跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王振成
研究生(外文):Jenn-Cherng Wang
論文名稱:軍用悍馬吉普車之動態即時模擬
論文名稱(外文):Real Time Dynamic Simulation of High Mobility Multipurpose Wheel Vehicle (HMMWV)
指導教授:林仕亭
指導教授(外文):Shih-Tin Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:83
中文關鍵詞:微分代數方程多體機械系統遞歸
外文關鍵詞:Differential-Algebraic EquationMultibody Mechanical SystemsRecursive
相關次數:
  • 被引用被引用:1
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本文的目的乃利用多體機械系統遞歸動態方程式及Baumgarte數值積分穩定法達成軍用悍馬車(High Mobility Multipurpose Wheel Vehicle,簡稱HMMWV)之動態即時模擬。遞歸動態方程式由於使用相對座標當作廣義座標,因此具有維度小及運算效率佳的優點;另一方面,由於軍用悍馬車為一閉鏈多體機械系統,其動態方程式為一混合微分-代數方程式(Differential-Algebraic Equation,簡稱DAE),一般的常微分方程式數值積分法無法有效率的做數值分析,因此本文採用Baumgarte的數值積分法以達到快速積分且誤差小的結果;藉由遞歸動態方程式及Baumgarte數值積分法,達到悍馬車即時動態模擬的目的。本文的程式在Matlab中撰寫,經與動態分析軟體ADAMS比對的結果發現,在相同的精確度下,本文所提出的方法運算效率較佳。
The purpose of this thesis is to achieve the real-time dynamic simulation of High Mobility Multipurpose Wheel Vehicle (HMMWV) by using recursive dynamic equation and Baumgarte numerical integration stabilization method. Recursive dynamic equation uses relative coordinates as generalized coordinates, hence yields a smaller set of coordinates and good numerical efficiency. On the other hand, closed-loop multi-body mechanical system the dynamic equations is a mixed differential-algebraic equation (Abbreviated DAE). Numerical integration methods of ordinary differential equations cannot to the DAE directly due to the poor numerical efficiency. Therefore, Baumgarte numerical integration method is used in this thesis, to acquired fast-integration and small constraint-error. Simulation results show that real-time dynamic simulation of HMMWV is achieved by using recursive dynamic equations and Baumgarte numerical integration method. The simulation code is implemented in Matlab software. Compare with the results of the dynamic analysis software ADAMS, the method presented in this thesis, in the same accuracy level, is more numerical efficiency than the ADAMS analysis.
目錄
中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
符號說明 X
第一章 緒論 1
 1.1 前言 1
 1.2 文獻回顧 3
 1.3 論文大綱 6
第二章 遞歸動態方程式 8
 2.1 運動學    8
  2.1.1 位置分析    8
  2.1.2 速度分析    10
  2.1.3 加速度分析 12
 2.2 物體間的連結      13
 2.3 單一剛體之動態方程式 15
 2.4 樹狀架構的機構之遞歸動態方程式  17
  2.4.1 和 的計算 17
  2.4.2 遞歸動態  18
 2.5 閉鏈系統之遞歸動態方程式 23
 2.6 運算的路徑 30
第三章 關節公式和力量 32
 3.1 關節公式   32
  3.1.1 旋轉關節   32
  3.1.2 平移關節   33
  3.1.3 球狀關節   34
  3.1.4 萬向關節   35
 3.2 力量要件   37
  3.2.1 Translational Spring-Damper-Actuator (TSDA) 37
  3.2.2 Rotational Spring-Damper-Actuator (RSDA) 39
第四章 數值積分法與數值積分穩定法之理論分析 40
 4.1 簡介 40
 4.2 數值積分法之介紹 40
  4.2.1 Adams-Bashforth, Adams-Moulton, Predictor-Corrector數值積分法 40
  4.2.2 Runge-Kutta數值積分法 42
 4.3 DAE方程式的求解 43
  4.3.1 直接積分法 44
  4.3.2 廣義座標分隔法 44
  4.3.3 拘束穩定法 46
  4.3.4 混合法 48
 4.4 離散系統之穩定度分析 49
 4.5 Adams Predictor-Corrector數值積分法 50
  4.5.1 一階predictor配合二階corrector 50
  4.5.2 二階predictor配合三階corrector 52
  4.5.3 三階predictor配合四階corrector 54
第五章 HMMWV模擬與驗證 58
 5.1 簡介 58
 5.2 HMMWV之機構 58
 5.3 數值運算之驗證 65
 5.4 CPU運算時間之比較 75
第六章 結論與未來展望 78
參 考 文 獻 79
[1] DADS User’s Manual, 1987, Rev. 4.0, Computer Aided Design Software, Inc. Oakdale, Iowa.
