(3.236.231.14) 您好!臺灣時間:2021/04/14 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林愉瑄
研究生(外文):Yu-Hsiuan Lin
論文名稱:胡瓜嵌紋病毒之MP及2b基因能夠互補馬鈴薯Y病毒屬HC-Pro協同性基因造成過敏性反應及毒力能力之缺失
論文名稱(外文):The MP and 2b genes of Cucumber mosaic virus complement the mutated potyviral HC-Pro gene defective in hypersensitive reaction and virulence
指導教授:葉錫東葉錫東引用關係
指導教授(外文):Shyi-Dong Yeh
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:55
中文關鍵詞:胡瓜嵌紋病毒矮南瓜黃化嵌紋病毒移動性蛋白
外文關鍵詞:Cucumber mosaic virusCMVZucchini yellow mosaic virusZYMVmovement proteinMP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
胡瓜嵌紋病毒(Cucumber mosaic virus , CMV)寄主範圍非常廣泛,可感染超過一千種以上的植物。在自然界中,此病毒可與矮南瓜黃化嵌紋病毒(Zucchini yellow mosaic virus, ZYMV)共同感染產生協力作用造成嚴重危害,另外,此病毒亦可以藉由數十種蚜蟲以非永續性的方式傳播,因其具有上述特性,所以目前尚未有快速而有效率的防治方法被發展出來。 本實驗乃是藉由修飾之重症型(p35ZYMVBam)或突變之輕症型(p35ZYMVACBam)矮南瓜黃化嵌紋病毒載體攜帶各種與胡瓜嵌紋病毒之轉移相關的移動性蛋白(movement protein, MP)基因,鞘蛋白(coat protein, CP)基因,或者後轉錄基因沉寂作用抑制子(post-transcriptional gene silencing suppressor)2b蛋白基因,觀察重組病毒在奎藜(Chenopodium quinoa)與矮南瓜(Cucurbita pepo L. var. Zucchini)上的表現情形,藉以探討CMV各項蛋白基因之功能及其在病毒協力作用上之影響。CMV各項蛋白基因分別插入至ZYMV協同性蛋白 (HC-Pro) 之胺基端 (N-terminal) 或NIb蛋白之羧基端(C-terminal),藉由機械接種重組病毒至植物體內而表現外來蛋白。分別感染的罹病植物可經由西方墨點法(western blotting)以及反轉錄聚合酶鏈鎖反應(reverse transcription-polymerase chain reaction, RT-PCR)測得重組病毒帶有CMV各片段基因。本實驗結果顯示,攜帶CMV MP之重症型重組病毒ZYMVcMP與ZYMVNcMP在四天內即能在奎藜上形成單斑,較野生型(ZYMV TW-TN3)提早三天,其單斑型態為較小型、壞疽狀、外圍具黃色暈環之斑點。攜帶CMV CP之重症型重組病毒ZYMVcCP與攜帶CMV 2b之重症型重組病毒ZYMVc2b在奎藜上七天形成單斑,單斑型態與野生型相似,在系統性寄主矮南瓜上,重症型重組病毒都會造成葉片斑駁、黃化、嵌紋以及葉片變形等病徵。攜帶CMV MP之弱系重組病毒ZYMVACcMP以及攜帶CMV 2b之弱系重組病毒ZYMVACc2b有回覆突變之協同性蛋白基因(HC-Pro gene)不產生單班的特性,在奎藜上造成單斑反應,且ZYMVACcMP在四天內即能形成單斑,較野生型(ZYMV TW-TN3)提早三天,其單斑型態與重症型重組病毒ZYMVcMP或ZYMVNcMP相似,同為較小型、壞疽狀、外圍具黃色暈環之斑點。ZYMVACc2b在奎藜上七天形成單斑,與野生型(ZYMV TW-TN3)時間相近,型態為較大之黃色褪綠單斑。攜帶CMV CP之弱系重組病毒ZYMVACcCP則無法在奎藜上回復單斑反應的形成,在系統性寄主矮南瓜上,ZYMVACcMP與ZYMVACcCP只會造成葉片輕微斑駁的病徵,但在ZYMVACc2b感染的矮南瓜葉片上,則亦造成嵌紋、變形等類似重症型ZYMV所產生之病徵。由本實驗結果可知,CMV MP可回覆原本弱系病毒ZYMVAC在奎藜上不產生單斑之特性 ,在奎藜上造成單斑,在系統性寄主上則不會增加ZYMV之毒力(Virulence)而僅產生輕微斑駁的病徵。另外,ZYMVAC表現後轉錄基因消寂作用抑制子CMV 2b可回復單斑反應,在奎藜上形成透化斑點,但在系統性寄主矮南瓜上,ZYMVAC ZYMVACc2b可增加ZYMVAC之毒力,造成嚴重病徵。
Synergistic effects of mixed infection of Cucumber mosaic virus (CMV), a member of Cucumovirus, with Zucchini yellow mosaic virus (ZYMV), a member of Potyvirus, cause severe losses on production of cucurbits worldwide. Enhancement of systemic translocation of CMV plays an important role in disease severity. In order to analyze the possible functions of the individual genes of CMV on synergistic effects in mixed infection, in vivo infectious clone of ZYMV was used to express the MP, CP, or 2b ORF of CMV in zucchini squash and local lesion hosts. The individual genes were in frame inserted into the N-terminal region of the HC-Pro coding sequence, or the C-terminal region of the NIb coding sequence of the ZYMV vector, with additional six