(3.236.231.14) 您好!臺灣時間:2021/04/15 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張嘉紘
研究生(外文):chang chiahung
論文名稱:洋桔梗壞疽病毒基因體全長度序列隻選殖及基因體組成之分析
論文名稱(外文):Complete genome sequence and genetic organization of Lisianthus necrosis virus
指導教授:詹富智
指導教授(外文):Jan fuh-jyh
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:70
中文關鍵詞:洋桔梗
外文關鍵詞:lisianthus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
洋桔梗壞疽病毒(Lisianthus necrosis virus, LNV) 最早於1983年由日本Iwaki 等人所發現,但因LNV的核酸序列及基因體的組成尚未被發表,故LNV依據血清學及其物理特性,暫被分類在Tombusviridae科Necrovirus屬。晚近在台灣中部彰化地區栽培之洋桔梗(Eustoma rusellianum (Don.) Grieseb)以及進口康乃馨(Dianthus caryophyllus L.)雜交品系”小可愛(Kooij Echo kgr. Holland)”上亦發現受LNV感染。LNV通常感染生育中、後期之植株,造成於上位葉出現許多淡黃色斑點,鄰近斑點隨病勢進展融合成斑塊,呈黃色之組織逐漸轉化為壞疽,終致全葉枯萎。本研究之目的在於選殖、闡明LNV基因體序列及組成,並確認或重新定位LNV的分類地位。本研究將台中改良場陳慶忠博士自永靖鄉洋桔梗罹病株取得並經過三次單斑分離之LNV洋桔梗分離株(LNV-L) 繁殖於其系統性寄主菸草(Nicotiana benthamiana Domin.)上,以西方轉漬法利用LNV抗血清偵測經純化之病毒,確定其鞘蛋白大小約為41 kDa;於電子顯微鏡下觀察並測量其病毒顆粒為直徑32 nm的球形病毒。另外為了獲得LNV基因體序列,以經抽取、純化的總量RNA (total RNA)及雙股核糖核酸(dsRNA)做為反轉錄聚合反應(reverse transcription-polymerase chain reaction, RT-PCR)的模板;利用由Necrovirus之核酸序列高度保留區(highly conserve region)設計的兩組簡併式引子對(degenerated primers)增幅出部份LNV cDNA片段,此片段經選殖、定序及序列分析之結果與新發現暫分類於Tombusvirus屬的梨潛隱病毒(Pear latent virus, PLV)有高度相似性;並利用所得之序列與PLV及其他Tombusvirus屬病毒之序列比較,設計簡併式或專一性引子以獲得洋桔梗壞疽病毒的全基因體序列。LNV全基因體序列主要包含在三個利用RT-PCR增幅所得之選殖株中。基因體大小全長為4764個核苷酸(nucleotide, nt),對應轉譯出五個蛋白。第一個轉譯架構(open reading frame, ORF 1)長約2457 nt,對應產生一與病毒複製相關之RNA複製酶(RNA-dependent RNA polymerase),分子量大小約為92 kDa。ORF 2長約1167 nt,對應產生一分子量大小約為41 kDa的鞘蛋白(coat protein)。ORF 3長約576 nt,對應產生分子量大小約22 kDa的蛋白,ORF 4長約519 nt,對應產生分子量大小約19 kDa的蛋白,另外在基因體的最3端則另外對應產生一3.2 kDa的鞘蛋白。此基因體的組成與Tombusvirus核酸序列相同度在73.2%至97.2%之間,尤其是和PLV的序列相同度可高達97.2%。由於核酸序列相同度以及胺基酸序列相同度皆高於95%,因此LNV與PLV可能為分類地位極相近之病毒;此外,基於LNV與Tombusvirus屬病毒及PLV核酸胺基酸序列相同度和基因體組成的相似性,我們認為LNV應被重新分類於Tombusvirus屬。

Lisianthus necrosis virus (LNV), a positive single-stranded RNA virus, was first found in Japan in 1983 and later in Taiwan in 1995. LNV causes severe necrotic spots on leaves and stems, colored stripes on petioles, and malformation of flowers in both lisianthus〔Eustoma russellianum (Don.) Griseb〕and carnation (Dianthus caryophyllus L.). LNV was delineated as a tentative species of the genus Necrovirus based on its physical, antigenic, and biological properties. In order to classify the taxonomic status of LNV, molecular characteristics including the genome organization and the sequence of coat protein gene are needed. So far there is no molecular information of LNV available yet. The objectives of this study were to clone and elucidate the genome organization and genomic sequence of LNV and to confirm or re-classify its taxonomic status. Virions purified from LNV-L-infected plants revealed the size of the particles measuring about 32 nm in diameter under electron microscope. Single coat protein with Mr. about 41 kDa was observed from the purified virions assayed by SDS-PAGE and immunoblotting. In order to obtain sequence information of LNV, two pairs of degenerate primers for Necrovirus were designed. One cDNA fragment around 700 base pairs (bp) was amplified from the total RNAs extracted from LNV-infected N. benthamiana by RT-PCR using the degenerate primer pairs Fjj2003-13/ Fjj2003-14 and Fjj2003-15/Fjj2003-16 in combination. This 700 bp RT-PCR product was cloned into the pCRII-TOPO vector, then sequenced and was found to have more than 90% nucleotide identities with those of Pear latent virus (PLV), a putative species of Tombusvirus. Three distinct cDNA fragments covering most of the LNV genome