(3.215.77.193) 您好!臺灣時間:2021/04/17 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾文全
研究生(外文):Wen-Chuan Chung
論文名稱:十字花科硫配醣體之揮發性分解物防治蔬菜苗土媒病害
論文名稱(外文):Volatile compounds Released from Cruciferous Glucosinolates Degradation to Control Soilborne Diseases of Vegetable Seedlings
指導教授:黃振文黃振文引用關係
指導教授(外文):Jenn-Wen Huang
學位類別:博士
校院名稱:國立中興大學
系所名稱:植物病理學系
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:122
中文關鍵詞:猝倒病立枯絲核病菌包心芥菜種子粉末異硫氰化物十字花科蔬菜MBF混合物硫配醣體PBGG 粒劑
外文關鍵詞:damping-offRhizoctonia solani AG-4Brassica sppground mustard seed meal -Biolan peat B3 (MBF) mixtureallyl isothiocyanatePseudomonas boreopolismyrosinase genes TGG1 and TGG23-butenyl isothiocyanatePBGG
相關次數:
  • 被引用被引用:2
  • 點閱點閱:494
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:0
土壤燻蒸劑-溴化甲烷,在二十世紀被廣泛用於農地的殺菌與滅菌工作,效果雖佳,惟這種燻蒸劑卻有破壞臭氧層及造成環保污染之虞;同時也會導致土壤微生物相失衡,破壞土壤物理和化學結構;此外,若施用不當,尚會危害人體健康。致使許多國家已開始研擬禁用此種藥劑的計畫,尤其在歐美先進國家將於公元2005年全面禁用溴化甲烷。因此開發天然生物性燻蒸劑,藉以替代溴化甲烷,是當前嘗試努力的重要課題。
十字花科蔬菜植體或種子含有硫配糖體,經芥子酵素作用後,可釋放出異硫氰化物,具有類似溴化甲烷的殺菌作用,因此,本研究第一部分試驗是嘗試分析十字花科蔬菜種子粉中具有殺菌及抑菌作用的物質及研製天然異硫氰化物種子粉衣劑防治蔬菜立枯病的效果評估,第二部分試驗即以菜籽粕作為主體,再搭配具有分泌芥子酵素的拮抗微生物或轉殖芥子酵素基因的拮抗微生物,藉以研製天然異硫氰化物燻蒸粒劑,運用於防治作物土媒病原菌,建立安全蔬菜生產體系,不僅減緩溴化甲烷對環境的衝擊外,尚符合有機與永續農業經營的精神。
評估10種十字花科蔬菜種子粉水解後,釋放之揮發性物質對立枯絲核病菌(Rhizoctonia solani AG-4) 之抑制效果,結果發現包心芥菜種子粉釋放之揮發性物質的抑菌效果最佳。各種子粉釋放的主要揮發性物質是 allyl isothiocyanate (ITC),其中以包心芥菜種子粉的含量最高。在九種種子粉衣劑添加物的篩選試驗中,發現包心芥菜種子粉與 Biolan peat B3 (MBF) 調製成的混合物,粉衣於甘藍種子上,可以有效防治甘藍立枯絲核病的發生。在 MBF 混合物中,包心芥菜種子粉與Biolan peat B3兩者按2比3體積比混拌的組成,具有最佳防治甘藍立枯絲核病的效果外,亦不會影響甘藍種子的發芽百分率。在農委會種苗改良繁殖場自動化環控溫室進行大面積試驗,發現甘藍種子粉衣 MBF 混合物後,能有效降低立枯絲核病菌的為害及提高甘藍苗之鮮重與乾重。顯然應用MBF混合物處理甘藍種子,藉以提高種苗的生產,確具商品化潛力。
評估57微生物菌株分解 sinigrin 的能力,發現僅有26支菌株具有分解 sinigrin 的能力,其中以 Pseudomonas boreopolis 分解 sinigrin 的能力最強。菜籽粕經 P. boreopolis 分解後所釋放的氣體,主要是 allyl ITC 與 3-butenyl ITC 兩類。菜籽粕接種P. boreopolis 製成的 BPP 產品,除對Fusarium oxysporum f. sp. lactucum 之生長無抑制效果外,對 R. solani AG-4、 Sclerotium rolfsii、 Sclerotinia sclerotiorum、 Pythium aphanidermatum 及 Phytophthora capsici 等五種土媒植物病原菌,均具有顯著的抑菌功效,其抑菌率高達94.5%以上。應用 BPP 產品進行西瓜猝倒病的防治試驗,發現 BPP 產品不僅能有效降低 P. aphanidermatum 游走子與厚膜胞子的存活,且提高健康西瓜苗的數目。
