跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 03:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王有盛
研究生(外文):Wang yu-sheng
論文名稱:促進厭氧生物處理四氯乙烯代謝方式之探討
指導教授:盧至人
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:139
中文關鍵詞:四氯乙烯甲烷菌脫氯作用氧化還原電位
相關次數:
  • 被引用被引用:25
  • 點閱點閱:1144
  • 評分評分:
  • 下載下載:162
  • 收藏至我的研究室書目清單書目收藏:1
本實驗的目的在於探討厭氧混合族群中,菌液濃度的減少造成批次實驗中四氯乙烯總降解量提高的可能原因,並於低菌量的批次實驗條件下,觀察添加甲烷化抑制劑(BES)與不同的電子接受者(如:亞硫酸鹽),及改變厭氧條件下的氧化還原電位(ORP),對於還原性脫氯作用及甲烷化作用的影響,以釐清甲烷菌於本實驗室混合系統中所扮演的角色及其對脫氯作用的影響,並探討四氯乙烯厭氧還原性脫氯之中間代謝物的脫氯情形。
實驗結果顯示甲烷菌並非系統中主要的脫氯族群,但其本身為具優勢的基質競爭者,可快速將批次實驗所提供的醋酸鈉轉化為甲烷,造成系統中碳源或電子供給者缺乏,而脫氯作用也在醋酸鈉被耗盡時呈現明顯遲緩的現象。亞硫酸鹽的試驗中,添加與未添加亞硫酸鹽的實驗組其兩者脫氯現象的差異並不顯著,因此亞硫酸鹽的存在並未如文獻中指出會對四氯乙烯厭氧脫氯作用造成抑制。不同濃度營養鹽及缺乏單一營養鹽的實驗結果顯示,四氯乙烯的總降解量隨著營養鹽濃度降低而減少,其中又以CoCl2的缺乏對脫氯作用的影響最明顯,因此營養鹽不足即可能造成脫氯成效不佳。由不同的氧化還原電位的實驗中得知,初始氧化還原電位為 —300 mV (實測為-250 mV)時,系統約只有50%的四氯乙烯總降解量,而總降解量隨著氧化還原電位降低而增加,當氧化還原電位低於 —350 mV 時,系統具有最高的四氯乙烯總降解量,但甲烷的生成並沒有受到氧化還原電位改變而有明顯的變化。由中間代謝物的脫氯現象中發現,本實驗室混合族群對於四氯乙烯及三氯乙烯具有脫氯能力,但對於順-二氯乙烯、氯乙烯及乙烯則幾乎不具有脫氯的能力,因此系統完全脫氯的比例並不高。
The objective of this study is trying to find out the probable reasons why the overall tetrachloroethylene (PCE) dechlorination increases with a decrease in biomass in anaerobic mixed cultures in the batch reactors. And then, We try to discuss the dechlorination of PCE in different environmental conditions, such as the addition of inhibitors. When biomass is diluted to 5% (v/v) by micronutritions, the effect of addition of 2-bromoethanesulfonate(BES),an methanogen inhibitor, and sulfite on the reductive dechlorination of PCE and the activity of methanogens in the batch experiments are investigated. The dechlorination and methanogenesis effects in the different redox potential by varying the dose of reductant Na2S are alse studied. Finally, we investigate the dechlorination of trichloroethylene (TCE), cis- dichloroethene (cis-DCE), and vinyl chloride(VC) , the intermediates of PCE reductive dechlorination, in the conditions that could be used to effectively dechlorinate PCE in our study.
The results indicated that methanogens were not the major dechlorinator in our culture, but they could rapidly utilite acetate to form mehtane. Because the excellent competition of acetate for methanogens, the lack of substrate decreased the dechlorination of PCE in high biomass conditions. Additions of BES and sulfite block the formation of methane, but the reductive dechlorination of PCE was not affected. A decrease in the trace metal significantly affect the dechlorination. There is almost no dechlorination, when the concerntration of CoCl2 decreased to 0.5 mg/L. In the experiment of various initial redox potentials under anaerobie condition, PCE could nearly be completely dechlorinated when the redox potential was below —350 mV. In addition, we found that lower chlorinated ethenes, cis-DCE and VC, could not be dechlorinated in our system in the conditions we adopt to dechlorinate PCE and TCE.