histidine residues and an NIa protease cleavage site to facilitae the purification and processing of expressed proteins. The recombinant ZYMVcMP and ZYMVNcMP that carried the entire MP ORF of CMV at the N-terminal region of HC-Pro and the C terminal region of NIb coding sequence, respectively, induced local lesions on Chenopodium quinoa 3-4 days earlier than those induced by the wild type ZYMV TW-TN3. ZYMVcCP carrying the CP ORF of CMV and ZYMVc2b carrying the 2b ORF of CMV both induced local lesions on C. quinoa 7 days after inoculation similar to those induced by the wild type ZYMV TW-TN3. On squash, ZYMVcMP, ZYMVNcMP, ZYMVcCP and ZYMVc2b induced severe yellow mosaic symptoms similar to those induced by the parental ZYMV. The individual ORFs of CMV were also constructed in the in vivo infectious clone of an engineered mild strain ZYMVAC, which contained two amino acid changes in the HC-Pro protein and caused infection on C. quinoa without formation of local lesions. Interestingly, the mild recombinant ZYMVACcMP expressing the entire MP ORF of CMV restored the hypersensitive reaction and induced tiny and necrotic lesions on C. quinoa 3-4 days earlier than those induced by the wild type ZYMV. ZYMVACcCP expressing the entire CP ORF of CMV did not induce local lesions on C. quinoa. ZYMVACc2b expressing the gene-slicing suppressor 2b ORF of CMV induced hypersensitive reaction and caused chlorotic lesions on C. quinoa 7 days after inoculation. On squash plants, ZYMVACcMP and ZYMVACcCP caused mild symptoms similar to those induced by ZYMVAC, but ZYMVACc2b caused yellow mosaic and leaf distortion on leaves similar to those caused by the wild type ZYMV TW-TN3. Our data demonstrates that on C. quinoa, the expressed CMV MP complements the mutated HC-Pro protein defective in inducing hypersensitive reaction and fasten the development of local lesions but does not enhance the virulence of ZYMV. We conclude that the expressed CMV 2b protein restore the ZYMV’s ability to form local lesions without necrosis and is a virulence enhancer for ZYMV infection.
中文摘要… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … .. 1
英文摘要… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … .. 3
緒言… … … … … … … … … … … … … … … … … … … … … … … … … … .… … … … … … … .... 5
Introduction… … … … … … … … … … … … … … … … … … … … … … … … … … … .… … .… . 8
Materials and Method… … … … … … … … … … … … … … … … … … … … … … … … … .… .. 11
Virus sources and propagation… … … … … … … … … … … … … … … … … … … … … … … 11
Modification of an insertion cassette between P1 and HC-Pro coding sequences of
ZYMV vector… … … … … … .… … … … … … … … … … … … … … … … … … … … … …
11
Construction of an insertion cassette between NIb and CP coding sequences of ZYMV
vector… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … .
12
Construction of the mild strain ZYMVAC… … … … … … … … … … … … … … … … … … . 14
Amplification of the MP, CP, or 2b ORF of CMV by reverse transcription-polymerase
chain reaction (RT-PCR)… … … … … … … … … … … … … … … … … … … … … … … …
14
Construction of amplified fragments corresponding to the MP, CP or 2b ORFs of CMV
into ZYMV vector...… … … … … … .… … … … … … … … … … … … … … … … … … … ..
16
Construction of chimeric ZYMV carrying GFP and the MP of CMV...… … … … … … … 16
Detection of GFP expression… … … … … … … … … … … … … … … … … … … … … … … .. 16
Infectivity assay of the ZYMV recombinants… … … … … … … … … … … … … … … … … 17
Detection of ZYMV recombinants in infected plants by western blotting… … … … … … 18
Detection of purified histidine-tagged proteins from recombinant-infected plants..… … . 19
Detection of ZYMV recombinants in infected plants by RT-PCR..................................... 19
Results… … … … … … … … … … … … … … … … … … ..… … … … … … … … … … … … … … .. 21
Modification of ZYMV vector… … … … … … … … … … … … … … … … … … … … … … ... 21
Construction of the CMV MP, CP, or 2b ORF into ZYMV vector… … … … … … … … … 21
Construction of foreign inserts in both HC-Pro and NIb of ZYMV vector… … … … … ... 22
Infectivity assay of severe ZYMV recombinants… … … … … … … … … … … … … … … ... 22
The MP and 2b proteins complement the defection of HC-Pro… … … … … … … … … … . 23
Detection of ZYMV recombinants in infected plants by western blotting… … … .… … ... 23
Detection of foreign proteins purified from recombinant-infected plants… … … … … … .. 24
Detection of ZYMV recombinants in infected plants by RT-PCR… … … … … … … … … . 25
Discussion… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … 26
References… … … … … … … … … … … … … … … … … … … … … … … … … … … … … .… ... 31
Figures… … … … … … … … … … … … .… … … … … … … … … … … … … … … … … … … … … 37
Ahlquist, P., Strauss, E. G., Rice, C. M., Strauss, J. H., Haseloff, J., and Zimmern, D. 1985. Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from
several RNA plant viruses. J. Virol. 53:536-42.
Allison, R. F., Janda, M., and Ahlquist, P. 1998. Infectious in vitro transcripts from Cowpea chlorotic mottle virus cDNA clones and exchange of individual RNA components with
Brome mosaic virus. J. Virol. 62:3581-3588.
Anandalakshmi, R., Pruss, G., Ge, X., Marathe, R., Mallory, A., Smith, T., and Vance, V. 1998. Aviral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 95:13079-13084.
Arazi, T., Slutsky, S. G., Shiboleth, Y. M., Wang, Y., Rubinstein, M., Barak, S., Yang, J., and Gal-On, A. 2001. Engineering Zucchini yellow mosaic potyvirus as a non-pathogenic vector for expression of heterologous proteins in cucurbits. J. Biotechnol. 87:67-82.
Blanc, S., Lopez-Moya, J. J., Wang, R., Garcia-Lampasona, S., Thornbury, D. W., and Pirone, T. P. 1997. A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231:141-147.
Boccard, F., and Baulcombe, D. 1993. Mutational analysis of cis-acting sequences and gene function in RNA3 of Cucumber mosaic virus. Virology 193:563-78.
Brigneti, G., Voinnet, O., Li, W.-X., Ji, L.-H., Ding, S.-W., and Baulcombe, D. C. 1998. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana
benthamiana. EMBO J. 17:6739-6746.
Canto, T., and Palukaitis, P. 1999. The hypersensitive response to Cucumber Mosaic Virus in Chenopodium amaranticolor requires virus movement outside the initially infected cell.
Virology 265:74-82.
Canto, T., Prior Denton, A. M., Hellwald, K.-H., Oparka Karl, J., and Palukaitis, P. 1997. Characterization of Cucumber mosaic virus. IV. Movement protein and coat protein are
both essential for cell-to-cell movement of Cucumber mosaic virus. Virology 237:237-248.
Carrington, J. C., Cary, S. M., and Dougherty, W. G. 1988. Mutational analysis f Tobacco etch virus polypretein precessing: cis and trans proteolytic activities of polypreteins containing the 49-kilodalton proteinase. J. Virol. 62:2313-2320.