自阿拉伯芥植株分離的芥子酵素 (myrosinase) 基因 TGG1 及 TGG2 的 cDNAs,分別構築於 Escherichia coli 和 Pichia pastoris 兩種微生物,發現兩基因可在 E. coli 和 P. pastoris 兩種微生物中表現酵素活性,且以在 P. pastoris 表現的酵素活性最佳。比較 TGG1 及 TGG2 兩基因在兩種微生物中所產生芥子酵素對硫配醣體 (glucosinolate) 的專一性,結果發現 TGG1 和 TGG2 芥子酵素對 sinigrin, gluconapin, glucobrassicanapin 及 glucoraphanin 均具有相當高的專一性。硫配醣體 sinigrin 經 TGG1 和 TGG2 芥子酵素分解後,釋放之 allyl ITC 揮發性物質對六種土媒植物病原菌之抑制評估,結果發現 R. solani AG-4、S. rolfsii 和 P. aphanidermatum 等菌的生長,明顯受抑制;顯然利用微生物系統表現的芥子酵素,再配合硫配醣體可有效防治土媒植物病原菌。
將菜籽粕、甘油、 P. boreopolis 、藻酸鈉及氯化鈣調製成 PBGG 粒劑產品後,以不同濃度 PBGG 粒劑施用至土壤中時,結果發現 1% (w/w) PBGG粒劑不但可顯著降低 R. solani AG-4 在土壤中存活時間,且可提高放線菌族群的增殖。比較 Streptomyces spp. 不同菌株間對 R. solani 的拮抗能力,發現 S. padanus 和 S. xantholiticus 兩菌株展現最佳的拮抗能力。當 1% (w/w) PBGG 添加至土壤中時,除可有效抑制 R. solani 的存活外,尚可大量促進 S. padanus 菌株的增殖。進一步,利用1% (w/w) PBGG 配合 0.5% (w/w) SS-07 添加物 (每克介質含有108 cfu S. padanus菌株) 在網室與田間大面積試驗,結果發現白菜立枯病發生率顯著的降低, 且不影響種子發芽時間,發芽率與植株鮮重。
Ten cultivars of three Brassica species were compared for volatile compounds in hydrated ground seeds that were fungicidal to Rhizoctonia solani AG-4. Among the samples tested, the volatile substances in the ground seed of mustard (Brassica juncea cv. Bau Sin) showed the strongest fungicidal effect. Allyl isothiocyanate was one of the predominant fungicidal compounds detected in the ground seed of all Brassica species tested and the amount was the highest in ground mustard seed meals. Among the nine carriers tested for seed coating with ground mustard seed meal, Biolan peat B3 was the most effective for the seed treatment. Cabbage seeds treated with a mixture of ground mustard seed meal and Biolan peat B3 (MBF mixture) at 2:3 ratio (w/w) resulted in a significant reduction in incidence of Rhizoctonia damping-off with no harmful effects to the germination of treated seeds. Effective control of Rhizoctonia daming-off of cabbage by the seed treatment with the MBF mixture was also obtained in a large-scale experiment conducted in a commercial automated environment-controlled greenhouse. This study suggests that the MBF mixture has potential for use in the commercial seed treatment.