except the 5’- and 3’-termini were obtained by RT-PCR using degenerate primers designed from PLV and tombusviruses. The sequences of the 5’ and 3’ termini were obtained from RT-PCR using oligo-d (T) as primer with the polyadenylated dsRNA as template. The complete genomic sequence of LNV was then determined. The genome of LNV consists of 4764 nucleotides (nt) with five open reading frames (ORFs). ORF 1 around 2457 nt long encodes a 33.2-kDa protein and read-through of its amber termination codon gives a protein of 92 kDa. ORF 2 measuring around 1167 nt encodes a 41-kDa protein. ORF 4 is nested within the ORF 3 in a different reading frame. The molecular weight of the protein encoded by ORF 3 and ORF 4 are 21 and 19 kDa respectively. ORF 5 is located at the 3’ terminus of the genome with a molecular weight of 3.2 kDa. The genome organization of LNV was found to be similar to that of Tombusvirus, showing a nucleotide identity ranging from 73.2% to 97.2%, with the highest nucleotide identity (97.2%) to those of Pear latent virus (PLV). The phylogenetic analysis of the coat protein of LNV with other viruses in the Tombusviridae revealed that LNV is closely related to Tombusvirus rather than Necrovirus. The phylogenetic analysis of the coat protein of LNV with those of the other viruses in the Tombusvirus revealed that the LNV is closely related to the PLV. Taken together, based on nucleotide and amino acid identities of the CP gene and genome organization between LNV, Tombusvirus, and PLV, we suggest that LNV should be re-delineated from Necrovirus into Tombusvirus.

Content
Abstract in English….……………………………………………….…1
Abstract in Chinese………….………………………………………….3
Literature Review…………………………………………………….…5
Introduction………………………….……………………………..….11
Materials and Methods………..………………………………………18
Virus sources and propagation…………………….………….……. 18
Purification of virus particles……...……….………….……………18
Electron microscopy……………………………………………...…19
Western blotting…………………………………………………….19
Isolation of total RNA……………………………………………....20
Design of degenerated primers of Necrovirus and Carmovirus…….21
Reverse transcription-polymerase chain reaction (RT-PCR)……......23
DNA cloning and sequencing…………………………………….....23
Isolation of dsRNAs………………………………………………...24
Separation of dsRNAs…………………………………………...….25
Northern blot analysis…………………………………………...…..25
Cloning of the 5’ and 3’ end regions…………………………….......26
Polyadenylation of LNV dsRNA………………………………..…..27
Cloning of the 5’ and 3’ terminal regions…………..,………………28
Designing of specific primers for cloning 1871-3222 region……….29
Sequencing and assembly…………………………………….…..…29
Computer analysis of the sequences……………………………...…29
Phylogenetic analysis of the coat protein………………………...…30
Results…………………………………………………………………..32
Purification of virus particles…….....……………………………....32
Sequencing the clone obtained from the degenerate primers……...32
Isolation and separation of dsRNAs…………………………….......33
Northern blot analysis……………………………………………….34
Complete nucleotide sequence of LNV-L…………………………..34
Comparison of the nucleotide and amino acid identity between
LNV-L and other species in the Tombusvirus………………...36
Discussion………………………………………………………………38 References………………………………………………………………43
Figures and Tables……………………………………………………..52

References
成澤久. 1990. 高冷地洋桔梗. p.199-202. 切花栽培技術 (一、二年生草花) . 李叡明譯. 淑馨出版社. 台北. 316pp。
黃達雄. 1995. 洋桔梗. p.569-574. 台灣農業要覽農作篇 (二) . 豐年社. 台北. 698pp。
Balley, L. H. 1976. In: "Hortus Third: a concise dictonary of plants cultivated in the United States and Canada", MacMillan, New York.
