1.宋秉峰. 1999. 鑑定及偵測瓜類細菌性果斑病菌之聚合酵素連鎖反應技術. 國立中興大學植物病理學研究所第二十九屆畢業碩士論文.2.汪鴻文. 1997. 植物葉表綠膿桿菌之特性分析. 國立中興大學植病研究所第二十七屆碩士論文.3.林宜賢、汪鴻文、徐世典、曾國欽. 2002. 產氰綠膿桿菌對萵苣生長之影響. 植物病理學會刊 11:243-244. (Abstr.)
4.陳裕才. 2001. Pseudomonas fluorescens 與Pseudomonas putida之DNA多形性分析. 國立中興大學植病研究所第三十一屆碩士論文.5.Alstrom, S. 1987. Factors associated with detrimental effects of rhizobacteria on plant growth. Plant and Soil 102: 3-9.
6.Alstrom, S., and Burns. R. G. 1989. Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fertil. Soils 7:232-238.
7.Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Siol. Biol. Biochem. 19:451-457.
8.Bergan, T. 1978. Phage typing of Pseudomonas aeruginosa. pages 169-199 in Methods in Microbiology Vol. 10, Bergan, T., and Norris, T. R. eds. Academic Press. London.
9.Bergan, T. 1981. Human- and animal-pathogenic members of the genus Pseudomonas. Pages 666-700 in : The Prokaryotes, A Handbook on Habitats, Isolation, and Identification of Bacteria. Starr, M. P., et al., eds. Springer- Verlag, New York, U.S. A.
10.Birch, P. R. J., Hyman, L. J., Taylor, R., Opio, A. F., Bragard, C., and Toth, I. K.
1997. RAPD PCR-based differentiation of Xanthomonas campestris pv. phaseoli
and Xanthomonas campestris pv. phaseoli var. fuscans. Europ. J. Plant Pathol. 103:809-814.
11.Burr, T. J., Schroth, M. N., and Susolow, T. 1978. Increased potato yields by treatment of seedpieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology. 68:1377-1383.
12.Clerc, A., Manceau, C., and Nesme, X. 1998. Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genopecies Ⅲ of Pseudomonas syringae. Appl. Environ. Microbiol. 64:1180-1187.
13.Cho, J. J., Schroth, M. N., Kominos, S. D., and Green, D. K. 1975. Ornamental plants as carriers of Pseudomonas aeruginosa. Phytopathology 65:425-431.
14.Corbell, N. and Loper, J. E. 1995. A global regulator of a secondary metabolite production in Pseudomonas fluorescens Pf-5. J. Bacteriol. 177:6230-6236.
15.Edmonds, P., Suskind, R. R., Macmillan, B. G., and Holder, I. A. 1972. Epidemiology of Pseudomonas aeruginosa in a burns hospital: Evaluation of serological, bacteriophage, and pyocin typing methods. Appl. Microbiol. 24: 213-218.
16.Fahy, P. C. and Lloyd, A. B. 1983. Pseudomonas:The fluorescent pseudomonads. Pages 141-188 in: Plant Bacterial Disease: A diagnostic Guide. G. J. Persley, ed. Academic Press, N. Y. 393pp.
17.Flaishman. M. A., Eyal, Z., Zilberstein, A., Voisard, C., and Hass, D. 1996. Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. Mol. Plant Microbe Interact. 9:642-645.
18.Freeman, L. R., Angelini, P., Silverman, G. J., and Merritt, C. 1975. Production of hydrogen cyanide by Pseudomonas fluorescens. Appl. microbiol. 29:560-561.
19.Jones, L. F., Zakanycz, J. P., Thomas, E. T., and Farmer, J. J. 1974. Pyocin typing of Pseudomonas aeruginosa: a simplified method. Appl. Microbiol. 27:400-406.
20.King, E. O., Ward, M. K., and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 44:301-307.
21.Knowles, C. J. 1976. Microorganisms and cyanide. Bacteriol. Rev. 40:652-680.