A total of 57 isolates of microorganisms (fungi, bacteria and actinomycetes) were screened for degradation of the glucosinolate sinigrin. Pseudomonas boreopolis was the most effective one among 26 isolates showing sinigrin degradation activities. Treatment of ground Brassica seed pomace (BSP) with P. boreopolis resulted in the release of volatile compounds, predominantly allyl isothiocyanate (ITC) and 3-butenyl ITC, which showed strong fungicidal effects on mycelial growth of Rhizoctonia solani AG-4, Sclerotium rolfsii, Sclerotinia sclerotiorum, Pythium aphanidermatum, and Phytophthora capsici. Results of gas chromatographic analyses showed that allyl ITC and 3-butenyl ITC were the major volatile compounds released from enzymatic hydrolyzsis of glucosinolates by P. boreopolis and the compounds were responsible for reducing the survival of zoospores and oospores of P. aphanidermatum. A large scale greenhouse trial showed that amendment of a growth medium (soil and BVB No.4 at 7:3 ratio, w/w) with BPP mixture 【1% (w/w) ground BSP and P. boreopolis (1-1.8 x 108 cfu/mL)】 was effective in controlling Pythium damping-off of watermelon, resulting in increased production of healthy, marketable seedlings.
Myrosinases (thioglucoside glucohydrolase, EC 3.2.3.1) are able to hydrolyze glucosinolates in natural plant products. Three different gene families with different tissue-specific expressions and distribution patterns encode myrosinases. cDNAs of myrosinase genes (TGG1 and TGG2) were isolated from Arabidopsis thaliana and constructed in Escherichia coli and Pichia pastoris, respectively. The enzyme activities of myrosinase TGG1 and TGG2 genes expressed in P. pastoris were higher than those expressed in E. coli. Among six glucosinolates tested for specificity to myrosinases TGG1 and TGG2, the suitable substrates for these two genes expressed in P. pastoris and E. coli were sinigrin, gluconapin, glucobrassicanapin and glucoraphanin. Treatment of sinigrin and myrosinases excreted from reconstructed E. coli and P. pastoris with TGG1 and TGG2 genes resulted in the release of volatile compounds, predominantly allyl isothiocyanate (ITC), which showed strong fungicidal effects on mycelial growth of Rhizoctonia solani AG-4, Sclerotium rolfsii, and Pythium aphanidermatum. This study suggests that the combination of glucosinolate with myrosinases excreted from the reconstructed microbes may be a potential mean to control soilborne disease.
Granular formulation of P. boreopolis combined with Brassica seed pomace and glycerin (PBGG) were prepared by using sodium alginate. Using a baiting technique, Rhizoctonia solani AG-4 was significantly suppressed to colonize the cabbage seeds buried in infested soil amended with various concentrations of PBGG. PBGG at a rate of 1% significantly reduced the percentage of seed colonization and enhanced population proliferations of actinomycetes in the soil. Among the predominant populations of Streptomyces spp., Streptomyces padanus and S. xantholiticus were most effective in inhibiting R. solani. Application of 1% (w/w) PBGG was able to significantly increase in population densities of S. padanus and S. xantholiticus. Treatment with either Streptomyces strain alone or Streptomyces strain combined with 1% PBGG resulted in significantly reducing the percentage of seed colonization by R. solani compared to controls. Streptomyces padanus was the most effective in reducing the percentage of seed colonization by the pathogen when the infested soil was amended with 1% PBGG. The disease incidence was significantly reduced, to 6.5-8.6% in the soil amended with S. padanus/PBGG mix, 27.8-31.7% in the soil amended with S. xantholiticus / PBGG-mix, and 36.9-38.6% in the soil amended with PBGG alone, compared to 61.8-64.8% in the control (unamended soil). Results of greenhouse and field tests showed that soil amended with either actinomyces/PBGG mix or PBGG had no negative effects on germination percentage of Chinese cabbage seeds. PBGG combined with S. padanus added to soil before sowing seeds showed a promise result in controlling Rhizoctonia damping-off and increased yield of Chinese cabbage.