Bleve-Zacheo, T., Rubino, L., Melillo, M. T., and Russo, M. 1997. The 33 K protein encoded by Cymbidium ringspot tombusvirus localizes to modified peroxisomes of infected cells and of uninfected transgenic plants. J. Plant Pathol. 79: 197-202.
Boonham, N., Henry, C. M., and Wood, K. R. 1995. The nucleotide sequence and proposed genome organization of Oat chlorotic stunt virus, a new soil-borne virus of cereals. J. Gen. Virol. 76: 2025-2034.
Burgyan, J., Rubino, L., and Russo, M. 1996. The 5'-terminal region of a tombusvirus genome determines the origin of multivesicular bodies. J. Gen. Virol. 77: 1967-1974.
Campbell, R., Lecoq, H., Wipf-Scheibel, C., and Sim, S. 1991. Transmission of Cucumber leaf spot virus by Olpidium radicale. J. Gen. Virol. 72: 3115-3119.
Campbell, R. N. 1996. Fungal transmission of plant viruses. Webster, R K.: Ed: 34.
Campbell, R. N., Sim, S. T., and Lecoq, H. 1995. Virus transmission by host-specific strains of Olpidium bornovanus and Olpidium brassicae. Eur. J. Plant Pathol. 101: 273-282.
Campbell, R. N., Wipf-Scheibel, C., and Lecoq, H. 1996. Vector-assisted seed transmission of Melon necrotic spot virus in melon. Phytopathology 86: 1294-1298.
Chang, C. A., and Tsai, H. T. 1993. Isolation of Bean yellow mosaic virus from lisianthus developing foliar mosaic and flower breaking symptoms. Plant Pathol. Bull. 2: 250-251.
Chao, C. H., Chen, C. C., Chang, C. A., and Chen, C. C. 2000. Identification of a Turnip mosaic virus isolate causing systemic yellow spotting on lisianthus. Plant Pathol. Bull. 9: 115-122.
Chen, C. C., Chen, Y. K., and Hsu, H. T. 2000. Characterization of a virus infecting lisianthus. Plant Dis. 84: 506-509.
Chen, C. C., Chen, Y. K., Ko, W. F., and Hsu, H. T. 2002a. Characterization of Lisianthus necrosis virus (genus Necrovirus) isolated from Dianthus caryophyllus. Plant Pathol. Bull. 11: 137-146.
Chen, C. C., and Hsu, H. T. 2002. Occurrence of a severe strain of Lisianthus necrosis virus in imported carnation seedlings in Taiwan. Plant Dis. 86: 444.
Chen, C. C., and Hu, C. C. 1999. Purification and characterization of a cucumovirus from Lisianthus rusellianus. Plant Protect. Bull. 41: 179-198.
Chen, C. C., Hu, C. C., Chen, Y. K., and Hsu, H. T. 2002b. A fabavirus inducing ringspot disease in lisianthus. Acta. Hortic. 568: 51-57.
Chen, C. C., Tsao, S. L., and Hsu, H. T. 2001. Diagnosis of Lisianthus necrosis virus infection by light and electron microscopy and serological assay. Plant Pathol. Bull. 10: 105-114.
Christie, S. R., Purcifull, D. E., Crawford, W. E., and Ahmed, N. A. 1987. Electron microscopy of negatively stained clarified viral concentrates obtained from small tissue samples with appendices on negative staining techniques. Fla. Agric. Exp. Stn. Bull. 872: 45.
Chu, F. H., Chao, C. H., Chung, M. H., Chen, C. C., and Yeh, S. D. 2001. Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology. 91: 361-368.
Cohen, J., Gera, A., Ecker, R., Ben, J. R., Perlsman, M., Gokkes, M., Lachman, O., and Antignus, Y. 1995. Lisianthus leaf curl a new disease of lisianthus caused by Tomato yellow leaf curl virus. Plant Dis. 79: 416-420.
Cohen, J., Lapidot, M., Loebenstein, G., and Gera, A. 2001. First report of Sweet potato sunken vein virus occurring in lisianthus. Plant Dis. 85: 679.
