王惠文。1998。偏最小二成回歸方法及其應用。國防工業出版社。
邵遵文。2003。淨最小平方、主成分回歸、脊回歸與前進選取之預測能力的比較。碩士論文。台中。國立中興大學農藝學系碩士班。周鵬程。1999。遺傳演算法原理與應用-活用Matlab。全華科技圖書股份有限公司。
Alander, J. T. 1992. On Optimal Population Size of Genetic Algorithms. In Proceedings of CompEuro 92. 65-70. IEEE Computer Society Press.
Belsley, D. A., E.,Kuh, and R. E.Welsh. 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley.
Brereton, R. G. 2000. Introduction to multivariate calibration in analytical chemistry. Analyst 125:2125-2154.
Chatterjee, S., M. Laudato, and Lynch L. A. 1996. Genetic algorithms: an introduction. Comput. Stat. Data Anal. 22:633-651.
Cook, R. D. 1977. Detection of influential observations in linear regression. Technometrics. 19: 15-18.
Cook, R. D., and S.Weisberg. 1982. Residuals and influence in regression. New York: Chapman and Hall.
Darwin, C. 1964.The Origin of Species. Cambridge. Harvard University Press.
De Jong, K. A. 1975. An Analysis of The Behavior of a Class of Genetic Adaptive System. Ph. D. Dissertation, Department of Computer and Communication Sciences. University of Michigan.
De Jong, K. A., and W. M. Spears. 1990. An analysis of the interacting roles of population size and crossover in genetic algorithms. In First International Conference on Parallel Problem Solving from Nature, 38-47. IEEE Society Press.
Delwiche, S. R., M. M. Bean, R. E. Miller, B. D. Wedd and P. C. Williams. 1995. Apparent amylose content of milled vice by near-infrared reflectance spectrophotometry. Cereal Chem. 72(2): 182-187
Garthwaite, P. H. 1994. An interpretation of partial least squares. J. Am. Stat. Assoc. 89: 122-127.
Geladi, P., D. MacDougall, and H. Martens. 1985. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 39(3): 491-500.
Goldberg, D. E. 1985. Optimal Initial Population Size for Binary-coded Genetic Algorithms ( TCGA Report No. 85001 ). The Clearinghouse for Genetic Algorithms, Department of Engineering Mechanics. Tuscaloosa: University of Alabama.
Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company.
Goldberg, D. E., and K. Deb. 1991. A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. In G. Rawlins, ed. Foundations of Genetic Algorithms. Morgan Kaufmann.
Grefenstette, J. J. 1986. Optimization of Control Parameters for Genetic Algorithms. IEE Transactions on System, Man, and Cybernetics. SMC-16(1): 122-128.
Han, W., and Z. P. Liao. 1999. A Note on the Convergence of Genetic Algorithms.Earthquake Engineering and Engineering Vinration 19(4): 13-16.
Helland, I. S. 1988. On the structure of partial least squares regression. Commun. Statist. Simula. Comput. 17:581-607.
Helland, I. S. 1990. Partial least squares regression and statistical models. Scand. J. Statist. 17: 97-114
Holland, J. H. 1973.Genetic Algorithms and the Optimal Allocations of Trails. SIAM J. Comput. 2(2): 88-105.
Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor: The University of Michigan Press.
Holland, J. H. 1986. Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems. Machine learning Ⅱ. Morgan Kaufmann.
Isaksson, T. and T. Naes. 1988. The effect of multiplicative scatter correction (MSC) and linearity improvement in NIR spectroscopy. Appl. Spectrosc. 42: 1273-1284.
Lawrance, A. J. 1995. Detection influence and masking in regression. J. R. Statist. Soc. B. 57(1): 181-189.
Martens, H., and S. Å. Jensen. 1983. Partial least squares regression: A new two-stage NIR calibration method. Prague June 1982 Elsevier Publ., Amsterdam, 607-647.
Martens, H., and T.Næs. 1989. Multivariate Calibration. 4th ed. New York: John Wiley.
Michalewicz, Z. 1992. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, New York.
Mitchell, M. 1997. An Introduction to Genetic Algorithms. The MIT Press. Cambridge, Massachusetts.London, England.
Osborne, B. G., and T. Fearn. 1986. Near infrared spectroscopy in food analysis. Longman scientific and technical. P.20-115.
Rousseeuw, P. J., and A. M. Leroy. 1987. Robust regression and outlier detection. New York: John Wiley.
SAS Institute Inc. 1999. SAS/IML User’s Guide, Version 8. SAS Institute Inc., Cary, NC, USA.
Schaffer, J. D., R. A. Caruana, L. J. Eshelman, and R. Das. 1989. A Study of Control Parameters affecting online Performance of Genetic Algorithms for Function Optimization. In J. D. Schaffer, ed., Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann.
Schmitt, L. M. 2001. Fundamental Study Theory of Genetic Algorithms. Theor. comput. sci. 259:1-61.
Spencer, H. 1863. The Principles of Biology. Williams/Londom.
Vose, M. D. 1999. The Simple Genetic Algorithms — Fundations and Theory, The MIT Press. Cambridge Massachusetts London, England.
Walczak, B. 1995. Outlier detection in multivariate calibration. Chemom. Intell. Lab. Syst. 28:259-272.
Walczak,B. 1995. Outlier detection in bilinear calibration. Chemom. Intell. Lab. Syst. 29:63-73.
Walczak, B., and D. L. Massart. 1998. Multiple outlier detection revisited. Chemom. Intell. Lab. Syst.41: 1-15.
Weisderg, S. 1985. Applied linear regression. John Wiley and Sons. New York.
Whitley, L. D. 1989. The genitor algorithm and selection pressure: Why rank-based allocation of reproductive trials is best? In J. D. Schaffer, ed., Proceedings of the third international conference on genetic algorithms. Morgan Kaufmann.
Wold, S., H. Antti, F. Lindgren, and J. Öhman. 1998. Orthogonal signal correction of near-infrared spectra. Chemom. Intell. Lab. Syst. 44:175-185.
Wold, S., M. Sjőstrőm, and L. Eriksson. 2001. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58:109-130.