中文摘要
ABSTRACT
CHAPTER I. INTRODUCTION
HAPTER Ⅱ. EFFECT OF GROUND BRASSICA SEED MEAL ON CONTROL OF RHIZOCTONIA DAMPING-OFF OF CABBAGE
CHAPTER Ⅲ. CONTROL OF PYTHIUM DAMPING-OFF OF WATERMELON BY BRASSICA SEED POMACE COMBINED WITH PSEUDOMONAS BOREOPOLIS
CHAPTER Ⅳ. INHIBITION OF SOILBORNE PLANT PATHOGENS BY THE TREATMENT OF SINIGRIN AND MYROSINASE RELEASED FROM THE RECONSTRUCTED MICROBES
CHAPTER Ⅴ. FORMULATION OF A SOIL BIOFUMIGANT PRODUCT FOR THE CONTROL DAMPING-OFF OF CHINESE CABBAGE SEEDLINGS
CHAPTER Ⅵ. CONCLUSION AND DISCUSSION
Angus, J. F., Gardner, P. A., Kirkegaard, J. A., and Desmarchelier, J. M. 1994. Biofumigation: isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant Soil 162: 107-112.
Bjerg, B., and Sørensen, H. 1987. Isolation of intact glucosinolates by column chromatography and determination of their purity. pages 59-75. In Glucosinolates in Rapeseed: Analytical Aspects. J. P. Wathelet, ed. Martinus Nijhoff, Dordrecht.
Björkman, R. 1976. Properties and function of plant myrosinases. pages 191-205. In The Biology and Chemistry of Cruciferae. J. g. Vaughan, A. J. MacLeod and B. M. G. Jones, eds. Academic Press, London.
Bones, A. M. 1990. Distribution of β-thioglucosidase activity in intact plants, cell and tissue cultures and regenerated plants of Brassica napus L. J. Exp. Bot. 41: 737-744.
Bones, A. M., and Rossiter, J. T. 1996. The myrosinase-glucosinolate system, its organization and biochemistry. Physiol. Plant 97: 194-208.
Brown, P. D., and Morra, M. J. 1997. Control of soil-borne plant pests using glucosinolate containing plants. Adv. Agron. 61: 167-231.
Buchwaldt, L., Melchior Larsen, L., plöger, A., and Sørensen, H. 1986. Fast polymer liquid chromatography isolation and characterization of plant myrosinase, β-thioglucoside glucohydrolase isoenzymes. J. Chromatogr. 363: 71-80.
Bussy, A. 1840. Sur la formation de l’huile essentielle de moutarde. J. Pharm. 27: 464-471.
Chadchawan, S., Bishop, J., Thangstad, O. P., Bones, A. M., Mitchell-Olds, T., and Bradley, D. 1993. Arabidopsis cDNA sequence encoding myrosinase. Plant Physiol. 103: 671-672.
Chen, S., and Andreasson, E. 2001. Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 39: 743-758.
Chen, S., and Halkier, B. A. 1999. Functinal expression and characterization of the myrosinase MYR1 from Brassica napus in Saccharomyces cerevisiae. Protein Expression Purif. 17: 414-420.
Chisholm, M. D., and Wetter, L. R. 1964. Biosynthesis of mustard oil glucosinolate Ⅳ. The administration of methionine-14C and related compounds to horseradish. Can. J. Biochem. 42: 1033-1040.
Delaquis, P. J., and Sholberg, P. L. 1997. Antimicrobial activity of gaseous allyl isothiocyanate. J. Food Prot. 60: 943-947.
Drobnica, L., Zemanova, M., , Antos, K., Kristian, P., Stullerova, A., Knoppova, V., and Nemec, P. 1967. Antifungal activity of isothiocyanates and their analogues. Appl. Microbiol. 15: 701-703.