摘要 I
目錄 III
圖目錄 VI
表目錄 X
第一章 前言 1
1-1研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1含氯碳氫化合物對地下水之污染 3
2-2四氯乙烯之物化特性及其毒性 5
2-3厭氧生物處理之基本機制 8
2-4厭氧還原性脫氯作用及其代謝機制 9
2-5 電子供給者、電子攜帶者與電子接受者 15
2-6 菌種在四氯乙烯還原性脫氯反應中之研究 24
2-7氧化還原電位 30
2-8 四氯乙烯對含氯數較低之氯乙烯類化合物脫氯之影響 35
第三章 實驗設備與方法 37
3-1實驗用藥品 37
3-1-1實驗用水 37
3-1-2主要基質 37
3-1-3含氯碳氫化合物 37
3-1-4 無機營養鹽 38
3-1-5硫酸 39
3-1-6 HPLC沖提液 39
3-1-7 丙酮 39
3-1-8 甲烷抑制劑 40
3-1-9 亞硫酸鹽 40
3-2 菌種 40
3-2-1 菌種來源 40
3-2-2 菌種培養及馴化 40
3-3 分析設備與分析方法 43
3-3-1 四氯乙烯與三氯乙烯之分析 43
3-3-2 二氯乙烯與氯乙烯之分析 44
3-3-3 甲烷及乙烯之分析 45
3-3-4氫氣之分析 45
3-3-5 醋酸鈉之分析 46
3-3-6 pH之測定 47
3-3-7氧化還原電位(ORP)之量測 47
3-4 實驗方法與步驟 48
3-4-1 氣液平衡 48
3-4-2 檢量線的建立 49
3-4-3 菌液及營養鹽稀釋方法 51
3-4-4 批次實驗流程及準備事項 51
3-4-5 滅菌組 54
第四章 結果與討論 56
4-1 背景實驗 56
4-1-1 四氯乙烯之非生物性轉換 56
4-1-2 氫氣之非生物性轉換 58
4-2不同的電子供給者對脫氯作用的影響 59
4-3 抑制劑添加效應 68
4-3-1 抑制劑濃度對甲烷產出之影響 68
4-3-2添加BES對脫氯作用的影響 71
4-4 亞硫酸鹽抑制作用 78
4-5 營養鹽濃度效應 82
4-5-1營養鹽濃度 82
4-5-2 營養鹽需求 95
4-6 氧化還原電位的影響 103
4-7 中間代謝物脫氯速率之探討 112
4-7-1 三氯乙烯的降解情形 112
4-7-2 順-二氯乙烯、氯乙烯及乙烯的降解情形 115
第五章 結論與建議 121
5-1 結論 121
5-2 建議 123
第六章 參考文獻 126
工研院能資所,「有害物質滲漏地下水層污染調查研究」,(1990)。
白明德,「厭氧生物產氫機制與程序操作策略之研究」,國立成功大學環境工程研究所碩士論文,台南,(1999)。
江晃榮,「生物技術在污染復育上之應用」,生物技術醫學產業報導,第三期,第15-21頁,(1994)。
阮國棟、張金豐、郭荔安,”天然衰減法”整治土壤及地下水污染之政策立場及實務準則,工業污染防治,第68期,第24-37頁,(1998)。
李俊德,「含氯碳氫化合物污染地下水之暴露社區居民死因勝算比」,碩士論文,國立台灣大學流行病學研究所,台北,(1998)。
林明正,「CSTR厭氧產氫反應槽之啟動及操作」,逢甲大學土木及水利工程研究所,台中,(2000)。
行政院環境保護署,「毒化物管理」,(2001)。
行政院環境保護署,「飲用水水質標準」,(2003)。
張鎮南,曾四恭,鄭幸雄,趙家珍,謝永旭,「高級廢水處理」,滄海圖書,一版,159-201,台北,(1995)。
孫連鴻,「主要基質醋酸鈉濃度對1,1,1-三氯乙烷生物分解之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1998)。
郭家倫,曾迪華,黃雪莉,「好氧共代謝生物分解含氯脂肪族化合物脂回顧與評析」,國立中央大學環境工程學刊,第五期,第23-38頁,(1998)。
陳淑華,「四氯化碳在模擬地下水中的生物與非生物性轉換」,碩士論文,國立台灣大學環境工程研究所,台北,(1993)。
曹以松,「地下水」,中國土木工程會,台北(1998)。
葉琮裕,「美國土壤及地下水污染整治技術」,環保訓練園地,第50期,(2002b)。
董瑞安,「微量含氯有機物在地下水中生物轉換及傳輸模式之研究」,博士論文,國立台灣大學環境工程研究所,台北,(1992)。
蔡文田,「含氯有機物之毒性及新陳代謝機制」,工業污染防治,第43期,第175-187頁,(1992)。
盧至人,地下水的污染整治,國立編譯館,ISBN 957-00-9607-1,台北市,(1997)。
環保署,「地下水及土壤污染防治法」,(2001)。
黃士尹,「地下水中四氯乙烯完全生物復育方法之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1996)。
葉孟芬,「地下水中四氯乙烯強化生物分解之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1997)。
楊中治,「模擬地下水中四氯乙烯厭氧生物分解復育之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1998)。
周鴻盛,「氫對四氯乙烯污染生物復育效應之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1999)。
陳碩修,「氫氣對地下水中四氯乙烯厭氧生物分解之研究」,碩士論文,國立中興大學環境工程研究所,台中,(2000)。
