跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 12:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡靜婷
論文名稱:葉表與根圈綠膿桿菌之隨機增幅核酸多型性分析
論文名稱(外文):Random amplified polymorphic DNA analyses of Pseudomonas aeruginosa from phylloplane and rhizosphere
指導教授:曾國欽曾國欽引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:綠膿桿菌隨機增幅核酸多型性分析
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用六個隨機引子以RAPD分析20個葉表與根圈綠膿桿菌菌株間之差異性,結果顯示葉表與根圈綠膿桿菌菌株間具差異性,又根圈之綠膿桿菌菌株間之差異性較葉表之綠膿桿菌菌株間為大,除葉表分離的W135菌株外,其餘葉表分離之綠膿桿菌菌株其相似度為0.73,而與大部分根圈分離菌株較近,由根圈分離的S2菌株與葉表菌群之相似度則較其與其他根圈菌株為高。測試此些綠膿桿菌對Biolog 95種碳素源之利用情形,其中根圈菌株大部分皆會利用Tween 80及Pyruvic acid methyl ester此兩種碳素源,而大部分葉表菌株則會利用Succinamic acid、Hydroxy-L-proline及L-serine三種碳素源,然對於碳素源利用與RAPD之分析結果其間未具明顯之相關性。以隨機引子OPC11對供試之綠膿桿菌可增幅出一專一性DNA片段 (約700 bp),此片段經選殖及進行核甘酸序列分析,其核酸序列與綠膿桿菌PAO1菌株之核酸序列高達99%相同度,依其序列所設計出之引子對PaC11-F1 / PaC11-R1,以聚合酶連鎖反應對綠膿桿菌菌株進行測試,結果皆能增幅出556 bp之DNA專一性片段。然對於17個產氰之P. fluorescens及P. putida菌株,此引子對可對其中之六個菌株增幅出556 bp之條帶;對21個不產氰之P. fluorescens及P. putida菌株,則有三個菌株能增幅出此片段。由茄科作物根圈土壤所分離之十一株綠膿桿菌菌株皆具有氰酸產生之能力,其對番茄種子發芽及生長之影響,結果顯示綠膿桿菌於菌量108 CFU/g 泥炭土其發芽率可由對照組之93%降至37% ~ 63%間,且大部分綠膿桿菌菌株皆明顯抑制番茄幼苗根部之生長,可由對照組之8.31 cm降至4.56 ~7.01 cm間,而對植物莖部生長則無明顯之抑制現象。

壹、前言………………………………………………………………………………1
貳、材料與方法……………………………………………………………………… 5
一、供試菌株……………………………………………………………………….5
二、細菌全DNA的抽取與濃度測定……………………………………………..5
(一) 細菌全DNA的抽取……………………………………………………….5
(二) DNA濃度及純度測定……………………………………………………...6
三、隨機增幅核酸多型性分析 (Random amplified polymorphic DNA, RAPD).. .6
四、綠膿桿菌專一性DNA片段之回收及純化…………………………………..7
五、南方雜合法 (Southern hybridization)…………………………………………7
(一) 轉漬 (transfer) 及聯結 (UV-crosslinking)………………………………..7
(二) 核酸探針之製備…………………………………………………………...8
(三) 核酸雜合反應 (hybridization) 及偵測反應 (detection)…………………8
六、綠膿桿菌專一性DNA片段之選殖……………………………………………9
七、小量質體DNA (plasmid DNA) 的製備及選殖株篩選……………………..10
八、選殖株重組質體DNA嵌入片段之核甘酸定序及專一性引子對之設計…10
九、綠膿桿菌引子對專一性之測定………………………………………………11
(一) 對綠膿桿菌菌株專一性片段之增幅……………………………………..11
(二) 引子對專一性之測試……………………………………………………..11
十、測試綠膿桿菌對碳素源之利用………………………………………………12
十一、樹狀圖分析…………………………………………………………………12
十二、根圈綠膿桿菌對植物生長之影響…………………………………………12
(一) 供試植物及土壤………………………………………………………….12
(二) 接種源的製備…………………………………………………………….13
(三) 對種子發芽之影響……………………………………………………….13
(四) 對植物生長之影響……………………………………………………….13
參、結果……………………………………………………………………………..14
一、綠膿桿菌之RAPD分析…………………………………………………….14
二、綠膿桿菌RAPD分析之樹狀圖……………………………………………..16
三、綠膿桿菌對碳素源之利用…………………………………………………..16
四、綠膿桿菌對碳素源利用之樹狀圖…………………………………………..17
五、綠膿桿菌專一性DNA片段之篩選…………………………………………18
六、綠膿桿菌專一性DNA片段之選殖…………………………………………18
七、綠膿桿菌專一性引子對之設計………………………………………………18
八、引子對之專一性測定…………………………………………………………19
九、根圈綠膿桿菌對番茄生長之影響……………………………………………19
(一) 種子發芽之影響………………………………………………………...20
(二) 幼苗生長之影響………………………………………………………...20
肆、討論…………………………………………………………………………….21
伍、引用文獻……………………………………………………………………….24
陸、摘要…………………………………………………………………………….29
柒、Abstract…………………………………………………………………………30
捌、圖表…………………………………………………………………………….32
玖、附錄…………………………………………………………………………….52

1.宋秉峰. 1999. 鑑定及偵測瓜類細菌性果斑病菌之聚合酵素連鎖反應技術. 國立中興大學植物病理學研究所第二十九屆畢業碩士論文.