Du, L. C. 1995. Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid-induced seedlings of Sinapis alba L. Proc. Natl. Acad. Sci. 92: 12505-12509.
Du, L. C., and Halkier, B. A. 1996. Isolation of a microsomal enzyme system involved in glucosinolate biosynthesis from seedlings of Tropaeolum majus L. Plant Physiol. 111: 831-837.
Du, L. C., and Halkier, B. A. 1998. Biosynthesis of glucosinolates in the developing silique walls and seeds of Sinapis alba. Phytochemistry 48: 1145-1150.
Ellenby, C. 1945. Control of the potato-root eelworm, Heterodera rostochiensis Wollenweber, by allylisothiocyanate, the mustard oil of Brassica nigra L. Ann. Appl. Biol. 32: 237-239.
Epsky, N. D., and Capinera, J. L. 1994. Influence of herbivore diet on the pathogenesis of Steinernema carpocapsae (Nematode: Steinernematidae). Environ. Entomol. 23: 487-491.
Ettlinger, M. G., and Lundeen, A. J. 1956. The structures of sinigrin and sinalbin: A enzymatic rearrangement. J. Am. Chem. Soc. 78: 4172-4173.
Ettlinger, M. G., and Kjaer, A. 1968. Sulfur compounds in plants. Rec. Adv. Phytochem. 1: 59-144.
Falk, A., Xue, J., Lenman, M., and Rask, L. 1992. Sequence of a cDNA clone encoding the enzyme myrosinase and expression of myrosinase in different tissues of Brassica napus. Plant Sci. 83: 181-186.
Falk, A., Taipalensuu, E. K., Lenman, M., and Rask, L. 1995. Characterization of rapeseed myrosinase-binding protein. Planta 195: 387-395.
Giamoustaris, A., and Mithen, R. 1996. Genetics of aliphatic glucosinolates. Ⅳ. Side chain modification in Brassica oleraceae. Theor. Appl. Genet. 93: 1006-1020.
Glendening, T. M., and Poulton, J. E. 1988. Glucosinolate biosynthesis sulfation of desulfoglucosinolate by cell-free extracts of cress (Lepidium sativum L.) seedlings. Plant Physiol. 86: 319-321.
Gil, V., and MacLeod, A. J. 1980. The effects of pH on glucosinolate degradation by a thioglucoside glucohydrolase preparation. Phytochemistry 19: 2547-2551.
Goodman, I., Fouts, J. R., Bresnick, K., Menegas, R., and Hitchings, G. h. 1959. A mammalian thioglycosidase. Science 130: 450-451.
Grob, K., and Matile, P. H. 1979. Vacuolar location of glucosinolates in horseradish root cells. Plant Sci. Lett. 14: 327-335.
GrootWassink, J. W. D., Reed, D. W., and Kolenovsky, A. D. 1994. Immunopurification and immunocharacterization of the glucosinolate biosynthetic enzyme thiohydroximate S-glucosyltransferase. Plant Physiol. 105: 425-433.
Guo, L., and Poulton, J. E. 1994. Partial purification and characterization of Arabidopsis thaliana UDPG: thiohydroximate glucosyltransferase. Phytochemistry 36: 1133-1138.
Halkier, B. A., and Du, L. 1997. The biosynthesis of glucosinolates. Trends Plant Sci. 2(11): 425-431.
Hartel, F. V., and Brandt, A. 2002. Characterization of a Brassica napus myrosinase expressed and secreted by Pichia pastoris. Protein Expression Purif. 24: 221-226.
Hasapis, X., and MacLeod, A. J. 1982. Effects of metal ions on benylglucosinolate degradation in Lepidium sativum seed autolysates. Phytochemistry 21: 559-563.
Höglund, A. S., Lenman, M., Falk, A., and Rask, L. 1991. Distribution of myrosinase in rapeseed tissues. Plant Physiol. 95: 213-221.
Höglund, A. S., Lenman, M., and Rask, L. 1992. Myrosinase is localized to the interior of myrosin grains and is not associated to the surrounding tonoplast membrane. Plant Sci. 85: 165-170.