黃錦怡,「脫氯菌於四氯乙烯厭氧降解中之機制研究」,碩士論文,國立中興大學環境工程研究所,台中,(2001)。
郭育仁,「厭氧生物處理四氯乙烯代謝方式之探討」,碩士論文,國立中興大學環境工程研究所,台中,(2002)。
Baek, N. H. and P. R. Jaffe (1989). The Degradation of Trichloroethylene in Mixed Methanogenic Cultures. J. Environ. Qual., 18, 515-518.
Baker, K. H. and D. S. Herson (1994). Introduction, and Overview of Bioremediation. in Bioremediation, K. H. Baker and D.S. Herson (eds.), McGraw-Hill, pp. 1-7.
Ballapragada, B. S., H. D. Puhakka, and F. F. John (1997). Effect of Hydrogen on Reductive Dechlorination of Chlorinated Ethenes. Environ. Sci. Technol., 31, 1728-1734.
Beurskens, J. E. M., M. Toussaint, J. De Wolf, J. M. D. Van der Steen, P. C. Slot, L. C. M. Commandeur, and J. R. Parsons (1995). Dehalogenation of Chlorinated Dioxins by an Anaerobic Microbial from Sediment. Environ. Toxicol. Chem., 14, 939—943.
Bouwer, E. J. and P. L. McCarty (1983). Transfromations of 1- and 2-Carbon Halogenated Aliphatic Organic Compounds under Methanogenic Conditions. Appl. Environ. Microbiol., 45, 1286-1294.
Bram, A. van de Pas, J. Gerritse, W. M. de Vos, G. Schraa, and A. J.M. Stams (2001). Two Distinct Enzymes systems are Responsible for Tetrachloroethene and Chlorophenol Reductive Dehalogenation in Desulfitobacterium strain PCE1. Arch. Microbiol., 176,165-169.
Cabirol, N., J. Perrier, F. Jacob, B. Fouillet, and P. Chambon (1996). Role of Methanogenic and Sulfate-Reducing Bacteria in the Reductive Dechlorination of Tetrachloroethylene in Mixed Culture. Bull. Environ. Contam. Toxicol., 56, 817-824.
Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa (2000). Isolation and Characterization of a Tetrachloroethlene Dechlorinating Bacterium, Clostridium bifermentans DPH-1. J. Biosci. Bioeng., 89, 489-491.
Chiu, P. C. and M. Lee (2001). 2-Bromoethanesulfonate Affects Bacteria in a Trichloroethene-Dechlorinating Culture. Apply. Environ. Microbiol. 67, 2371-2374.
Cobb, G. D. and E. J. Bouwer (1990). Effect of Electron Acceptors of Halogenated Organic Compound Bio- transfromations in a Biofilm Column. Environ. Sci. Technol., 25, 1068-1074.
DiStefano, T. D., J. M. Gossett, and S. H. Zinder (1991). Reductive Decglorination of High Concentrations of Tetrachloroethene to Ethene by an Anaerobic Enrichment Culture on the Absence of Methanogensis. Appl. Environ. Microbiol., 57, 2287-2292.