[2] ADAMS User’s Guide, 1981, Mechanical Dynamics, Inc., 555 South Fortest, Ann Arbor, Michigan.
[3] Bae, D.S., Hwang, R. S., and Haug, E. J., 1981,“A Recursive formulation for Real-Time Dynamic Simulation,” Advances in Design Automation, ASME, New York, pp. 499-508.
[4] Hwang, R.S., Bae, D.S., Haug. E.J., and Kuhl, J.G., 1998,“Parallel Processing for Real-Time Dynamic System Simulation,” Advances in Design Automation, ASME, New York, pp. 509-518.
[5] Stepanenko, Y., and Vukobratovic, M., 1976,“Dynamics of Articulated Open-Chain Active Mechanisms,” Math. Biosci., Vol. 28, pp. 137-170.
[6] Orin, D.E., McGhee, R.B., Vukobratovic, M., and Hartoch, G., 1979, “Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing Newton-Euler Methods, ”Mah. Biosci., Vol 43, pp. 107-130.
[7] Luh, J.Y.S., Waler, M.W., and Paul, R.P.C., 1980,“On-Line Computational Scheme for Mechanical Manipulators,” J. Dyn. Syst. Measurement Control, Vol. 102, pp. 69-76.
[8] Waler, M.W., and Orin, D.E., 1982,“Efficient Dynamic Computer Simulation of Robotic Mechanisms,” ASME J. of Dyn. Syst. Measurement Control, Vol. 104, pp. 205-211.
[9] Hoolerbach, J., M., 1983,“Wrist-Partitioned, Inverse Kinematic Accelerations and Manipulator Dynamics,” The International J. of Robotics Research, Vol. 2, No.4, pp. 61-76.
[10] Hoolerbach, J., M., 1980,“A Recursive Lagrangian Formulation of Manipolator Dynamics and a Comparative Study of Dynamics Formulation Complexity,” IEEE Transactions on Systems, Man and Cybernetics SMC-10(11), pp.730-736.
[11] William, M.S., 1982,“On the Equivalence of Lagrangian and Newton-Euler Dynamics for Manipulators,” The International J. of Robotics Research, Vol. 1, No.2, pp.60-70.
[12] Featherstone, R., 1983,“The Calculation of Robot Dynamics Using Articulated Body Inertias,” The International J. of Robotics Research, Vol. 2, No.1, pp.13-30.
[13] Wittenburg, J., 1987,“Nonlinear Equations of Motion for Arbitary Systems of Interconnected Rigid Bodies,” Symposium on the Dynamics of Multibody Systems, Munich, Germany, Pro. Pulished by Spring-Verlag, K. Magnus, editor.
[14] Wittenburg, J., and Wolz, U., “MESA VERDE: A Symbolic Program for Monlinear Aticulated-Rigid-Body Dynamics,” ASME, 85-DET-1581.
[15] Bae, D.S., and Haug, E.J., 1987,“A Recursive Formulation for Constrained Mechanical Systems, PartⅠ-Open Loop,” Mechanics of Structures and Machines, Vol. 15(3), pp.359-382.
[16] Bae, D.S., and Haug, E.J., 1987,“A Recursive Formulation for Constrained Mechanical Systems, PartⅡ-Closed Loop,” Mechanics of Structures and Machines, Vol. 15(4).
[17] Bae, D.S., Hwang, R.S., and Haug, E.J., 1988,“A Recursive Formulation for Real-Time Dynamic Simulation,” Techanical Report D-2, Center for Simulation and Design Optimization, College of Engineering, The University of Iowa, Jan.
[18] Tsai, F.F., and Haug, E.J., 1988,“Automated Methods for High Speed Simulation of Multibody Dynamic Systems,” Technical Report R-47, Center for Simulation and Design Optimization, College of Engineering, The University of Iown, Jan.
