跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 03:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁志銘
研究生(外文):Liang_Chih_Min
論文名稱:以分子生物方法探討活性污泥中紫色不含硫光合作用細菌
論文名稱(外文):A Study of Purple Nonsulfur Bacteria in Activated Sludge Using Moleculr Biotechnology
指導教授:洪俊雄洪俊雄引用關係
指導教授(外文):Hung_Chun_Hsiung
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:紫色不含硫光合作用細菌螢光原位雜交聚合脢連鎖反應變性梯度凝膠電泳
外文關鍵詞:Purole Nonsulfur BacteriaFISHPCRDGGE
相關次數:
  • 被引用被引用:12
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為避免水質的優養化,以工程方法來減少廢水中磷的濃度便成為廢水處理的重要課題之一。若考慮經濟性、可靠、及高效率的特性,生物除磷被建議為最適合的除磷方式。在目前廣為使用的程序為EBPR(Enhanced Biological Phosphorus Removal)生物除磷程序中,雖然有幾類分離出的微生物菌株被認定為聚磷酸鹽累積菌,但實際參與此反應的微生物種類以及以生長特性至今尚未有所定論。而文獻中曾指出,某些以醋酸為基質之除磷反應槽的菌群中有80%為演化上接近Rhodocyclus (Rhodocyclus-related)的菌種,且由最近學者發表之研究中得知此類微生物在實廠活性污泥中所佔比例可達10%以上,但此類Rhodocyclus-related的菌種是否為紫色不含硫光合作用細菌之一,或是紫色不含硫光合作用細菌與Rhodocyclus-related的菌種在EBPR生物除磷程序中所扮演的角色及累積聚磷酸鹽的能力也尚未明瞭。
本研究欲瞭解紫色不含硫光合作用細菌或演化分類上接近紫色不含硫光合作用細菌之菌株在活性污泥生物除磷系統中所可能扮演的角色。實驗設計上,先以傳統培養純化並作菌株計數比較一般處理程序與EBPR處理程序中紫色不含硫光合作用細菌之菌數及菌相,再配合分子生物方法,包含螢光原位雜交(FISH)、聚合脢連鎖反應(PCR)、瓊脂糖電泳(agarose gel electrophoresis)、變性梯度凝膠電泳(DGGE)…等方法進行不同來源污泥槽中紫色不含硫光合作用細菌之比較分析。
初步結果發現,紫色不含硫光合作用細菌在活性污泥槽中之總菌數較文獻中提及之100,000 cells/mL少兩個數量級。光譜分析發現,分離出之純菌約90%以上較趨向於Rhodopseudomonas屬;經電泳分析結果發現,一般僅具曝氣程序之活性污泥中紫色不含硫光合作用細菌之種類較複雜,但總數較少,約1,000 cells/mL以下;而EBPR除磷程序中紫色不含硫光合作用細菌之種類較為單純,但總菌數較多,約3,000 cells/mL至6,000 cell/mL之間。
由PCR-DGGE的結果發現,一般僅具曝氣程序的反應槽活性污泥菌相,比厭氧好氧交替程序(如EBPR程序)的反應槽活性污泥菌相複雜。活性污泥中所純化出之紫色不含硫光合作用細菌菌種以Rhodopseudomonas palustris最常見,此外尚有Rhodoplanes elegans 、Rhodobacter blasticus及 Rhodobacter capsulatus,此外亦分離出紫色含硫光合作用細菌Allochromatium vinosum。而在生物除磷程序的反應槽活性污泥中,最易分離出的為Rhodopseudomonas palustris。但在純化分離純菌試驗中,並未成功分離出Rhodocyclus,故尚無法探究此類菌種累積聚磷酸鹽的能力。
Wastewater phosphorus removal using engineering strategies is one of the important subjects on eutrophication control. In all the available methods, biological phosphorus removal becomes very popular because its low cost, good reliability, and high efficiency. Even though several groups of microorganisms had been isolated from the enhanced biological phosphorus removal (EBPR) process and their ability on accumulating polyphosphate had been confirmed, there is no conclusion on what microorganism plays the major role on the biological phosphorus removal process. From the literatures, more than 80% bacteria in some acetate-feeding phosphorus removal reactors were found to be closely related to Rhodocyclus (belonging to purple non-sulfur phototropic bacteria). Furthermore, the number of these Rhodocyclus - related microorganisms were found to be above 10% in some full-scale wastewater treatment plant. However, the role of purple non-sulfur phototropic bacteria or these Rhodocyclus — related bacteria in the full-scale EBPR process as well as their ability on polyphosphate accumulating is still not clear.