Coutts, R., Rigden, J., Slabas, A., Lomonossoff, G., and Wise, P. 1991. The complete nucleotide sequence of Tobacco necrosis virus strain D. J. Gen. Virol. 72: 1521-1529.
de Freitas, J. C., Kitajima, E. W., and Rezende, J. A. M. 1996. First report of Tobacco streak virus on lisianthus in Brazil. Plant Dis. 80: 1080.
Feinberg, A. P., and Vogelstein, B. 1983. A technique for radiolabling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6-13.
Felsenstein, J. 1985. Confidence limits on phylogenies an approach using the bootstrap. Evolution 39: 783-791.
Gallitelli, D., Hull, R., and Koenig, R. 1985. Relationships among viruses in the tombusvirus group nucleic-acid hybridization studies. J. Gen. Virol. 66: 1523-1532.
Gera, A. G., and Cohen, J. 1990. The natural occurrence of Bean yellow mosaic, Cucumber mosaic and Tobacco mosaic viruses in Lisianthus in Isael. Plant Pathol. 39: 561-564.
Grieco, F., Burgyan, J., and Russo, M. 1989. The nucleotide sequence of Cymbidium ringspot virus RNA. Nucl. Acids Res. 17: 6383.
Grieco, F., Savino, V., and Martelli, G. P. 1996. Nucleotide sequence of the genome of a citrus isolate of Olive latent virus 1. Arch. Virol. 141: 825-838.
Hillman, B. I., Hearne, P., Rochon, D., and Morris, T. J. 1989. Organization of Tomato bushy stunt virus genome: characterization of the coat protein gene and the 3' terminus. Virology 169: 42-50.
Hiruki, C. 1987. The Dianthoviruses: A distinct group of isometric plant viruses with bipartite genome. Adv. Virus Res. 33: 257-300.
Hogle, J. M., Maeda, A., and Harrison, S. C. 1986. Structure and assembly of Turnip crinkle virus I. X-ray crystallographic structure analysis at 3.2 angstrom resolution. J. Mol. Biol. 191: 625-638.
Holl, R. 2002. In: "Matthew' Plant Virology", 4 ed., Academic press, San Diego.
Huang, M., Koh, D. C., Weng, L. J., Chang, M. L., Yap, Y. K., Zhang, L., and Wong, S. M. 2000. Complete nucleotide sequence and genome organization of Hibiscus chlorotic ringspot virus, a new member of the genus Carmovirus: evidence for the presence and expression of two novel open reading frames. J. Virol. 74: 3149-3155.
Iwaki, M., Maria, E. R. A., Hanada, K., and Onogi, S. 1987. Lisianthus necrosis virus, a new necrovirus from Eustoma russellianum. Phytopathology. 77: 286-287.
Iwaki, M., Maria, E. R. A., Hanada, K., Onogi, S., and Zenbayashi, R. 1985. Three viruses occurred in lisianthus plants. Ann. Phytopathol. Soc. Jpn. 52: 355.
Jan, F. J., Zheng, Y. X., Chao, C. H., Ko, W. F., Chang, C. C., and Chen, C. C. 2003. Identification of a tobamovirus causing yellow mottle and stunting symptoms on lisianthus in Taiwan. Plant Pathol. Bull. 12: 122-132.
Jensen, S. G., Wysong, D. S., Ball, E. M., and Higley, P. M. 1991. Seed transmission of Maize chlorotic mottle virus. Plant Dis. 75: 497-498.
Johnston, J. C., and Rochon, D. M. 1996. Both codon context and leader length contribute to efficient expression of two overlapping open reading frames of a Cucumber necrosis virus bifunctional subgenomic mRNA. Virology 221: 232-239.
Kakani, K., Robbins, M., and Rochon, D. A. 2003. Evidence that binding of Cucumber necrosis virus to vector zoospores involves recognition of oligosaccharides. J. Virol. 77: 3922-3928.
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
Kritzman, A., Beckelman, H., Alexandrov, S., Cohen, J., Lampel, M., Zeidan, M., Raccah, B., and Gera, A. 2000. Lisianthus leaf necrosis: A new disease of lisianthus caused by Iris yellow spot virus. Plant Dis. 84: 1185-1189.
Lava Kumar, P., Jones, A. T., Sreenivasulu, P., Fenton, B., and Reddy, D. V. R. 2001. Characterization of a virus from pigeonpea with affinities to species in the genus Aureusvirus, family Tombusviridae. Plant Dis. 85: 208-215.