DiStefano, T. D., J. M. Gossett, and S. H. Zinder (1992). Hydrogen as an Electron Donor for Dechlorination of Tetrachlorothene by an Anaerobic Mixed Culture. Appl. Environ. Microbial., 58, 3622-3629.
De Bruin, W. P., M. J. J. Kotterman, M. A. Posthumus, G. Schraa, and A. J. B. Zehnder (1992). Complete Biological Reductive Transfromation of Tetrachloroethane to Ethane. Appl. Environ. Mirobiol., 58, 1996-2000.
Egli, C., R. Tschan, A. M. Cook, and T. Leisinger (1987). Anaerobic Dechlorination of Tetrachloromethane and 1,2-Dichloroethane to Degradable Products by Pure Cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Lett., 43, 57-61.
Egli, C., R. Tschan, R. Scholtz, A. M. Cook, and T. Leisinger (1988). Transfromation of Tetrachloromethane to Dichloro-methane and Carbon Dioxide by Acetobacterium woodii. Appl. Environ. Microbiol., 54, 2819-2824.
Esaac, E. G. and F. Matsumura (1980). Metabolism of Insecticides by Reductive Systems. Pharmac. Ther., 9, 1-26
Fathepure, B. Z., J. P. Nengu, and S. A. Boyd (1987). Anaerobic Dacteria that Dechlorinate Perchloroethene. Appl. Environ. Microbiol., 53, 2671-2673.
Fathepure, B. Z., J. M. Tiedje, and S. A. Boyd (1988). Reductive Dechlorination of Hexachlorobenzene to Tri- and Dichlorobenzenes in Anaerobic Sewage Sluge. Appl. Environ. Microbiol., 54, 327-330.
Fennell, D. E., S. H. Zinder, and J. M. Gossett (1997). Comparative Studies of Hydrogen Donors for Stimulation of Tetrachloroethene Dechlorination. In Situ and On-Site Bioremediation, B. C. Alleman and A. Leeson (Eds), Battelle Press, Columbus, Ohio, 3, pp.11.
Fogel, S., M. Findly, A. Moore, and M. Leahy (1987). Biodegradation of Chlorinated Chemicals in Groundwater by Methane Oxidizing Bacteria. Proceedings of Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection and Restoration., November 17-19, Houston, TX.
Freedman, D. L. and J. M. Gossett (1989). Biological Reductive Dechlorination of Tetrachloroethylene and Trichloroethylene to Ethylene under Methanogenic Conditions. Appl. Environ. Microbiol., 55, 2144-2151.
Galli, R. and P. L. McCarty (1989). Biotransfromation of 1,1,1-Trichloroethane, Trichloroethane and Tetra- chloromethane by a Clostridum sp. Appl. Environ. Microbiol., 55, 837-844 .
Gantzer, C. J. and L. P. Wackett (1991). Reductive Dechlorination Catalyzed by Bacterial Transition-Metal Coenzymes. Environ. Sci. Technol., 25, 715-722.
Gaudy, A. F. J. and L. P. Wackett (1991). Reductive Dechlorination Catalyzed by Bacteria Transition-Metal Coenzymes. Environ. Sci. & Technol., 25, 715-722.
Gerritse, J., G. Kloetstra, L. Wiersum, P. A. Lawson, M. D. Collins, A. Alphenaar, and J. C. Gottschal (1996a). Reductive Dechlorination of Chloroethenes or Chlorophenols by Two Novel Desulfitobacterium sp. Grown in Batch and Chemostat Cultures. In Biodegradation of organic pollutants, J. Lalucat and K. N. Timmis (Eds.)., UIB-GBF-CSI-TUB Symposium, pp:171, Palma de Mallorca, Spain.
Gerritse, J., T. M. P. Gomes, and P. A. Lawson (1996b). Desulfitobacterium sp. Strain PCE1, an Anaerobic Bacterium that can Grow by Reductuve Dechlorination of Tetra-chloroethene or Ortho-chlorinated Phenol. Arch. Microbiol., 165, 132-140.
Gerritse, J., G. Kloeststra, A. Broger, G. Dalstra, A. Alphenaar, and J. C. Gottschal (1997). Complete degradation of tetrachloroethene in coupled anoxic and oxic chemostats. Appl. Microbiol. Biotechnol., 48, 553-562.