Carrington, J. C., Cary, S. M., Parks, T. D., and Dougherty, W. G. 1989. A second proteinase encoded by a plant potyvirus genome. EMBO J. 8:365-370.
Cazalé, A.-C., Rouet-Mayer, M.-A., Barbier-Brygoo, H., Mathieu, Y., and Lauriere, C. 1998. Oxidative burst and hypoosmotic stress in tobacco cell suspensions. Plant Physiol.
116:659-669.
Choi, I. R., Stenger, D. C., Morris, T. J., and French, R. 2000. A plant virus vector for systemic expression of foreign genes in cereals. Plant J. 23:547-555.
Desbiez, C., and Lecoq, H. 1997. Zucchini yellow mosaic virus. Plant Pathol. 46:809-829. Ding, B., Li, Q., Nguyen, L., Palukaitis, P., and Lucas, W. J. 1995. Cucumber mosaic virus 3a
protein potentiates cell-to-cell trafficking of CMV RNA in tobacco plants. Virology 207:345-53.
Ding, S.-W., Li, W.-X., and Symons Robert, H. 1996. A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement. EMBO J. 14:5762-5772.
Dolja, V. V., McBride, H. J., and Carrington, J. C. 1992. Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proc. Natl. Acad. Sci. USA 89:10208-10212.
Dolja, V. V., Herndon, K. L., Pirone, T. P., and Carrington, J. C. 1993. Spontaneous mutagenesis of a plant potyvirus genome after insertion of a foreign gene. J. Virol. 67:5968-5975.
Gal-On, A., Meiri, E., Raccah, B., and Gaba, V. 1998. Recombination of engineered defective RNA species produces infective potyvirus in planta. J. Virol. 72:5268-5270.
German-Retana, S., Candresse, T., Alias, E., Delbos, R. P., and Le Gall, O. 2000. Effects of green fluorescent protein or beta-glucuronidase tagging on the accumulation and pathogenicity of a resistance-breaking Lettuce mosaic virus isolate in susceptible and resistant lettuce cultivars. Mol. Plant-Microbe Interact. 13:316-324.
Goldbach, R. 1990. Genome similarities between positive-strand RNA virus from plant and animals.3-11. In M. A. Brinton and F. X. Heinz (ed.), New aspects of positive-strand
RNA viruses. American Society for Microbiology, Weshington, D.C.
Guo, H. S., Lopez-Moya, J. J., and Garcia, J. A. 1998. Susceptibility to recombination rearrangements of a chimeric Plum pox potyvirus genome after insertion of a foreign
gene. Virus Res. 57:183-195.
Hari, V., Siegel, A., Rozek, C., and Timberlake, W. E. 1979. The RNA of Tobacco etch virus
contains poly(A). Virology 30:568-571.
Haseloff, J., Goelet, P., Zimmern, D., Ahlquist, P., Dasgupta, R., and Kaesberg, P. 1984. Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization. Proc. Natl. Acad. Sci. USA 81:4358-62.
Hayes, R. J., and Buck, K. W. 1990. Complete replication of a eukaryotic virus RNA in vitro by a purified RNA-dependent RNA polymerase. Cell 63:363-368.
Hollings, M., and Brunt, A. A. 1981. Potyvirus group. CMI/AAB Descriptions of Plant viruses No. 245. Kew, Surrey.
Huang, C. W. 2003. The role of the NSs protein of Watermelon silver mottle virus in hypersensitive reaction and pathogenesis. Master Thesis, Department of Plant Pathology,
National Chung Hsing University.
Huet, H., Gal-on, A., Meir, E., Lecoq, H., and Raccah, B. 1994. Mutations in the helper component protease gene of Zucchini yellow mosaic virus affect its ability to mediate
aphid transmissibility. J. Gen. Virol. 75:1407-1414.
Itaya, A., Hickman, H., Bao, Y., Nelson, R., and Ding, B. 1997. Cell-to-cell trafficking of Cucumber mosaic virus movement protein: Green fluorescent protein fusion produced by
biolistic gene bombardment in tobacco. Plant J. 12:1223-1230.
Jones, A. M., and Dangl, J. L. 1996. Logjam at the Styx: Programmed cell death in plants. Trends Plant Sci. 1:114-119.