[19] Wehage, R.A., and Haug, E.J., 1982,“Generalized Coordinates Partitioning for Dimension Reduction in Analysis of Constrained Dynamic System,” ASME Journal of Mechanical Design, Vol. 104, pp. 247-255.
[20] Baumgarte, J., 1972,“Stabilization of Constraints and Integrals of Motion in Dynamical System,” Computer Methods in Applied Mechanics and Engineering, Vol. 1, pp. 1-16.
[21] Chang, C.O., and Nikravesh, P.E., 1985,“An Adaptive Constraint Violation Stabilization Method for Dynamic Analysis of Mechanical Systems,” ASME Journal of Mechanism, Transmissions and Automation in Design, Vol. 17, pp. 488-492.
[22] Park, K. C., and Chiou, J. C., 1988,“Stabilization of Computational Procedures for Constrained Dynamic Systems,” AIAA Journal of Guidance and Control, Vol. 11, pp. 365-370.
[23] Bauchau, O. A., Damilano, G., and Theron, N. J., 1995,“Numerical Integration of Non-Linear Elastic Multi-Body Systems,” International Journal for Numerical Methods in Engineering, Vol. 38, pp. 2727-2751.
[24] Rosen, A., and Edelstein, E., 1997,“Investigation of a New Formulation of the Lagrange Method for Constrained Dynamic Systems,” ASME Journal of Applied Mechanics, Vol. 64, pp. 116-122.
[25] Yoon, S., Howe, R. M., and Greenwood, D. T., 1994,“Geometric Elimination of Constraint Violations in Numerical Simulation of Lagrange Equations,” ASME Journal of Mechanical Design, Vol. 116, pp. 1058-1064.
[26] Yoon, S., Howe, R. M., and Greenwood, D. T., 1995,“Stability and Accuracy Analysis of Baumgarte’s Constraint Stabilization Method,” ASME Journal of Mechanical Design, Vol. 117, pp. 446-453.
[27] Chiou, J. C., and Wu, S. D., 1998,“Constrain Violation Stabilization Using Input-Output Feedback Linearization in Multibody Dynamic Analysis,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, pp. 222-228.
[28] Chiou, J. C., and Wu, S. D., 1998,“Stability Analysis of Baugarte Constraint Stabilization Technique in Mulibody Dynamic Systems,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 22, No. 1, pp. 160-162.
[29] Wu, S. D., Chiou, J. C., and Lin, Y. C., 2000, “Modified Adams-Moulton Predictor-Corrector Method in Solving Multibody Dynamic Systems,” Mechanics of Structures and Machines, 28(2&3), pp. 201-218.
[30] Lin, S. T., and Hong, M. C., 1998, Dec., “Stabilization Method for Numerical Integration of Multibody Mechanical Systems,” ASME, Journal of Mechanical Design, Vol. 120, No. 4, pp. 565-572.
[31] Lin, S. T., and Huang, J. N., 2000, “Parameters Selection for Baumgarte’s Constraint Stabilization Method Using the Predictor-Corrector Approach,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 23, No. 3, pp. 566-570.
[32] Lin, S. T., and Hong, M. C., 2001, Mar., “Stabilization Method for the Numerical Integration of Controlled Multibody Mechanical System : A Hybrid Integration Approach,” JSME International Journal, Series C, Vol. 44, No. 1, pp. 79-88.
[33] Lin, S. T., and Huang, J. N., 2002, Mar, “Numerical Integration of Multibody Mechanical Systems Using the Baumgarte’s Constraint Stabilization Method,” Journal of the Chinese Institute of Engineers, Vol. 25, No. 2, pp. 243-252.
[34] Lin, S. T., and Huang, J. N., 2002, Dec., “Stabilization of Baumgarte’s Method Using the Runge-Kutta Approach,” ASME, Journal of Mechanical Design, Vol. 124, pp. 633-641.
[35] Park, T., 1986, “A Hybrid Constraint Stabilization-Generalized Coordinate Partitioning Method for Machine Dynamics,” ASME Journal of Mechanism, Transmissions, and Automation in Design, Vol. 108, No. 2, pp. 211-216.
[36] Haug, E. J., Intermediate Dynamics, Allyn & Bacon, Boston, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top