跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王貞淓
研究生(外文):Wamg Jane Feng
論文名稱:嘉磷塞除草劑在台灣中部地區水稻植體及土壤環境之殘毒分析
論文名稱(外文):Glyphosate residue in rice and soil environment in central Taiwan area
指導教授:王慶裕王慶裕引用關係
指導教授(外文):Ching-Yuh Wang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:74
中文關鍵詞:嘉磷塞水稻土壤殘毒
外文關鍵詞:glyphosatericesoilresidue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:559
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本試驗之目的乃在建立嘉磷塞分析與萃取濃縮方法、嘉磷塞依國內推薦用量於台灣中部地區水稻栽培整地前及植前施用後,於一、二期作水稻各生育階段,分析植體中嘉磷塞之殘留量及水田土壤中嘉磷塞殘毒變化‚以了解在台灣氣候環境下殘留量是否受到光照及微生物影響。利用HPLC分析法可在0.495-9.92 nmole範圍內獲致直線回歸,偵測極限為0.5 nmol。在萃取方法上,水稻植體之水萃取液及田水經NaOH調整pH植後,以陰離子交換管柱可回收80%嘉磷塞。土壤中之嘉磷塞分別以水、甲醇、及NaOH萃取回收率為63.4, 0.5及22.2%,且隨著藥劑濃度增加水萃取比例增加。
在植體分析部分第一期作施用藥劑後1個月內植體殘毒快速降低,於水稻分蘗期植體內嘉磷塞僅殘留32.2%,進入開花期、子粒充實期及收穫期,於植體及食用部位子粒內未發現殘留。第二期作可能因栽培初期氣溫仍高殘留土中之嘉磷塞分解較第一期作快,於水稻幼苗期以後各時期取樣分析時發現均無嘉磷塞殘留。此外,分析中部地區五處水田於兩期作每月固定取樣田水分析,兩期作之田水水樣中嘉磷塞殘毒分別低於0.2 及0.1 ppm。
於溫室中以土壤包及試管試驗發現,封閉試管中溶於純淨蒸餾水之嘉磷塞經十二個月仍無降解現象,且不受光分解。於封閉透明土壤包中嘉磷塞則隨時間降解,且不受光照影響;然而於通氣之試管中土壤溶液所含嘉磷塞則因光照而加速降解。此外,在微生物存在下極顯著加速嘉磷塞分解、尤其在通氣狀況下反應更加快速。

Experiments were conducted to establish the extraction and analysis techniques of glyphosate in rice plant, paddy water and soil, seasonal changes of glyphosate residue in rice (Oryza sativa L.) plant and paddy soil in central Taiwan, as well as the glyphosate degradation in paddy soil were investigated. The quantitation methods of glyphosate with high performance liquid chromatography (HPLC) was assessed for its efficiency to detect glyphosate residue. A linear regression in the range of 0.495 to 9.92 nmol glyphosate could be observed by HPLC coupled with peroxidation and o-phthalaldehyde (OPA)-derivatization of the sample eluent. Anion-exchange column could yield 80% recovery rate of glyphosate from water extract of rice plants and paddy water. Extraction of glyphosate from paddy soil by using water, methanol and NaOH sequentially showed 63.4, 0.5 and 22.2% recovery rates of glyphosate, respectively, and the proportion of water-extractable fraction was increased with glyphosate concentration. In this study, analysis of glyphosate in rice plants of first crop (spring crop) showed that glyphosate absorbed by rice plants decreased rapidly within one month, and further decreased to 32.2% at tillering stage; subsequently, no glyphosate residue could be detected in plants and grain part of rice. However, higher temperature and light intensity in the early growth stage of rice plants for second crop (fall crop), in comparison with first crop, might accelerate glyphosate dissipation in the soil environment. Thus no glyphosate was found to accumulate in rice plants throughout the whole cropping season in fall. In addition, field study showed that glyphosate residues in paddy water in two crop seasons were lower than 0.2 and 0.1 ppm, respectively, at five locations in central Taiwan. In greenhouse study, none of the glyphosate in distilled water degraded after 12 months regardless of lighting. However, glyphosate in soil solution ensealed with plastic bag dissipated with time independent of lighting condition, but glyphosate dissipation was accelerated by light under aeration. In addition, biodegradation of glyphosate by microbes in soil was obvious, especially in aerobic condition. Microbes responsible for glyphosate degradation will be isolated and identified further.

