跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 01:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳彥賢
論文名稱:帶纜氣壓水箭推進動力分析
論文名稱(外文):Propulsion Dynamics Analysis of Air-Pressurized Waterjet Rocket with Towing Cable
指導教授:李興軍李興軍引用關係
指導教授(外文):Lee, H. J.
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:87
中文關鍵詞:氣壓水箭帶纜
外文關鍵詞:Air-Pressurized Waterjet RocketTowing Cable
相關次數:
  • 被引用被引用:1
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
氣壓水箭與傳統火箭比較,具有簡單、便宜、科學、趣味、自然、環保、安全、運動與教育等特性。然而風行多年的氣壓水箭,其基本推進理論,近年來由中興大學李興軍所提出之追蹤雷諾輸送公式、動力方程式、火箭總動力功率通化公式及推力動力等觀念,始有重大突破。本研究在推進分析過程中,除必須探討氣壓水箭本身推力外,纜索動力分析亦甚重要。因此,本文分爲兩部份,第一部份融合上述先進火箭理論針對未帶纜氣壓水箭做一有系統之推進探討。第二部份應用拖纜力學之基礎理論進行纜索動力分析,再藉由Runge-Kutta四、五階公式求得拖纜張力,並與前述公式聯立成微分方程組求解,利用數值模擬進一步整合分析帶纜氣壓水箭之推進動力問題。而氣壓水箭帶纜之過程,常假設為無能量損失,本文特說明此一錯誤觀念之成因,其關鍵在於拖纜過程近乎完全非彈性衝擊運動,而此運動有其能損之必然性,故特別考慮此項因素,以大幅提升整體分析之精度,並與實驗互相印證。過去文獻顯示,尚未有針對帶纜氣壓水箭之推進動力分析進行深入探討,因此,本研究率先整合建立之先進帶纜氣壓水箭推進動力分析方法、數值模擬及實驗經驗,皆可提供這方面後續研究之重要參考。
Abstract
In comparison with conventional rockets, the air-pressurized waterjet rocket is characterized with simplicity, low cost, science, interest, nature, green, safety, exercise and education. Despite of its popularity for years, there is no associated basic theories for air-pressurized waterjet rocket. This problem remained unsolved until a series of revolutionary papers with novel theorems of Lagrangian Reynolds transport equation, momentum equation, total kinetic power and thrust power were presented recently by H. J. Lee of National Chung-Hsing University. In the propulsion analysis process, except for considering the thrust of waterjet rocket, the dynamics analysis of cable is also quite important. Therefore, this research is divided into two parts, first we synthesize above theorems to analyze propulsion dynamics of waterjet rocket without towing cable. Secondly, we apply towing cable dynamics theorem to analyze its motion, and use fouth- and fifth-order Runge-Kutta formulations to find cable towing force. Furthermore, we combine above formulas to solve the simultaneous partial differential equations, via numerical simulation to treat the propulsion dynamics problem of waterjet rocket with towing cable. Conventionally, the rope-pulling process is always assumed a no-energy-loss process, this paper will explain the erroneous concept. The crux of the matter is that we should recognize the process of towing cable as a perfectly inelastic impact, for which there must be an amount of energy being transformed. According to this reasoning, we have promoted the analysis precision substantially, and prove the mutual correctness of theorems and experiments. Literature shows, propulsion dynamics analysis of air-pressurized waterjet rocket with towing cable has not been attempted before. Thus, in regard of air-pressurized waterjet rocket with towing cable, this pioneering research leads to intergrate the advanced theorems of propulsion dynamics analysis, numerical simulation, and real-life experiments to provide important basis for associated research in the future.
目 錄
中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
圖表目錄 Ⅵ
符號說明 Ⅷ
第一章 緒論
1.1 研究動機 1
1.2 研究方法 2
1.3 火箭與水箭的推進原理簡述 2
1.4 纜索力學的歷史與文獻簡述 3
第二章 火箭先進推進動力理論之回顧
2.1 追蹤雷諾輸送公式簡介 9
2.2 火箭通化動量方程之推導 10
2.3 火箭通化總動力功率之推導 11
2.4 火箭通化推進效率之推導 14
第三章 水箭推進動力之數值推導
3.1 數值計算式之推導 21
3.2 初始條件與初始速度之處理方法 29
第四章 帶纜系統動力分析與數值推導
4.1 拖纜系統理論說明 33
4.2 纜索之座標系統 33
4.3 運動方程式之建立 34
4.4 拖纜系統之數值推導 36
4.5 能損理論之拉繩動力修正 40
第五章 數值模擬結果與分析
5.1 不帶纜氣壓水箭理論與數值模擬驗證 49
5.2 垂直帶纜氣壓水箭數值模擬分析 49
5.3 帶纜氣壓水箭水平夾角射數值模擬分析 51
5.4 繩阻實驗 53
5.5 程式設計說明 53
第六章 結論 70
參考文獻 72
附錄一 帶纜氣壓水箭之Matlab程式 75
參 考 文 獻
[1] Lee, H. J. and Chang, C. L., “Deriving the Generalized Power and Efficiency Equations for Jet Propulsion System”, JSME International Journal, 44, Nov, 2001, pp.658-667.