The objectives of this study are to understand the possible roles of purple non-sulfur phototropic bacteria or these Rhodocyclus — related bacteria in the full-scale EBPR processes. Traditional isolation and numeration methods for purple non-sulfur bacteria were applied first to compare the difference between sludge samples from normal activated sludge process and EBPR process. After that, molecular methods including fluorescence in situ hybridization (FISH)、polymerase chain reaction (PCR)、agrose gel electrophoresis、denauring gradient gel electrophoresis (DGGE) were used for further bacterial community comparisons.
It was shown that the number of purple non-sulfur bacteria is 100 times lower than the previously reported 100,000 cfu/mL. Absorption spectrums of isolated pure cultures showed that more than 90% of purple non-sulfur bacteria isolated were similar to Rhodopseudomonas. Furthermore, numeration result combined with DGGE analysis demonstrated that sludge sample from EBPR process had more purple non-sulfur bacteria (3,000 cells/ml — 6,000 cells/ml) than from normal activated sludge (lower then 1,000 cells/ml). Furthermore, even though normal activated sludge sample had fewer purple non-sulfur bacteria, the composition of these bacteria were more complicated than sample from EBPR process.
Isolated purple non-sulfur bacteria were identified by gene extraction and sequencing. Four major species were found in the isolated pure cultures : Rhodopseudomonas palustris、Rhodoplanes elegans、Rhodobacter blasticus and Rhodobacter capsulatus. Among them, Rhodopseudomonas palustris is the most frequently isolated one. One purple sulfur bacteria identified as Allochromatium vinosum was also isolated by the same method used for culturing purple non-sulfur bacteria. However, no pure culture of Rhodocyclus or organisms closely relate to Rhodocyclus were isolated.
目 錄
中文摘要………………………………………………………………………Ⅰ
中文摘要………………………………………………………………………Ⅲ
目錄…………………………………………………………………………………Ⅴ
表目錄………………………………………………………………………………Ⅸ
圖目錄…………………………………………………………………………XI
第一章 前言…………………………………………………………………………1
1-1 研究緣起……………………………………………………………………1
1-2 研究目的…………………………………………………………………3
第二章 文獻回顧…………………………………………………………………5
2-1 活性污泥法……………………………………………………………… …..5
2-1-1 標準活性污泥法……………………………………………………..5
2-1-2 活性污泥中之菌相組成……………………………………………..5
2-2 生物除磷……………………………………………………………………..9
2-2-1 生物除磷之機制及原理……………………………………………..9
2-2-2 EBPR系統中微生物菌相………………………………………....10
2-3 光合作用細菌……………………………………………………………….12
2-3-1 光合作用細菌獲得能量之方式……………………………………12
2-3-2 無氧光合營微生物…………………………………………………17
2-3-3 光合營微生物之種類及其特性……………………………..……..18
2-3-4 紫色不含硫光合作用細菌…………………..……………………..22
2-3-4-1 紫色不含硫光合作用細菌生理特性…….…………………..22
2-3-4-2 紫色不含硫光合作用細菌鑑定方法………..……………….22
2-3-4-3 紫色不含硫光合作用細菌之應用………………..………….25
2-3-5 光合作用細菌在環工上之相關研究與應用………………………26
2-4 傳統方法分析菌相…………………….……………………………………28
2-4-1 傳統鑑定菌種之方法……………………………...……………….28
2-4-2 傳統方法所產生之偏差………………………………...………….29
2-4-2-1 EBPR系統之偏差…………………………………………..29
2-4-2-2 硝化系統之偏差…………………………………………...…30
2-5 分子生物技術於鑑定分析菌相之突破…………………………………….32