Hughes, M. N. 1975. General chemistry. pages 1-67. In Chemistry and Biochemistry of Thiocyanic Acid and Its Derivatives. A. A. Newman, ed., Academic Press, London.
Isshiki, K., Tokuora, K., Mori, R., and Chiba, S. 1992. Preliminary examination of allyl isothiocyanate vapor for food preservation. Biosci. Biotech. Biochem. 56: 1476-1477.
Jain, J. C., GrootWassink, J. W. D., Kolenovsky, A. D., and Underhill, E. W. 1990. Purification and properties of 3’-phosphoadenosine-5’-phosphosulphate: desulphoglucosinolate sulphotransferase from Brassica juncea cell cultures. Phytochemistry 29: 1425-1428.
James, D., and Rossiter, J. T. 1991. Development and characteristics of myrosinase in Brassica napus during early seedling growth. Physiol. Plant 82: 163-170.
Jones, T., Kitts, W. D., Newsome, F., and Towers, G. H. N. 1982. Antirepoductive and other medicinal effects of Tropaeolum tuberosum. J. Ethnopharmacol. 5: 149-161.
Johnson, A. W., Golden, A. M., Auld, D. L., and Sumner, D. R. 1992. Effects of rapeseed and vetch as green manure crops and fallow on nematodes and soil-borne pathogens. J. Nematol. 24: 117-126.
Kelly, P. J., Bones, A., and Rossiter, J. T. 1998. Subcellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta 206: 370-377.
Kjaer, A. 1974. The natural distribution of glucosinolates: a uniform group of sulfur-containing glucosides. pages 229-234. In Chemistry in Botanical Classification. G. Bendz, J. Santesson, eds. London, Academic Press.
Kjaer, A. 1976. Glucosinolates in Cruciferrae. pages 207-219. In The Biology and Chemistry of the Cruciferae. J. G. Vaughan, A. J. MacLeod, B. M. G. Jones, eds., Academic Press, London.
Kliebenstein, D. J., Lambrix, V. M., Reichelt, M., Gershenzon, J., and Mitchell-Olds, T. 2001. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis thaliana glucosinolate accumulation. Plant physiol. 126: 811-825.
Koroleva, O. A., Davies, A., Deeken, R., Thorpe, M. R., Tomos, A. D. and Hedrich, R. 2000. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol. 124: 599-608.
Lasen, P. O. 1981. Glucosinolates. pages 501-525. In The Biochemistry of Plants,7, Secondary Plant Products. E. E. Conn, ed., Academic Press, New York.
Lazzeri, L., Tacconi, R., and Palmieri, S. 1993. In vitro activity of some glucosinolates and their reaction products toward a population of the nematode Heterodera schachtii. J. Agr. Food Chem. 41: 825-829.
Lenman, M., Rödin, M., Josefsson, L. G., and Rask, L. 1990. Immunological characterization of rapeseed myrosinase. Eur. J. Biochem. 194: 747-753.
Lin, C., Kim, J., Du, W., and Wei, C. 2000. Bactericidal activity of isothiocyanate against pathogens on fresh produce. J. Food Prot. 63: 25-30.
Linscheid, M., Wendisch, D., and Strack, D. 1980. The structures of sinapic acid esters and their metabolism in cotyledons of Raphanus sativus. Zeitschrift fur Naturforschung 35C: 907-914.
MacGibbon, D. B., and Allison, R. M. 1970. A method for the separation and detection of plant glucosinolases (myrosinases). Phytochemistry 9: 541-544.
MacGibbon, D. B., and Beuzenberg, E. J. 1978. Location of glucosinolase in Brevicoryne brassicae and Lipaphis erysimi (Aphididae). New Zealand J. Sci. 21: 389-392.
Machlin, S., Mitchell-Olds, T., and Bradley, D. 1993. Sequence of a Brassica campestris myrosinase gene. Plant Physiol. 102: 1359-1360.