[2] Lee, H. J. and Huang, S. C., “On the derivation Process of Reynolds Transport Equation”, the International Journal of Mechanical Engineering Education, 21, 1993, pp.49-53.
[3] Lee, H. J. and Chein, R. R., “Lagrangian Reynolds Transport Equation for Jet Propulsion Dynamics”, Journal of Chinese Society of Mechanical Engineers, Vol.12, No.6, 1991, pp.611-617.
[4] Lee, H. J. and Lee, H. W., “Deriving the Generalized Rocket Kinetic Power Equations and Associated Propulsion Indexes”, JSME International Journal, 42, 1999, pp.127-136.
[5] Lee, H. J., Chiu, C. H. and Hsia, W. K., “Integrated Energy Method for Propulsion Dynamics Analysis of Air-Pressurized Waterjet Rocket”, Transactions of the Japan Society for Aeronautical and Space Sciences, Vol.44, No.143, May, 2001, pp.1-7.
[6] 賴添盛等,“風力作用下架空電纜之動力反應分析”,電信研究季刊21卷第1期, 1991, pp.117-125.
[7] Leech, C. M. and Tabarrok, B., “The Cable Geometry for a Towed Submersible”, the International Journal of Mechanical Sciences, Vol.37, No.10, 1995, pp.1079-1087.
[8] McLeod, A. R., “On the Action of Wind on Flexible Cables, with Application to Cables Towed below Aeroplanes and Balloon Cables”, Report and Memoranda (R and M) No.554, Advisory Committee for Aeronautics, HMSO, London, 1918.
[9] Glauert, H., “The Form of Heavy Cable Used for Towing a Heavy Body below an Aeroplane”, Report and Memoranda (R and M) No.1592, Aeronautical Research Committee, HMSO, London, 1934.
[10] Sanders, J. V., “A Three-Dimensional Dynamic Analysis of a Towed System”, Ocean Engineering, Vol.9, 1982, pp.483-99.
[11] Vaz, M. A. and Patel, M. H., “Transient Behaviour of Towed Marine Cables in Two Dimensions”, Applied Ocean Research, Vol.17, 1995, pp.143-153.
[12] 呂學信,紀寶淳, “水下纜索振動分析”,海下技術研究所論文, 2001.
[13] Wu, J. and Chwang, A. T., “Investigation on a Two Part Underwater Menoeuvrable Towed System”, Ocean Engineering, Vol.28, 2001, pp.1079-1096.
[14] Srivastava, S. K. and Ganapathy, C., “Analytical Investigations on Loop-Manoeuvre of Underwater Towed Cable-Array System”, Applied Ocean Research, Vol.18, 1996, pp.353-360.
[15] Ablow, C. M. and Schechter, S., “Numerical Simulation of Undersea Cable Dynamics”, Ocean Engineering, Vol.10, 1983, pp.443-457.
[16] Milinazzo, F., Wilkie, M. and Latchman, S. A., “An Efficient Algorithm for Simulating the Dynamics of Towed Cable Systems”, Ocean Engineering, Vol.14, No.6, 1987, pp.513-526.
[17] Chin, C. K. H., May, R. L. and Connell, H. J., “A Numerical Model of a Towed Cable-Body System”, Anziam Journal Vol.42(E), 2000, pp.C362-C384.
[18] Huang, S., “Dynamic Analysis of Three-Dimensional Marine Cables”, Ocean Engineering, Vol.21, No.6, 1994, pp.587-605.
[19] Park, H. H., “A Tension Measurement Method of a Towing Cable or a Bouy Cable”, Ocean Engineering, Vol.20, No.2, 1993, pp.163-170.
[20] http://home.kimo.com.tw/eaglejetkimo.
[21] 葉育哲, “具新型全自動顛峰開傘系統之氣壓水箭推進效率分析”, 國立中興大學機械工程研究所碩士論文, 2002.
[22] 鄭錦聰編著, “Matlab程式設計基礎篇”,全華科技圖書,台北, 2000.
[23] Lee, H. J., Chang, M. Y. and Chan, J. M., “A Forbidden Zoon of No-Energy-Loss Assumption: The Rope-Lifting Problem”,中華民國第十五屆全國力學會議, December, 1991, pp.1067-1071.
[24] Hoerner, S. F., “Fluid-Dynamic Drag”, Private Publication, 1958.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top