Kasschau, K., and Carrington, J. 2001. Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology 285:71-81.
Kasschau, K., Cronin, S., and Carrington, J. 1997. Genome amplification and long-distance movement functions associated with the central domain of Tobacco etch potyvirus helper
component-proteinase. Virology 228:251-262.
Kasschau, K. D., and Carrington, J. C. 1998. A counter-defensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461-470.
Klein, P. G., Klein, R. R., Rodriguez-Cerezo, E., Hunt, A. G., and Shaw, J. G. 1994. Mutational analysis of the tobacco vein mottling virus genome. Virology 204:759-769.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature 227:680-685.
Lin, S. S. 2001. Assessment of genetic variability, characterizationof genome organization, construction of infectious transcripts, development of viral vector, and generation of valuable attenuated strains of a Taiwan strain of Zucchini yellow mosaic virus. Ph. D. Dissertation, Graduate Institute of Agricultural Biotechnology, National Chung Hsing
University.
Lin, S. S., Hou, R. F., and Yeh, S. D. 2002. Construction of in vitro and in vivo infectious transcripts of a Taiwan strain of Zucchini yellow mosaic virus. Bot. Bull. Acad. Sin. 43:261-269.
Lin, S. S., Hou, R. F., Huang, C. H., and Yeh, S. D. 1998. Characterization of Zucchini yellow mosaic virus (ZYMV) isolates collected from Taiwan by host reactions, serology, and
RT-PCR. Plant Prot. Bull. 40:163-176.
Lisa, V., and Lecoq, H. 1984. Zucchini yellow mosaic virus. CMI/AAB Descriptions of Plant Viruses, No. 282. Kew, Surrey.
Lisa, V., Boccardo, G., D''Agostino, G., Dellavalle, G., and D''Aquilio, M. 1981. Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology 71:667-672.
Mahgoub, H. A., Desbiez, C., Wipf-Scheibel, C., Dafalla, G., and Lecoq, H. 1997. Characterization and occurrence of Zucchini yellow mosaic virus in Sudan. Plant Pathol.
46:800-805.
Masuta, C., Yamana, T., Tacahashi, Y., Uyeda, I., Sato, M., Ueda, S., and Matsumura, T. 2000. Development of Clover yellow vein virus as an efficient, stable gene-expression system
for legume species. Plant J. 23:539-546.
Nameth, S. T., Dodds, J. A., Paulus, A. O., and Kishaba, A. 1985. Zucchini yellow mosaic virus associated with severe diseases of melon and watermelon in southeastern California
desert valleys. Plant Dis. 69:785-788.
Nitta, N., Takanami, Y., Kuwata, S., and Kubo, S. 1988. Inoculation with RNAs 1 and 2 of Cucumber mosaic virus induces viral RNA replicase activity in tobacco mesophyll protoplasts. J. Gen. Virol. 69:2695-2700.
Osman, F., Grantham, G., and Rao, A. 1997. Molecular studies on bromovirus capsid protein. IV. Coat protein exchanges between brome mosaic and cowpea chlorotic mottle viruses
exhibit neutral effects in heterologous hosts. Virology 238:452-9.
Palukaitis, P., Roossinck, M. J., Dietzgen, R. G., and Francki, R. I. B. 1992. Cucumber mosaic virus. Maramorosch, K., F. A. Murphy and A. J Shatkin:41. Provvidenti, R., Gonsalves, D., and Humaydan, H. S. 1984. Occurrence of Zucchini yellow mosaic virus in cucurbits from Connecticut, New-York, Florida, and California. Plant Dis. 68:443-446.
Pruss, G., Ge, X., Shi, X. M., Carrington, J. C., and Vance, V. B. 1997. Plant virus synergism: the potyvirus genome encodes a bord-range pathogenicity enhancer that transactivates
replication of hetrologous viruses. Plant Cell 9:859-868.
Rao, A. 1997. Molecular studies on bromovirus capsid protein. III. Analysis of cell-to-cell movement competence of coat protein defective variants of Cowpea chlorotic mottle
virus. Virology 232:385-95.
Revers, F., Gall, O. L., Candresse, T., and Maule, A. J. 1999. New advances in understanding the molecular biology of plant potyvirus interactions. Mol. Plant-Microbe Interact. 12:367-376.