MacLeod, A. J., and Rossiter, J. T. 1985. The occurrence and activity of epithiospecifier protein in some Cruciferae seeds. Phytochemistry 24: 1895-1898.
MacLeod, A. J., and Rossiter, J. T. 1986. Isolation and examination of thioglucoside glucohydrolase from seeds of Brassica napus. Phytochemistry 25: 1047-1051.
Magrath, R., Herron, C., Giamoustaris, A., and Mithen, R. 1993. The inheritance of aliphatic glucosinolates in Brassica napus. Plant Breeding 111: 55-72.
Magrath, R., Bano, F., Morgner, M., Parkin, I., Sharpe, A., Lister, C., Dean, C., Turner, J., Lydiate, D., and Mithen, R. 1994. Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 72: 290-299.
McFadden, W., Potter, J., and Brandle, J. E. 1992. Use of Brassica spp. as green mature for biological control of Pratylenchus penetrans. Phytopathology 82: 246.
Mithen, R. F. Lewis, B. G., and Fenwick, G. R. 1986. In vitro activity of glucosinolates and their products against Leptosphaeria maculans. Trans. Br. Mycol. Soc. 87: 433-440.
Mithen, R. 1995. Genetics of aliphatic glucosinolates. Ⅲ. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana. Heredity 74: 210-215.
Mithen, R., and Campos, H. 1996. Genetic variation of aliphatic glucosinolate in Arabidopsis thaliana and prospects for map-based gene cloning. Entomologia Experimentalis et Applicata 80: 202-205.
Mithen, R. F., Dekker, M., Verkerk, R., Rabot, S., and Johnson, I T. 2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci Food and Agri. 80: 967-984.
Mojtahedi, H., Santo, G. S., Wilson, J. H., and Hang, A. N. 1993. Managing Meloidogyne chitwoodi on potato with rapeseed as green manure. Plant Dis. 77: 42-46.
Møller, B. L., and Poulton, J. E. 1993. Cyanogenic glucosides. pages 183-207. In Methods of Plant Biochemistry (Vol. 9). P.J. Lea, ed. Academic Press.
Oginsky, E. L., Stein, A. E., and Greer, M. A. 1965. Myrosinase activity in bacteria as demonstrated by the conversion of progoitrin to goitrin. Soc. Exp. Biol. Med. Proc. 119: 360-364.
Ohtsuru, M., and Hata, T. 1973. Studies on the activation mechanism of the myrosinase by L-ascorbic acid. Agri. Biol. Chem. 37: 1971-1972.
Ohtsuru, M., Kawatani, H. 1979. Studies of the myrosinase from Wasabia japonica: Purification and some properties of Wasabi myrosinase. Agri. Biol. Chem. 43: 2249-2255.
Parkin, I. 1994. Genetics of aliphatic glucosinolates. Ⅱ. Hydroxylation of alkenyl glucosinolates in Brassica napus. Heredity 72: 594-598.
Petroski, R. J., and Kwolek, W. F. 1985. Interactions of a fungal thioglucoside glucohydrolase and cruciferous plant epithiospecifier protein to form 1-cyanoepithioalkanes: Implications of an allosteric mechanism. Phytochemistry 24: 213-216.
Rada, B., Hanusovská, T., Drobnica, L., and Nemec, P. 1971. Inhibition of virus multiplication by selected isothiocyanates. Acta Virol. 15: 329-332.
Rask, L., Andreasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., and Meijer, J. 2000. Myrosinase: Gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42: 93-113.
Reed, D. W., Davin, L., Jain, J. C., Deluca, V., Nelson, L., and Underhill, E. W. 1993. Purification and properties of UDP-glucose: thiohydroximate glucosyltransferase from Brassica napus L. seedlings. Arch. Biochem. Biophysics 305: 526-532.
Reese, E. T., Clapp, R. C., and Mandels, M. 1958. A thioglucosidase in fungi. Arch. Biochem. Biophys. 75: 228-242.