Gerritse, J., O. Drzyzga, G. Kloetstra, M. Keijmel, L. Wiersum, R. Hutson, and J. C. Gottschal(1999). Influence of Different Electron Donors and Acceptors on Dehalorespiration of Tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl. Environ. Microbio., 65, 5212-5221.
Glod, G., U. Brodmann, W. Angst, C. H. Holliger, and R. P. Schwarzenbach (1997). Cobalamin-mediated Reduction of cis- and trans-Dichloroethene, 1,1-Dichloroethene , and Vinyl Chloroethene in Homogeneous Aqueous Solution : Reaction Kinetics and Mechanistic Considerations. Environ. Sci. Technol., 31, 3154-3160.
Glod, G., W. Angst, C. H. Holliger, and R. P. Schwarzenbach(1997). Corrinoid-mediated Reduction of Tetrachloroethene, Trichloroethene, and Trichlorofluoroethene in Homogeneous Aqueous Solution : Reaction Kinetics and Reaction Mechanisms. Environ. Sci. Technol., 31, 253-260.
Hamada, T. and H. Tanaka (1995). Transfer of Methyl Chlorofrom, Trichloroethylene and Tetrachloroethlene to Milk, Tissues and Expired Air Following Intrauminal or Oral Administration in Lactating Goats and Milk-fed Kids. Environmental Pollution., 87, 313-318.
He, J., Y. Sung, M. E. Dollhopf, B. Z. Fathepure, J. M. Tiedje, and F. E. Löffler (2002). Acetate versus Hydrogen as Direct Electron Donors To Stimulate the Microbial Reductive Dechlorination Process at Chloroethene-Contaminated Sites. Environ. Sci. Technol., 36, 3945-3952.
Holliger, C., G. Schraa, A. J. M. Stams, and A. J. B Zehnder (1993). A Highly Purified Enrichment Culture Couples the Reductive Dechlorination of Tetrachloroethene to Growth. Appl. Environ. Microbio., 59, 2991-2997.
Holliger, C., D. Hahn, H. Harmsen, W. Ludwig, W. Schumacher, B Tindall, F. Vazquez, N. Weiss, and A. J. B. Zender (1997). Dehalobacter restrictus gen. nov. and sp. nov., a Strictly Anaerobie Bacterium that Reductively Dechlorinates Tetra- and Trichloroethene in an Anaerobic Respiration. Arch. Microbiol., 169, 313-321.
Holliger, C., G. Wohlgstyh, and G. Diekert (1999). Reductive Dechlorination in the Energy Metabolism of Anaerobic Bacteria. FEMS Microbiol. Rev., 22, 383-398.
Jafvert, C. T. and N. L. Wolfe (1987). Degradation of Selected Halogenated Ethane in Anoxic Sediment-Water System. Environ. Toxicol. Chem., 6, 827-837.
Kaster, M. (1991). Reductive Dechlorination of Tri- and Tetrachloroethylenes Depends on Transition from Aerobic to Anaerobic Conditions. Appl. Environ. Mirobiol., 57, 2039 -2046 .
Krumholz, L. R., R. Sharp, and S. S. Fishbain (1996). A Freshwater anaerobe Coupling Acetate Oxidation to Tetrachloroethylene Dehalogenation. Appl. Environ. Mirobiol., 62, 4108-3113.
Lash, L. H., W. Qian, D. A. Putt, K. Desai, A. A. Elfarra, A. R. Sicuri, and J. C. Parker (1998). Glutathione Conjugation of Perchloroethylene in Rats and Mice in Vitro: Sex-, Species-, and Tissue-Dependent Differences. Toxicol. Appl. Pharmacol., 150, 49-57.
Lee, T. H., M. Yoshimi, M. Ike and M. Fujita (1997). Characterization of an Anaerobic Soil Enrichment Capable of Dechlorinating High Concentrations of Tetrachloroethylene. Wat. Sci. Tech., 36, 117-124.
Long, J. L. , H. D. Stensel, and J. F. Ferguson (1993). Anaerobic and Aerobic Treatment of Chlorinated Aliphatic Compounds. J. Environ. Eng., 119, 300-319.
