|
韋玉科。 2000。 神經網路結構優化問題的研究。 電機電器技術。02:34-37。 焦李成。 1996。 神經網路系統理論。 西安電子科技大學出版社。 p.34-51。 Blanco, M., J. Coello, H. Iturriaga, S. Maspoch, and J. Pagès. 2000. NIR calibration in non-linear systems:different PLS approaches and artificial neural networks. Chem. Intell. Lab. Syst. 50:75-82 Blank, T.B., and S.D. Brown. 1993. Nonlinear multivariate mapping of chemical data using feed-forward neural networks. Anal. Chem. 65:3081-3089. Brereton R. G. 2000. Introduction to multivariate calibration in analytical chemistry. Analyst. 125:2125-2154. Dayhoff, J. E., J. M. DeLeo. 2001. Artificial Neural Networks:Opening the Black Box. Cancer Supplement. V.91 N.8:1615-1635. Despagne, F., and D.L. Massart. 1998. Neural networks in multivariate calibration. Analyst. 123:157R-178R. Gemperline, P. J., J. R. Long, and V. G. Gregoriou. 1991.Nonlinear multivariate calibration using principal components regression and neural networks. Anal. Chem. 63:2313-2323. Gemperline,. P. J. 1992. Developments in nonlinear multivariate calibration. Chemom. Intell. Lab. Syst. 15:115-126 Gnanadesikan, R. 1997. Methods for statistical data analysis of multivariate observations. 2nd ed. Wiley New York. p.46-61 Hagan, M.T., H. B. Demuth , and M. H. Beale. 1996. Neural Network Design. Thomson Learning. Haykin, S. 1999. Neural Networks a comprehensive foundation. 2nd ed. Macmillan. p.139-165. Helland, I.S. 1988. On the structure of partial least squares regression. Commun. Statist. Simual. Comput. 17:581-607 Johnson, R.A., and D.W. Wichern. 2002. Applied Multivariate Statistical Analysis. 5th ed. Pretice-Hall. p.543-572. Khanna, T. 1990. Foundations of Neural Networks. Addison-Wesley. Martens, H., and T. Næs. 1989. Multivariate Calibration. 4th ed. Wiley. Chichester. McClure, W. F., M. Hana, and J. Sugiyama. 1992. Neural networks in NIR spectroscopy. In "Making Light Work: Advances in Near Infrared Spectroscopy" (I. Murray and I. Cowe, Eds.), VCH, Cambridge, UK, p.200-209. Næs, T., and T. Isaksson. 1995. Adjusting for non-linearities in calibration using principal components. NIR news. V.6 N.4:4-5. Russell, S., and P. Norving.1995. Artificial Intelligence A Modern Approach. Prentice-Hall. P.563-597. SAS Institute Inc. 1999. SAS/IML User’s Guide, Version 8. SAS Institute Inc., Cary, NC, USA. Sekulic, S., M.B. Seasholtz, Z.Wang, and B.R. Kowaiski. 1993. Nonlinear multivariate calibration methods in analytical chemistry. Ana. Chem. V.65 N.19:835A-845A. Smits, J.R.M., W.J. Melssen, L.M.C. Buydens, and G. Kateman. 1994. Using artificial neural networks for solving chemical problems Part I. Multi-layer Feed-Forward networks. Chemom. Intell. Lab. Syst. 22:165-189. Verdú-A., J., D.L. Massart, C. Menardo, and C. Sterna. 1997. Correction of non-linearties in spectroscopic multivariate calibration by using transformed original variables and PLS regression. Anal. Chim. Acta. 249:271-282. Vogt, N.B. 1989. Polynomial Principal Component Regression: an Approach to Analysis and Interpretation of Complex Mixture Relationships in Multivariate Environmental Data. Chemom. Intell. Lab. Syst. 7:119-130. Wold, S., N.K.-Wold, and B. Skagerberg. 1989. Nolinear PLS Modeling. Chemom. Intell. Lab. Syst. 7:53-65.
|