2.汪鴻文. 1997. 植物葉表綠膿桿菌之特性分析. 國立中興大學植病研究所第二十七屆碩士論文.
3.林宜賢、汪鴻文、徐世典、曾國欽. 2002. 產氰綠膿桿菌對萵苣生長之影響. 植物病理學會刊 11:243-244. (Abstr.)
4.陳裕才. 2001. Pseudomonas fluorescens 與Pseudomonas putida之DNA多形性分析. 國立中興大學植病研究所第三十一屆碩士論文.
5.Alstrom, S. 1987. Factors associated with detrimental effects of rhizobacteria on plant growth. Plant and Soil 102: 3-9.
6.Alstrom, S., and Burns. R. G. 1989. Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fertil. Soils 7:232-238.
7.Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Siol. Biol. Biochem. 19:451-457.
8.Bergan, T. 1978. Phage typing of Pseudomonas aeruginosa. pages 169-199 in Methods in Microbiology Vol. 10, Bergan, T., and Norris, T. R. eds. Academic Press. London.
9.Bergan, T. 1981. Human- and animal-pathogenic members of the genus Pseudomonas. Pages 666-700 in : The Prokaryotes, A Handbook on Habitats, Isolation, and Identification of Bacteria. Starr, M. P., et al., eds. Springer- Verlag, New York, U.S. A.
10.Birch, P. R. J., Hyman, L. J., Taylor, R., Opio, A. F., Bragard, C., and Toth, I. K.
1997. RAPD PCR-based differentiation of Xanthomonas campestris pv. phaseoli
and Xanthomonas campestris pv. phaseoli var. fuscans. Europ. J. Plant Pathol. 103:809-814.
11.Burr, T. J., Schroth, M. N., and Susolow, T. 1978. Increased potato yields by treatment of seedpieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology. 68:1377-1383.
12.Clerc, A., Manceau, C., and Nesme, X. 1998. Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genopecies Ⅲ of Pseudomonas syringae. Appl. Environ. Microbiol. 64:1180-1187.
13.Cho, J. J., Schroth, M. N., Kominos, S. D., and Green, D. K. 1975. Ornamental plants as carriers of Pseudomonas aeruginosa. Phytopathology 65:425-431.
14.Corbell, N. and Loper, J. E. 1995. A global regulator of a secondary metabolite production in Pseudomonas fluorescens Pf-5. J. Bacteriol. 177:6230-6236.
15.Edmonds, P., Suskind, R. R., Macmillan, B. G., and Holder, I. A. 1972. Epidemiology of Pseudomonas aeruginosa in a burns hospital: Evaluation of serological, bacteriophage, and pyocin typing methods. Appl. Microbiol. 24: 213-218.
16.Fahy, P. C. and Lloyd, A. B. 1983. Pseudomonas:The fluorescent pseudomonads. Pages 141-188 in: Plant Bacterial Disease: A diagnostic Guide. G. J. Persley, ed. Academic Press, N. Y. 393pp.
17.Flaishman. M. A., Eyal, Z., Zilberstein, A., Voisard, C., and Hass, D. 1996. Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. Mol. Plant Microbe Interact. 9:642-645.
