文化事業有限公司。台北。pp.95-180。
27. 閔恩澤、吳巍 (2003) 綠色化學與化工。五南圖書公司。台北。pp.119-120。
28. 楊博名 (1998) 聚胺基甲酸酯彈性體之合成與研究。國立成功大學化學工程研究所碩士論文。pp.4-10。
29. 蔡信行 編著 (1978) 聚合物化學。文京圖書公司。台北。pp.1-33。
30. 盧崑宗 (1998) PU-NC Semi-IPNs 木器塗料之基礎研究。國立中興大學森林學研究所博士論文。pp.33,86。
31. 賴耿陽 譯著 (1993) 塑膠大全。復文書局。台南。pp.289。
32. 賴耿陽 譯著 (1997) 聚樹脂原理與實用PU。復漢出版社。台南。pp.1-11。
33. 薛敬和 主譯 (1994) 高分子化學。高立圖書公司。台北。pp.35- 37。
34. Acemioglu, B. and M. H. Alma (2002) Kinetics of wood phenolysis in the presence of HCl as catalyst. J. Appl. Polym. Sci. 85:1098-1103.
35. Alma, M. H. (2001) Crystallinity of cellulose residue remaining after the phenolation of cellulose. Holz als Roh-und Werkstoff 59: 363.
36. Alma, M. H. and N. Shiraishi (1998) Preparation of polyurethane -like foams from NaOH-catalyzed liquefied wood. Holz als Roh-und Werkstof. 56: 245-246.
37. Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1995a) Preparation and characterization of the phenolated wood using hydrochloric acid (HCl) as a catalyst. Wood Sci. Technol. 30: 39-47.
38. Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1995b) Some characterizations of hydrochloric acid catalyzed phenolated wood-base materials. Mokuzai Gakkaishi 41(8): 741-748.
39. Alma, M. H., M. Yoshioka, Y. Yao and N. Shiraishi (1996) Phenolation of wood using oxalic as a catalyst: Effects of temperature and hydrochloric acid addition. J. Appl. Polym. Sci. 61: 675-683.
40. Ge, J., W. Zhong, Z. Guo, W. Li and K. Sakai (1999) Biodegradable polyurethane materials from bark and starch. I. Highly resilient foams. J. Appl. Polym. Sci. 77: 2575-2580.
41. Hu, Y. H., Y. Gao, D. N. Wang, C. P. Hu, S. Zu, L. Vanoverloop and D. Randall (2001) Rigid polyurethane foam prepared from a rape seed oil based polyol. J. Appl. Polym. Sci. 84: 591-597.
42. Kobayashi, M., K. Tukamoto and B. Tomita (2000) Application of liquefied wood to a new resin system-synthesis and properties of liquefied wood/epoxy resins. Holzforschung 54(1): 93-97.
43. Kobayashi, M., Y. Hatano and B. Tomita (2001) Viscoelastic properties of liquefied wood/epoxy resin and its bond strength. Holzforschung 55(6): 667-671.
44. Kurimoto, Y., A. Koizumi, S. Doi, Y. Tamura and H. Ono (2001a) Wood species effects on the characteristics of liquefied wood and the properties of polyurethane films prepared from liquefied wood. Biomass and Bioenergy 21: 381-390.
45. Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane film prepared from liquefied wood with polymeric MDI. Bioresource Technol. 74: 151-157.
46. Kurimoto, Y., M. Takeda, S. Doi, Y. Tamura and H. Ono (2001b) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresource Technol. 77: 33-40.
47. Kurimoto, Y., S. Doi and Y. Tamura (1999) Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung 53: 617-622.
48. Lee, S. H., M. Yoshioka and N. Shiraishi (2000a) Liquefaction and product identification of corn bran (CB) in phenol. J. Appl. Polym. Sci. 78: 311-318.
49. Lee, S. H., M. Yoshioka and N. Shiraishi (2000b) Liquefaction of corn bran (CB) in the presence of alcohol and preparation of polyurethane foam its liquefied polyol. J. Appl. Polym. Sci. 78: 319-325.
50. Lee, S. H., M. Yoshioka and N. Shiraishi (2000c) Preparation and properties of phenolated corn bran (CB)/pheno/formalde -hyde cocondensed resin. J. Appl. Polym. Sci. 77: 2901-2907.
51. Lee, S. H., Y. Teramoto and N. Shiraishi (2002a) Acid-catalyzed liquefaction of waste paper in the presence of phenol and its application to novolak-type phenolic resin. J. Appl. Polym. Sci. 83: 1473-1481.
52. Lee, S. H., Y. Teramoto and N. Shiraishi (2002b) Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. J. Appl. Polym. Sci. 83: 1482-1489.
53. Lee, S. H., Y. Teramoto and N. Shiraishi (2002c) Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J. Appl. Polym. Sci. 84: 468-472.
54. Lee, W. J. and C. T. Liu (2002d) Preparation of liquefied bark-based resol resin and its application to particle board. J. Appl. Polym. Sci. 87: 1837-1841.
55. Lin, L., M. Yoshioka, Y. Yao and N. Shiraishi (1994) Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. J. Appl. Polym. Sci. 52: 1629-1639.
56. Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (1997a) Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts─studies on β-O-4 lignin model compound. I. Structural characterization of the reaction products. Holzforschung 51: 316-324.
57. Lin, L., M. Yoshioka, Y. Yao and N. Shiraishi (1997b) Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts─studies on β-O-4 lignin model compound. II. Reaction pathway. Holzforschung 51: 325-332.
58. Lin, L., M. Yoshioka, Y. Yao and N. Shirashi (1997c) Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts─studies on β-O-4 lignin model compound. III. Multi-condensation. Holzforschung 51: 333-337.
59. Lin, L., Y. Yao, M. Yoshioka and N. Shiraishi (1997d) Molecular weight and molecular weight distributions of liquefied wood obtained by acid-catalyzed phenolysis. J. Appl. Polym. Sci. 64: 351-357.
60. Maldas, D. and N. Shiraishi (1997) Liquefaction of biomass in the presence of phenol and H2O using alkalies and salts as the catalyst. Biomass and Bioenergy 12(4): 273-279.
61. Pizzi, A. (1983) Diisocyanates as wood adhesives. In. “Wood adhesive chemistry and technology” Marcel Dekker Inc. New York pp.306.
62. Pu, S. and N. Shiraishi (1993a) Liquefaction of wood without a catalyst I. Time course of wood liquefaction with phenols and effects of wood/phenol ratios. Mokuzai Gakkaishi 39(4): 446-452.
63. Pu, S. and N. Shiraishi (1993b) Liquefaction of wood without a catalyst II. Weight loss by gasification during wood liquefaction, and effects of temperature and water. Mokuzai Gakkaishi 39(4): 453-458.
64. Yamada, T. and H. Ono (1999) Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technol. 70: 61-67.
65. Yao, Y., M. Yoshioka and N. Shiraishi (1993) Combined liquefaction of wood and starch in a polyethylene glycerin blended solvent. Mokuzai Gakkaishi 39(8): 930-938.
66. Yao, Y., M. Yoshioka and N. Shiraishi (1996) Water-absorbing polyurethane foam from liquefied starch. J. Appl. Polym. Sci. 60: 1939-1949.
67. 雷奔(2003) 變廢為寶的生物質能。新科技啟蒙。http://fxwl.myrice.com/science/bio/009.htm
68. 網易虛擬社區(1999)新型植物能源研究。http://theglobe.ep.net.cn/big5library/huanbao095.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top