目錄……………………………………………………Ⅰ
圖目錄…………………………………………………Ⅱ
表目錄…………………………………………………Ⅳ
壹、緒言………………………………………………1
貳、前人研究…………………………………………5
參、材料與方法………………………………………15
肆、結果與討論………………………………………25
(一)嘉磷塞除草劑分析與萃取技術…………………………………25
(二)嘉磷塞在水稻植體及水田土壤中之殘毒分析…………………35
(三)嘉磷塞在土壤環境中之降解……………………………………45
伍、中文摘要…………………………………………57
陸、英文摘要…………………………………………59
柒、參考文獻…………………………………………61
附錄…………………………………………………..69

農林廳。1998。植物保護手冊,台灣省政府農林廳,中興新村,台灣。
邱建中、鍾維榮。1996。殺草劑與雜草防除。P.164-167。中華民國雜草學會。台中區農業改良場編印。
劉銘龍、柳中明、黃韋菁。1998。揭開紫外線的奧秘。台北市:台灣地球日出版社。
Abdullah. M. P., J. Daud. K. S. Hong and C. H. Yew. 1995. Improved method for the determination of glyphosate in water. J. Chromatogr. A 697:363-369.
Alferness, P. L. and L. A. Wiebe. 2001. Determination of glyphosate and aminomethylphosphonic acid in crop by capillary gas chromatography with mass-selective detection. Collaborative study. J. AOAC Int.84:823-846.
Barry, G. F., G. Kishore, S. Padgette, S. Taylor, K. Kolacz, M. Weldon, and D. B. Re. 1992. Inhibitiors of amino acid biosynthesis:Strategies for imparting glyphosate tolerance to crop plants. In:Singh, B. K., H. E. Flores, J. C. Shannon (eds.), Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiology. Rockville. pp.139-145.
Bujacz, B., P. Wieczorek, T. Krzysko-Lupicka, Z. Golab, B. Lejczak, and P. Kavfarski. 1995. Organophosphonate utilization by the wild-type strain of Penicillium notatum. Appl. Environ. Microbiol. 61:2905-2910.
Busse, M. D., A. W. Ratcliff, C. J. Shestak, and R. F. Powers. 2001. Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol. Biochem. 33:1777-1789.
Carlisle, S. M. and J. T. Trevors. 1987. Glyphosate in the environment. Water Air Soil Pollut. 39:409-420.
Chakravarty, P. and L. Chatarpaul. 1990. Non-target effect of herbicide. I. Effect of glyphosate and hexazinone on soil microbial activity, microbial population and in-vitro growth of ectomycorrhizal fungi. Pesticide Sci. 28:233-241.
Cheah, U. B., Ralph C. K. and K. Y. Lum. 1998. Degradation of four commonly used pesticides in Malaysian agricultural soils. J. Agric. Food Chem. 46:1217-1223.
Cikalo, M. G., D. M. Goodall and W. Matthews. 1996. Analysis of glyphosate using capillary electrophoresis with indirect detection. J. Chromatogr. A 745:189:200.
Coupland, O. 1985. Metabolism of glyphosate in plants. Chap. 3."The Herbicide Glyphosate" (E. Grossbard and D. Atkinson. Eds). Butterworths. London;Boston.
Cowell, J. E., J. L. Kunstman, P. J. Nord, J. R. Steinmetz and G. R. Wilson. 1986. Walidation of an analytical residue method for analysis of glyphosate and metabolite:An interlaboratory study. J. Agric. Food Chem. 34:955-960.