Li, Y., Bachmann, S., Maiss, E., Commandeur, U., Breyel, E., Timpe, U., and Koenig, R. 1993. Nucleotide sequence of the coat protein gene of Pelargonium leaf curl virus and comparison of the deduced coat protein amino acid sequence with those of other tombusviruses. Arch. Virol. 129: 349-356.
Lisa, V., and Gera, A. 1995. Lisianthus, In: "Virus and virus-like diseases of bulb and flower crops", (G. Loebenstein, Lawson, R. H., Brunt, A. A., Ed.), John Wiley & Sons., West Sussex.
Lisa, V., Vaira, A. M., d' Aquilio, M., Dellavalle, G., Masenga, V., Milne, R. G., and Boccardo, G. 1994. Characterization of an ilarvirus from Lisianthus (Eustoma grandiflorum). Acta. Hortic. 377: 81-89.
Lisa, V., Vaira, A. M., Milne, R. G., Luisoni, E., and Rapetti, S. 1990. Tomatto spotted wilt virus in five crops in Liguria. Inform. Fitopatol. 40: 34-41.
Lommel, S. A., Kendall, T. L., Siu, N. F., and Nutter, R. C. 1991. Characterization of Maize chlorotic mottle virus. Phytopathology 81: 819-823.
Lommel, S. A., Martelli, G. P., and Russo, M. 2000. Tombusviridae, In: "Virus Taxonomy: Classification and nomenclature of viruses", (M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carsten, M. K. Estes, S. M. Lemon, J. Maniloff, M. A. Mayo, D. J. McGeoch, C. R. Pringle, and R. B. Wickner, Eds.), Academic press, San Diego.
Lommel, S. A., Weston-Fina, M., Xiong, Z., and Lomonossoff, G. P. 1988. The nucleotide sequence and gene organization of Red Clover Necrotic Mosaic Virus RNA-2. Nucl. Acids Res. 16: 8587-8602.
Lot, H., Rubino, L., Delecolle, B., Jacquemond, M., Turturo, C., and Russo, M. 1996. Characterization, nucleotide sequence and genome organization of Leek white stripe virus, a putative new species of the genus Necrovirus. Arch. Virol. 141: 2375-2386.
McGovern, R. J., Polston, J. E., and Harbaugh, B. K. 1997. Detection of a severe isolate of Impatiens necrotic spot virus infecting lisianthus in Florida. Plant Dis. 81: 1334.
McLean, M. A., Campbell, R. N., Hamilton, R. I., and Rochon, D. M. 1994. Involvement of the Cucumber necrosis virus coat protein in the specificity of fungus transmission by Olpidium bornovanus. Virology 204: 840-842.
Meulewaeter, F., Cornelissen, M., and Van Emmelo, J. 1992. Subgenomic RNAs mediate expression of cistrons located internally on the genomic RNA of Tobacco necrosis virus strain A. J. Virol. 66: 6419-6428.
Meuleweiter, F. 1999. Necroviruses, In: "Encyclopedia of Virology", 2 ed., (A. Granoff, Ed.), Academic Press, San Diego.
Miller, J. S., Damude, H., Robbins, M. A., Reade, R. D., and Rochon, D. M. 1997. Genome structure of Cucumber leaf spot virus: sequence analysis suggests it belongs to a distinct species within the Tombusviridae. Virus Res. 52: 51-60.
Molnar, A., Havelda, Z., Dalmay, T., Szutorisz, H., and Burgyan, J. 1997. Complete nucleotide sequence of Tobacco necrosis virus strain DH and genes required for RNA replication and virus movement. J. Gen. Virol. 78: 1235-1239.
Morgunova, E. Y., Dauter, Z., Fry, E., Stuart, D. I., Stel'mashchuk, V. Y., Mikhailov, A. M., Wilson, K. S., and Vainshtein, B. K. 1994. The atomic structure of Carnation mottle virus capsid protein. FEBS Lett. 338: 267-271.
Morris, T. J. 2001. Tombusviruses, In: "Encyclopedia of plant phothology", (O. C. Maloy, and T. D. Muray, Eds.), John Wiley & Sons, Inc., New York.
Napoli, C., Lemieux, C., and Jorgensen, R. 1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279-290.
Oda, Y., Saeki, K., Takahashi, Y., Maeda, T., Naitow, H., Tsukihara, T., and Fukuyama, K. 2000. Crystal structure of Tobacco necrosis virus at 2.25 angstrom resolution. J. Mol. Biol. 300: 153-169.