22.Kominos, S. D., Copeland, C. E., Grosiak, B., and Postic, B. 1972. Introduction of Pseudomonas aeruginosa into a hospital via vegetables. Appl. Microbiol. 24:567-570.
23.Kreme, R. T., and Souissi, T. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr. Microbiol. 43: 182-186.
24.Laguerre, G., Rigottier-Gois, L., and Lemanceau, P. 1994. Flourescent Pseudomonas species categorized by using polymorase chain reaction (PCR)/ restriction fragment analysis of 16S rDNA. Mol. Ecol. 3:479-487.
25.Lanyi, B., and Bergan, T. 1978. Serological characterization of Pseudomonas aeruginosa. Pages 93-168 in Methods in Microbiology, Vol. 10. Bergan, T., and Norris, J. R. eds. Academic press, London.
26.Mavrodi, O. V., McSpadden Gardener, B. B., Mavrodi, D. V., Bonsall, R. F.,
Weller, D. M. and Thomashow, L. S. 2001. Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species. Phytopathology 91: 35-43.
27.McSpadden Gardener, B. B., Schroeder, K. L., Kalloger, S. E., Raaijmaker, J. M., Thomashow, L. S., and Weller, D. M. 2000. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol. 66: 1939-1946.
28.Natsch, A., Keel, C., Hebecker, N., Laasik, E., and Défago, G. 1997. Influence of biocontrol strain Pseudomonas fluorescens CHA0 and its antibiotic overproducing derivative on the diversity of resident root colonizing pseudomonads. FEMS Microbiol Ecol. 23: 341-352.
29.Olsen, G. J., Lane, D. J., Giovannoni, S. J., and Pace, N. R. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40: 337-365.
30.Picard, C., Di Cello, F., Ventura, M., Fani, R., and Guckert, A. 2000. Frequency and biodiversity of 2,4- diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948-955.
31.Restrepo, S., Velez, C. M., and Verdier, V. 2000. Measuring the genetic diversity of Xanthomonas axonopodis pv. manihotis within different field in Colonbia. Phytopathology. 90:683-690.
32.Sambrook, J., Maniatis, T. I., and Fritsch, E. F. 1989. Molecular cloning : a
Laboratory anual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
33.Sarniguet, A., Kraus, J., Henkels, M. D., Muehlchen, A. M., and Loper, J. E. 1995. The sigma factor σs affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5. Proc. Natl. Acad. Sci. USA . 92:12255-12259.
34.Sharifi-Tehrani, A., Zala, M., Natsch, A., Moënne-Loccoz, Y., and Défago, G. 1998. Biocontrol of soil-borne fungal plant diseases by 2,4-diacetylphloroglucinol- producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur. J. Plant Pathol. 104: 631-643.
35.Southern, E. M. 1975. Detection of specific sequences among DNA fragments
separated by gel electrophoresis. J. Mol. Biol. 98: 503.
36.Stolp, H., and Gadkari, D. 1981. Nonpathogenic members of the genus Pseudomonas. Pages 719-741 in: The Prokaryotes, A Handbook on Habitats, Isolation, and Identification of Bacteria. Starr, M. P. et al., eds. Springer- Berlag, New York, U.S.A.
37.Suslow, T. V. and Schroth, M.N. 1982. Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72: 199-206.
38.Tatusova, T. A., and Madden, T. L. 1999. BLAST 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174: 247-250.
39.Thwaites, R., Mansfield, J., Eden-Green, S., and Seal, S. 1999. RAPD and rep-
PCR-based fingerprinting of vascular bacterial pathogens of Musa spp. Plant
Pathol.48:121-128.
40.Voisard, C., Keel, C., Hass, D., and Defago, G. 1989. Cyanide production by Pseudomonas fluorescens helps suppress black root of tobacco under gnotobiotic condition. EMBO J. 8:351-358.
41.Wei, G., Kloepper, J. W., and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbicuare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508-1512.
42.Weller, D. W. 1988. Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Plant Path. 26:379-407.