Dick, R. E. and J. P. Quinn. 1995a. Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl. Microbiol. Biotechnol. 43:545-550.
Dick, R. E., and J. P. Quinn. 1995b. Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW. FEMS Microbiol. Letters 134:177-182.
Eberbach, P. L. 1999. Influence of incubation temperature on the behavior of triethylamine-extractable glyphosate (N-Phosphonomethylglycine) in four soils. J. Agric. Food Chem. 47:2459-2467.
Forlani, G., A. Mangiagalli, E. Nielsen and C. M. Suardi. 1999. Degradation of phosphonate herbicide glyphosate in soil: evidence for possible involvement of unculturable microorganisms. Soil Biology and Biochemistry 31:991-997.
Glass, R. L. 1987. Adsorption of glyphosate by soils and clay minerals. J. Agric. Food Chem. 35:497-500.
Hogendoorn, E. A., F. M. Ossendrijver, E. Dijkman and R. A. Baumann.1999. Rapid determination of glyphosate in cereal samples by means of pre-column derivatisation with 9-fluorenylmethyl chloroformate and coupled-column liquid chromatography with fluorescence detection. J. Chromatogr. A. 833:67-73.
Krzysko-Lupicka, T., and A. Orlik. 1997. The use of glyphosate as the sole source of phosphorus or carbon for the selection of soil-borne fungal strains capable to degrade this herbicide. Chemospere 34:2601-2605.
Krzysko-Lupicka, T., W. Strof, K. Kubs, M. Skorupa, P. Wieczorek, B. Lejczak, and P. Kafarski. 1997. The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl. Microbiol. Biotechnol. 48:549-552.
Liu, C. M., P. A. McLean, C. C. Sookdeo, and F. C. Cannon. 1991. Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl. Environ. Microbiol. 57:1799-1804.
Mallat, E. and D. Barcelo. 1998. Analysis and degradation study of glyphosate and of aminomethylphosphonic acid in natural water by means of polymeric and ion-exchange solid-phase extraction columns followed by ion chromatography-post-column derivatization with fluorescence detection. J. Chromatogr. A 823:129-136.
McMulan, G., F. Harrington, and J. P. Quinn. 1992. Metabolism of phosphonoacetate as the sole carbon and phosphorus source by an environmental bacterial isolate. Appl. Environ. Microbiol. 58:1364-1366.
Miles, C. J. and H. A. Moye. 1988. Extraction of glyphosate herbicide from soil and clay minerals and determination of residues in soils. J. Agric. Food Chem. 36:486-491.
Moshier, F. J., and D. Penner. 1978. Factors influencing microbial degradation of 14C-glyphosate to 14CO2 in soil. Weed Sci. 26:686-691.
Morillo, E., T. Undabeytia, and M. Celia. 1997. Adsorption of glyphosate on the clay mineral montmorillonite︰effect of Cu ( II ) in solution and adsorbed on the mineral. Environ. Sci. Technol. 31︰3588-3592.
Morillo, E., T. Undabeytia, C. Maqueda and A. Ramos. 2000. Glyphosate adsorption on soils of different characteristics influence of copper addition. Chemosphere 40:103-107.
Obojska, A., B. Lejczak, and M. Kubrak. 1999. Degradation of phosphonates by streptomycete isolates. Appl. Microbiol. Biotechnol. 51:872-876.
Pipke, R., and N. Amrhein. 1988a. Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl. Environ. Microbiol. 54:1293-129
Pipke, R., and N. Amrhein. 1988b. Isolation and characterization of a mutant of Arthrobacter sp. Strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl. Environ. Microbiol. 54: 2868-2870.
Padgette, B. R., G. F. Barry, D. E. Eichholtz, X. Delannay, R. L. Kishore, and R. T. Fraley. 1996. New weed contral opportunities:development of soybeans with a Roundup ready gene in herbicide-resistant crops:Agricultural, Environmental, Economic, Regulatory and Technical Aspects, ed by Duke SO, Lewis Pubhshers, Chelsea, MI, pp53-84.