Rodman, J. E. 1991. A taxonomic analysis of glucosinolate-producing plants, Part I: Phenetics. Systematic Bot. 16: 598-618.
Sakushima, A., Coskun, M., and Maoka, T. 1995. Sinapinyl but-3-enylglucosinolate from Boreava orientalis. Phytochemistry 40: 483-485.
Schlüter, M., and Gmelin, R. 1972. Abnormal enzymic cleavage of 4-methylthiobutylglucosinolate in fresh plants, Eruca sativa. Phytochemistry 11: 3427-3431.
Schultes, R. E. 1978. The kingdom of plants. Pages 208. In: Medicines from the Earth. W. A. R. Thomson (ed.). McGraw-Hill Book Co., New York.
Smolinska, U., Knudsen, G. R., Morra, M. J. and Borek, V. 1997. Inhibition of Aphanomyces euteiches f. sp. pisi by volatiles produced by hydrolysis of Brassica napus seed meal. Plant Dis. 81: 288-292.
Spak, J. 1988. The effect of the glucosinolate sinigrin and of allyl isothiocyanate on the infectivity of turnip mosaic virus. Biol. Plant 30: 465-470.
Spal, J., Procházková, Z., and Polák, Z. 1987. Resistance of spring and winter rape cultivars with different glucosinolate contents to the turnip mosaic virus. Sbor. UVTIZ-Ochr. Rostl. 23: 87-93.
Spak, J., Kolárová, L., Lewis, J. A., and Fenwick, G. R. 1993. The effect of glucosinolate mustard oil glycosides and products of their enzymic degradation on the infectivity of turnip mosaic virus. Biol. Plantar. 35: 73-80.
Springett, M. B., and Adams, J. B. 1989. Properties of brussels sprouts thioglucosidase. Food Chem. 33: 173-186.
Taipalensuu, J., Eriksson, S., and Rask, L. 1996. A wound-and methyl jasmonate-inducible transcript coding for a myrosinase-associated protein with similarities to an early nodulin. Plant Physiol. 110: 483-491.
Tani, N., Ohtsuru, M., and Hata, T. 1974. Isolation of myrosinase producing microorganism. Agr. Biol. Chem. 38: 1617-1622.
Thangstad, O. P., Evjen, K., and Bones, A. 1991. Immunogold-EM localization of myrosinase in Brassicaceae. Protoplasma 161: 85-93.
Thangstad, O. P., Winge, P., Husebye, H., and Bones, A. 1993. The thioglucoside glucohydrolase (myrosinase) gene family in Brassicaceae. Plant Mol. Biol. 23: 511-524.
U. S. Department of Agriculture. 1999. Adminstration extends deadline on MeBr ban to 2005. Methyl Bromide Alternatives 5: 1.
Underhill, E. W., Chisholm, M. D., and Wetter, L. R. 1962. Biosynthesis of mustard oil glucosides. Administration of 14C-labelled compounds to horseradish, nasturtium and watercress. Can. J. Biochem. Physiol. 40: 1505-1514.
United Nations Environment Programme. 1995. 1994 Report of the methyl bromide technical options committee. Montreal protocol on substances that delete the ozone layer. United Nationals Ozone Secretariat, Nairobi, Kenya.
Witczak, Z. J. 1986. Monosaccharide isothiocyanates and thiocyanates: Synthesis, chemistry, and preparative applications. Adv. Carbohydr. Chem. Biochem. 44: 91-145.
Xue, J., Philgren, U., and Rask, L. 1993. Temporal, cell-specific, and tissue-preferential expression of myrosinase genes during embryo and seedling development in Sinapis alba. Planta 191: 95-101.
Xue, J., Jørgensen, M., Philgren, U., and Rask, L. 1995. The myrosinase gene family in Arabidopsis thaliana: gene organisation, expression and evolution. Plant Mol. Biol. 27: 911-922.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