Löffler, E. L., K. M. Ritalahti, and J. M. Tiedje (1997). Dechlorination of Chloroethenes is Inhibited by 2-Bromo-Ethanesulfonate in the Absence of Methanogens. Appl. Environ. Microbiol., 63, 4982-4985.
Magnuson, J. K., R. V. Stern, J. M. Gossett, S. H. Zinder, and D. R. Burris(1998). Reductive Dechlorination of Tetrachloroethene to Ethane by a Two-component Enzyme Pathway. Appl. Environ. Microbiol., 64, 1270-1275.
Magnuson, J. K., M. F. Romine, D. R. Burris, and M. T. Kingsley (2000). Trichloroethene Reductive Dehalogenase from Dehalococcoides ethenogenes:Sequence of tce A and Substrate Range Characterization, Appl. Environ. Microbiol., 66(12), 5141-5147.
MaymÓ-Gatell, X., V. Tandoi, J. M. Gosset, and S. H. Zinder (1995). Characterization of an H2-utilizing Enrichment Culture that Reductively Dechlorinates Tetrachloroethene to Vinyl Chloride and Ethene in the Absence of Methanogenesis and Acetogenesis. Appl. Environ. Microbiol., 61, 3928-3933.
MaymÓ-Gatell, X., Y. Chien, J. M. Gossett, and S. H. Zinder (1997). Isolation of a Bacterium that Reductively Dechlorinates Tetrachloroethene to ethane. Science., 276, 1568-1571.
Middeldorp, P. J. M., J. De Wolf, A. J. B. Zehnder, and G. Schraa (1997). Enrichment and Properties of a 1,2,4-Trichloro- benzene Dechlorinating Methanogenic Microbial Consorium. Appl. Environ. Microbiol., 63, 1225-1229.
Middeldorp, P. J. M., M. L. G. C. Luijten, B. A. V. D. Pas, M. H. A. V. Eekert, S. W. M. Kengen, G. Schraa and A. J. M. Stams (1999). Anaerobic Microbial Reductive Dehalongenation of Chlorinated Ethenes. Bioremediation Journal., 3, 151-169.
Mohn, W. W. and J. M. Tiedje (1992). Microbial Reductive Dehalogenation. Microbiol. Rev., 56, 482-507.
Miller, E., G. Wohlfarth, and G. Diekert (1996). Studies on tetrachloroethene respiration in Dehalospirillum multivorans. Arch. Microbiol., 166, 379-387.
Miller, E., G. Wohlfarth, and G. Diekert (1998). Comparative Studies on Tetrachloroethene Reductive Dechlorination Mediated by Desulfitobacterium sp. strain PCE-S. Arch. Microbiol., 168, 513-519.
Nyer, E. K. (1985). Groundwater Treatment Technology, Van Nostrand Reinhold, New York.
Oldenhuis , R., R. L. J. M. Vink, D. B. Janssen, and B. Witholt (1989). Degradation of Chlorinated Aliphatic Hydracarbons by Methylosinus Trichosporium OB3b Experssing Soluble Methane Monooxygenase. Appl. Environ. Microbiol., 55, 2819-2826.
Parsons, F., P. R. Wood, and J. DeMarco (1984). Trans- fromations of Tetrachloroethene and Trichloroethene in Microcosms and Groundwater Environments. J. Am. Water Works Assoc., 76, 56-59.
Piotrowski, M. R. (1993). Bioremediation Milestones. Wat. Environ. Technol., 5, 49-53.
Quensen, J. F., J. M. Tiedje and, S. A. Boyd (1988). Reductive Dechlorination of Polychlorinated Biphenyls by Anaerobic Microorganisms from Sediments. Science., 242, 752-754 .
Scholz-Muramatsu, H., Aneumann, M. Messmer, E. Moore and G. Diekert (1995). Isolation and characterization of Dehalospirillum Multivorans gen .nov., sp.nov., a Tetra- chloroethene-utilizing, Strictly Anaerbic Bacterium. Arch. Microbiol., 163, 48-56.
Scholten, J. C. M., R. Conrad, A. J. M. Stams (2000). Effect of 2-Bromo-Ethane Sulfonate, Molybdate and Chlorofrom on Acetate Consumption by Methanogenic and Sulfate-reducing Populations in freshwater sediment. FEMS Microbiology Ecology., 32, 35-42.