Piccolo, A., G. Celano and P. Conte. 1996 Absorption of glyphosate by humic substance. J. Agric. Food Chem.44:2442-2446.
Rueppel, M. L., J. T. Marvel and L. A. Suba. 1975. The metabolism of N-phosphonomethyl-glycine in corn, soybeans and wheat. Abstract, Papers of the American Chemical Society. 170th meeting. PEST26.
Ruepple. M. L., B. B. Brightwell, J. Schaefer, and J. T. Marvel. 1977. Metabolism and degradation of glyphosate in soil and water. J. Agri. Food. Chem. 25:517-528.
Sandberg. C. L., W. F. Meggitt and D. Penner. 1980. Absorption. Translocation and metabolism of 14C-glyphosate in several weed species. Weed Res. 20:195-200.
Shoval, S. and S. Yariv. 1979. The interaction between Roundup(glyphosate) and montmorillonite. Part I. Infrared study of the sorption of glyphosate by montmorillonite. Clays and Clays Miner. 27:19-28.
Sprankle, P., W. F. Meggitt, and D. Penner. 1975a. Rapid inactivation of glyphosate in the soil. Weed Sci. 23:224-228.
Sprankle, P., W. F. Meggitt, and D. Penner. 1975b. Adsorption, mobility, and microbial degradation of glyphosate in the soil. Weed Sci. 23:229-234.
Sparacino C. M. and F. K. Thomas. 2002. A screening method for the determination of glyphosate in ground water. Liq. Chrom. & Rel. Technol. 25(4):665-673.
Stock, M., M. Hieke, R. A. Weidhase, and H. R. Sckutte. 1991 Degradation of glyphosate in excised leaves of tobacco and sugar beet. J. Plant Physiol. 139:171-174.
Stalikas, C. D. and C. N. Konidari. 2001. Analytical methods to determine phosphonic and amino acid group-containing pesticides. J. Chromatogr. A. 907:1-19.
Tooby, T. E. 1985. Fate and biological consequences of glyphosate in the aquatic environment. In : Grossbard, E., and D. Atkinson. (Eds.). The Herbicide Glyphosate. pp.206-217. Butterworths. London.
Torstensson, N. T. L., J. Stark. And B. Goransson. 1975. The effect of repeated application of 2,4-D and MCPA on their breakdown in soil. Weed Res. 15:159-164.
Torstensson, L. 1985. Behavior of glyphosate in soils and its degradation. In: Grossbard E. and D. Atkinson (eds.). The berbicide glyphosate. Butterworths. London, pp. 137-149.
Undabeytia, T., M. V. Cheshire and D. Mcphail. 1996. Interaction of the herbicide with copper in humic complexes. Chemosphere 32(7):1245-1250.
Veiga, F., J. M. Zapata, M. L. F. Marcos and E. Alvarez. 2001. Dynamic of glyphosate and aminomethylphosphonic acid in a forest soil in Galicia, north-west Spain. The Sec. Of the Total Environment 271:135-144.
Vreeken, R. J., P. Speksnijder, I. Bobeldijk-Pastorova and T. H. M. Noij. 1998.Selective analysis of the herbicide glyphosate and aminomethylphosphonic acid in water by on-line solid-phase extraction-high-performance liquid chromatography-electrospray ionization mass spectrometry. J. chromatogr. A. 749:187-199.
Wang, Y. S., J. H. Yen, Y. N. Hsieh and Y. L. Chen. 1994. Dissipation of 2,4-D glyphosate and paraquat in river water. Water, Air, and Soil Pollution 72:1-7.
Williams, G. M., R. Kroes and I. C. Munro. 2000. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmaco. 31:117-165.
Zaranyika, M. F., and M. G. Nyandoro. 1993. Degradation of glyphosate in the aquatic environment : An enzymatic kinetic model that takes into account microbial degradation of both free and colloidal (or sediment) particle adsorbed glyphosate. J. Agric. Food Chem. 41:838-842.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top