Offei, S., Coffin, R., and Coutts, R. 1995. The Tobacco necrosis virus p7a protein is a nucleic acid-binding protein. J. Gen. Virol. 76: 1493-1496.
Olson, A. J., Bricogne, G., and Harrison, S. C. 1983. Structure of Tomato bushy stunt virus: IV. The virus particle at 2.9 angstrom resolution. J. Mol. Biol. 171: 61-93.
Osman, T. A. M., and Buck, K. W. 1990. Double-stranded RNAs isolated from plant tissue infected with Red clover necrotic mosaic virus correspond to genomic and subgenomic single-stranded RNAs. J. Gen. Virol. 71: 945-948.
Provvidenti, R. 1985. Two newly recognized hosts of Cucumber mosaic virus: Eustoma grandiflorum and Peristrophe angustiofolia. Plant Dis. 69: 542.
Robbins, M. A., Reade, R. D., and Rochon, D. M. 1997. A Cucumber necrosis virus variant deficient in fungal transmissibility contains an altered coat protein shell domain. Virology 234: 138-146.
Rochon, D. M. 1999. Tombusviruses, In: "Encyclopedia of Virology." 2 ed., (R. G. Webster, and A. Granoff, Eds.), Academic Press, San Diego.
Rochon, D. M., and Johnston, J. C. 1991. Infectious transcripts from cloned Cucumber necrosis virus cDNA: evidence for a bifunctional subgenomic mRNA. Virology 181: 656-665.
Rubino, L., Burgyan,J. and Russo,M. 1995. Molecular cloning and complete nucleotide sequence of carnation Italian ringspot tombusvirus genomic and defective interfering RNAs. Arch. Virol. 140: 2027-2039.
Rubino, L., Weber-Lotfi, F., Dietrich, A., Stussi-Garaud, C., and Russo, M. 2001. The open reading frame 1-encoded ('36K') protein of Carnation Italian ringspot virus localizes to mitochondria. J. Gen. Virol. 82: 29-34.
Russo, M., Vovlas, C., Rubino, L., Grieco, F., and Martelli, G. P. 2002. Molecular characterization of a tombusvirus isolated from diseased pear trees in southern Italy. J. Plant Pathol. 84: 161-166.
Ryabov, E. V., Generozov, E. V., Kendall, T. L., Lommel, S. A., and Zavriev, S. K. 1994. Nucleotide sequence of Carnation ringspot dianthovirus RNA-1. J. Gen. Virol. 75: 243-247.
Sambrook, J., Fritsch, E. F., and Maniatis, T. 2001. In: "Molecular Cloning: A laboratory manual", 3 ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Sanger, F., Nicklen, S., and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 83: 571-579.
Scheets, K. 2000. Maize chlorotic mottle machlomovirus expresses its coat protein from a 1.47-kb subgenomic RNA and makes a 0.34-kb subgenomic RNA. Virology 267: 90-101.
Tavazza, M., Lucioli, A., Calogero, A., Pay, A., and Tavazza, R. 1994. Nucleotide sequence, genomic organization and synthesis of infectious transcripts from a full-length clone of Artichoke mottle crinkle virus. J. Gen. Virol. 75: 1515-1524.
Turina, M., Maruoka, M., Monis, J., Jackson, A. O., and Scholthof, K. B. 1998. Nucleotide sequence and infectivity of a full-length cDNA clone of
Panicum mosaic virus. Virology 241: 141-155.
Valverde, R. A., Dodds, J. A., and Heick, J. A. 1986. Double-stranded RNA from plants infected with viruses having elongated particles and undivided genomes. Phytopathology 76: 459-465.
Venable, J. H., and Coggeshall, R. 1965. A simplified lead citrate stain for use in electron microscopy. J. Cell Biol. 25: 407-408.
Weng, Z., and Xiong, Z. 1997. Genome organization and gene expression of Saguaro cactus carmovirus. J. Gen. Virol. 78: 525-534.
Wolcan, S., Ronco, L., Bo, E. D., Lori, G., and Alippi, H. 1996. First report of diseases on lisianthus in Argentina. Plant Dis. 80: 223.
Xiong, Z., and Lommel, S. A. 1989. The complete nucleotide sequence and genome organization of Red clover necrotic mosaic virus RNA-1. Virology 171: 543-554.
You, X. J., Kim, J. W., Stuart, G. W., and Bozarth, R. F. 1995. The nucleotide sequence of Cowpea mottle virus and its assignment to the genus Carmovirus. J. Gen. Virol. 76: 2841-2845.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