Schumacher, W., and C. Holliger (1996). The Proton/Electron ratio of the Menaquinone-Dependent Electron Transport from Dihydrogen to Tetrachloroethene in Dehalobacter restrictus. Journal of Bacteriology, 178, 2328-2333.
Singh, R. P., S. Kumar, and C. S. Ojha (1998). Nutrient Requirement for UASB Process : A Review. Biochemical Engineering Journal, 3, 35-54.
Tandoi, V., T. D. DiStefano, P. A. Bowser, J. M. Gossett, and S. H. Zinder (1994). Reductive Dehalogenation of Chlorinated Ethenesand Halogenated Ethanes by a High-Rate Anaerobic Enrichment Culture . Environ. Sci. Technol., 28, pp.973-979.
Terzenbach, D. P. and M. Blaut (1994). Transfromation of Tetrachloroethylene to Trichloroethylene by Homoacetogenic Bacteria. FEMS Microbiol. Lett., 123, 213-218.
Tsien, H. C., G. A. Brusseau, R. S. Hanson and L. P. Wackett (1989). Biodegradation of Trichloroethylene by Methylosinus Trichosporium OB3b. Appl. Environ. Microbiol., 55, 3155-3161.
US EPA, (1990). Handbook : Groundwater. Volume I: Groundwater and Contamination, EPA/625/6-90/016a.
US EPA, (1999). Solid Waste and Emergency Response (5402G). EPA 542-N-99-004, Issue No.32, June.
Van Eekert , M. (1999). Transformation of Chlorinated Compounds by Methanogenic Granular sludge. PhD thesis, Wageningen University, Wageningen, Netherlands.
Vogel, T. M. and P. L. McCarty (1985). Biotransfromation of Tetrachloroethylene to Trichloroethylene, Dichloroethylene, Vinyl Chloride, and Carbon Dioxide under Methanogenic Condition. Appl. Environ. Microbiol., 49, 1080-1083.
Vogel, T. M., C. S. Criddle, and P. L. McCarty (1987). Transfromations of Halogenaed Aliphaic Compounds. Environ. Sci. Technol., 21, 722-736.
Wild, A., R. Hermann, and T. Leisinger (1996). Isolation of an Anaerobic Bacterium which Reductively Dechlorinates Tetrachloroethene and Trichloroethene. Biodegradation., 7, 507-511.
Wohlfarth, G., and G. Diekert (1997). Anaerobie Dehalogenases.Current Opinion in Biotechnology, 8, 290-295.
Yang, Y. and P. L. McCarty (1998). Competition for Hydrogen within a Chlorinated Solvent Dehalogenating Anaerobic Mixed Culture. Environ. Sci. Technol., 32, 3591-3597.
Yang, Y. and P. L. McCarty (2000). Biomass, Oleate, and Other Possible Substrates for Chloroethene Reductive Dehalogenation. Bioremediation Journal., 4(2), 125-133.
Ye, D. Y., J. F. Quensen, J. M. Tiedje and S. A. Boyd (1992). Anaerobic Dechlorination of Polychlorobiphenyls (Aroclor 1242) by Pasteurized and Ethanol-treated Microorganisms from Sediments. Appl. Environ. Microbiol., 58, 1100-1114 .
Ye, D. Y., J. F. Quensen, J. M. Tiedje, and S. A. Boyd (1999). 2-Bromoethanesulfonate, Sulfate, Molybdate, and Ethanesulfonate Inhibit Anaerobic Dechlorination of Polychlorobiphenyls by Pasteurized Microorganisms. Appl. Environ. Microbiol., 65, 327-329.
Young, R. G. and J. M. Gossett (1997). Effect of Environmental Parameters and Concentration on De- chlorination of Chloroethenes. In Situ and On-Site Bioremediation, B. C. Alleman and A. Leeson (eds.)., 3, Battelle Press, Clumbus, Ohio, pp.61.
Zhuang, P. and S. G. Pavlostathis (1995). Effect of Temperature , pH and Electron Donor on the Microbiol Reductive Dechlorination of Chloroalkenes. Chemosphere. 31, 3537-3548.
Zhuang, P. and S. G. Pavlostathis (1994). Effect of Chlorinated Alkenes on the Reductive Dechlorination and Methane Production Processes. Wat. Sci. Tech., 30(7), 85-94.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top