18.Freeman, L. R., Angelini, P., Silverman, G. J., and Merritt, C. 1975. Production of hydrogen cyanide by Pseudomonas fluorescens. Appl. microbiol. 29:560-561.
19.Jones, L. F., Zakanycz, J. P., Thomas, E. T., and Farmer, J. J. 1974. Pyocin typing of Pseudomonas aeruginosa: a simplified method. Appl. Microbiol. 27:400-406.
20.King, E. O., Ward, M. K., and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301-307.
21.Knowles, C. J. 1976. Microorganisms and cyanide. Bacteriol. Rev. 40:652-680.
22.Kominos, S. D., Copeland, C. E., Grosiak, B., and Postic, B. 1972. Introduction of Pseudomonas aeruginosa into a hospital via vegetables. Appl. Microbiol. 24:567-570.
23.Kreme, R. T., and Souissi, T. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr. Microbiol. 43: 182-186.
24.Laguerre, G., Rigottier-Gois, L., and Lemanceau, P. 1994. Flourescent Pseudomonas species categorized by using polymorase chain reaction (PCR)/ restriction fragment analysis of 16S rDNA. Mol. Ecol. 3:479-487.
25.Lanyi, B., and Bergan, T. 1978. Serological characterization of Pseudomonas aeruginosa. Pages 93-168 in Methods in Microbiology, Vol. 10. Bergan, T., and Norris, J. R. eds. Academic press, London.
26.Mavrodi, O. V., McSpadden Gardener, B. B., Mavrodi, D. V., Bonsall, R. F.,
Weller, D. M. and Thomashow, L. S. 2001. Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species. Phytopathology 91: 35-43.
27.McSpadden Gardener, B. B., Schroeder, K. L., Kalloger, S. E., Raaijmaker, J. M., Thomashow, L. S., and Weller, D. M. 2000. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol. 66: 1939-1946.
28.Natsch, A., Keel, C., Hebecker, N., Laasik, E., and Défago, G. 1997. Influence of biocontrol strain Pseudomonas fluorescens CHA0 and its antibiotic overproducing derivative on the diversity of resident root colonizing pseudomonads. FEMS Microbiol Ecol. 23: 341-352.
29.Olsen, G. J., Lane, D. J., Giovannoni, S. J., and Pace, N. R. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40: 337-365.
30.Picard, C., Di Cello, F., Ventura, M., Fani, R., and Guckert, A. 2000. Frequency and biodiversity of 2,4- diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948-955.
31.Restrepo, S., Velez, C. M., and Verdier, V. 2000. Measuring the genetic diversity of Xanthomonas axonopodis pv. manihotis within different field in Colonbia. Phytopathology. 90:683-690.
32.Sambrook, J., Maniatis, T. I., and Fritsch, E. F. 1989. Molecular cloning : a
Laboratory anual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
33.Sarniguet, A., Kraus, J., Henkels, M. D., Muehlchen, A. M., and Loper, J. E. 1995. The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc. Natl. Acad. Sci. USA . 92:12255-12259.
34.Sharifi-Tehrani, A., Zala, M., Natsch, A., Moënne-Loccoz, Y., and Défago, G. 1998. Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol- producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur. J. Plant Pathol. 104: 631-643.
35.Southern, E. M. 1975. Detection of specific sequences among DNA fragments
separated by gel electrophoresis. J. Mol. Biol. 98: 503.
36.Stolp, H., and Gadkari, D. 1981. Nonpathogenic members of the genus Pseudomonas. Pages 719-741 in: The Prokaryotes, A Handbook on Habitats, Isolation, and Identification of Bacteria. Starr, M. P. et al., eds. Springer- Berlag, New York, U.S.A.
37.Suslow, T. V. and Schroth, M.N. 1982. Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72: 199-206.
38.Tatusova, T. A., and Madden, T. L. 1999. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174: 247-250.
39.Thwaites, R., Mansfield, J., Eden-Green, S., and Seal, S. 1999. RAPD and rep-
PCR-based fingerprinting of vascular bacterial pathogens of Musa spp. Plant
Pathol.48:121-128.
40.Voisard, C., Keel, C., Hass, D., and Defago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root of tobacco under gnotobiotic condition. EMBO J. 8:351-358.
41.Wei, G., Kloepper, J. W., and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbicuare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508-1512.
42.Weller, D. W. 1988. Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Plant Path. 26:379-407.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top