Riechmann, J. L., Lain, S., and Garcia, J. A. 1992. Highlights and prospects of potyvirus molecular biology. J. Gen. Virol. 73:1-16.
Rojas, M., Zerbini, F., Allison, R., Gilbertson, R., and Lucas, W. 1997. Capsid protein and helper component-protinase function as potyvirus cell-to-cell movement proteins. Virology
237:283-295.
Sambrook, J., and Russell, D. W. 2001. Molecular Cloning: A Laboratory Manual 2nd edition. Cold Springs Harbor Laboratory, New York. Scholthof, H. B., Scholthof, K. B. G., and Jackson, A. O. 1996. Plant virus gene vectors for transient expression of foreign proteins in plants. Ann. Rev. Phytopathol. 34:299-323.
Schwinghamer, M. W., and Symons, R. H. 1975. Fractionation of Cucumber mosaic virus RNA and its translation in a wheat embryo cell-free system. Virology 63:252-262.
Simon, A. E., and Bujarski, J. J. 1994. RNA-RNA recombination and evolution in virus-infected plants. Annu. Rev. Phytopathol. 32:337-362.
Suzuki, M., Kuwata, S., Kataoka, J., Masuta, C., Nitta, N., and Takanami, Y. 1991. Functional
analysis of deletion mutants of Cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 183:106-113.
Valerie, e., Spall, M., Shanks, M., and Lomonossoff, G. P. 1997. Polyprotein processing as a strategy for gene expression in RNA viruses. Semin. Virol. 8:15-23.
Vance, V., Berger, P., Carrington, J., Hunt, A., and Shi, X. 1995. 5'' proximal potyviral sequences mediate potato virus X/potyviral synergistic disease in teansgenic tobacco. Virology
206:583-590.
Verchot, J., Koonin, E. V., and Carrington, J. C. 1991. The 35-kDa protein from the N-terminus of potyviral polyprotein functions as a third virus-encoded proteinase. Virology
185:527-535.
Wang, Y., Gaba, V., Yang, J., Palukaitis, P., and Gal-On, A. 2002. Characterization of synergy between Cucumber mosaic virus and potyviruses in cucurbit hosts. Phytopathology
92:51-58.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 以siRNA誘導抗二種馬鈴薯Y群病毒之轉基因植物之建構與帶有區分性突變點之馬鈴薯Y群病毒基因沉寂抑制子在病原性及病徵發展之分析
2. 彩色海芋黃化斑點病毒雙極性基因體MRNA與負極性基因體LRNA與其他Tospovirus屬之病毒比較
3. 可機械傳播感染東方型甜瓜新德里捲葉病毒之鑑定及特性
4. 台灣瓜類薊馬傳播病毒發生情形及利用L基因之高保留性區域誘發轉基因植物產生對番茄斑萎病毒屬之廣泛抗性
5. 菸草基因ACCT8-1參與竹嵌紋病毒感染週期的研究
6. 萊豆種子的病毒檢測及病毒對植株生育的影響
7. 甜瓜萎凋病的病原菌鑑定與其基本生物特性及生物防治菌篩選
8. 利用西瓜銀斑病毒之非結構性蛋白上的一個共同抗原表體發展可應用於細菌以及病毒蛋白表現系統上的重組蛋白標定
9. 菸草中與細胞核解碼的質體核醣核酸聚合&;#37238;有交互作用的蛋白質其參與竹嵌紋病毒移動之研究
10. 豆類金黃嵌紋病毒屬雙生病毒 (begomoviruses) C4蛋白影響寄主植物葉片捲曲趨向性分子機制之研究
11. 微管體締合蛋白NbMAP90對病毒於煙草細胞內移動之影響
12. 利用轉錄後基因沉寂發展具有多重病毒抗性之轉基因西瓜
13. 利用基因沉寂機制產生具廣泛抗兩種馬鈴薯Y屬病毒轉基因木瓜及利用人工微小核醣核酸攻擊番茄斑萎屬病毒複製酶基因以產生抗病能力
14. 國產基因轉殖抗木瓜輪點病毒木瓜果實之營養成分及抗營養成分分析
15. 國產轉基因木瓜之外源病毒蛋白過敏原序列同源性比對及其致過敏性評估
 
系統版面圖檔 系統版面圖檔