2-6 分子生物技術於環境工程上之應用……………………………………….34
2-6-1 16S rDNA………………………………………………………….35
2-6-3 螢光原位雜交法……………………………………………………36
2-6-3 聚合酶連鎖反應….………………………….……………………..39
2-6-4 電泳分析……………………………….…….……………………..40
2-6-4-1 瓊脂糖凝膠電泳……………………….………….………….40
2-6-4-2 變性梯度凝膠電泳………………………………..………….40
第三章 材料與方法…………………………………………………………………43
3-1 實驗架構…..………………………………………..……………………….43
3-2 實驗設備…………………………………………………………………….44
3-3 活性污泥來源……………………………………………………………….45
3-4 純菌培養、分離與測試……………………………………………………..46
3-4-1 培養基……………………………………………………………....46
3-4-2 各污水廠活性污泥中紫色不含硫光合作用細菌之計數…………48
3-4-3 純菌篩選與分離純化………………………………………………48
3-4-4 純菌株吸收光譜分析………………………………………………49
3-5 環境樣本菌群分析…………………………………………………………50
3-5-1 螢光原位雜交法……………………………………………………50
3-5-1-1 固定………………………………………………………..….50
3-5-1-2 雜交………………………………………………….………..51
3-5-1-3 清洗……………………………………...……………………51
3-5-1-4 顯像………………………………………….….…………….51
3-5-2 DAPI染色……………………………………………….……..….52
3-6 各水廠樣本與純菌之分析比較…………………………………………….54
3-6-1 DNA萃取………………………………………………………….54
3-6-1-1 純菌DNA之萃取……………………………………...……..54
3-6-1-2 環境樣本DNA之萃取……………………...………………..55
3-6-2 聚合酶連鎖反應……………………………………………………56
3-6-2-1 pufM引子……………………………………………………54
3-6-2-2 16S rDNA primer sets ……………………………...………56
3-6-2-3聚合酶連鎖反應使用藥品………………………….………..57
3-6-2-4 操作條件…………………………………………………...…57
3-6-3 電泳分析…………………………………………..………………..58
3-6-3-1 瓊脂膠糖凝膠電泳…………………..……………………….58
3-6-3-2 變性梯度凝膠電泳……………………………………...……59
第四章 結果與討論…………………………………………………………………60
4-1 傳統培養分析方法…………………………………………………………61
4-1-1 各水廠中紫色不含硫光合作用細菌數量…………………………61
4-1-2 純菌分離純化……………………………...……………………….64
4-1-3 純菌光譜分析結果………………………………...……………….65
4-2 螢光原化雜交法分析活性污泥菌相結構………………….………………67
4-3 聚合酶連鎖反應及電泳法分析…………………………………………….81
4-3-1 聚合酶連鎖反應、電泳分析及定序……………………………….81
4-3-2 引子pufM primers測試……………………………….……………82
4-3-2-1 環境樣本測試………………………………………..……….82
4-3-2-2 純菌測試………………………………………………..…….83
4-3-3 變性梯度膠測試……………………………………………...…….84
4-3-3-1 混合純菌測試…………………………………………..…….84
4-3-3-2 環境樣本再現性測試………………………...………………85
4-3-4 以pufM primers分析各水廠間活性污泥………………….……....86
4-3-5 以pufM primers分析比較活性污泥與分離純菌…………….……91
4-3-5-1 南投中興新村中正污水處理廠…………………………….91
4-2-5-2 暨南大學SBR處理廠………………………………………95
4-3-5-3 暨南大學A2O處理模廠厭氧槽……………………………..99
4-3-5-4 暨南大學A2O處理模廠無氧槽…………………………….102
4-3-5-5暨南大學A2O處理模廠好氧槽…………….…………….105
4-3-5-6 分析結果誤差探討………………………………………….108
4-4 純化及定序結果…………………………………………………...………110
4-4-1 活性污泥樣本……………………………………………………110
4-4-2 純菌…………………………………………………………..…..111
4-4-2-1純菌株pufM gene定序結果………………………….112
4-4-2-1-1 中正污水處理廠活性污泥分離之純菌………………113
4-4-2-1-2 暨南大學污水處理廠活性污泥分離之純菌…………116
4-4-2-1-3 暨南大學A2O模廠厭氧槽活性污泥分離之純菌…118
4-4-2-1-4 暨南大學A2O模廠無氧槽活性污泥分離之純菌…120
4-4-2-1-5 暨南大學A2O模廠好氧槽活性污泥分離之純菌…122
4-5 關於Rhodocyclus…………………………………………………………126
第五章 結論與建議………………………………………………………………129
5-1 結論…………………………………………………………………...……129
5-2 建議…………………………………………………………..…………….131
參考文獻……………………………………………………………………………133
表 目 錄
表2-1 活性污泥中常見之微生物相………………………………………………....8
表2-2 葉綠素a與Bchl a,b,c,d,e中R1-R7之成分…….…………………………..16
表2-3 光合作用細菌在自然界中之分佈…………………………………………..17
表2-4 光合營生物之代謝形式……………………………………………………..20
表2-5 紫色不含硫光合作用細菌對不同碳源利用情形…………………………..23
表2-6 文獻中常使用的寡核苷酸探針……………………………………………..38
表3-1 活性污泥來源及其處理程序………………………………………………..45
表3-2 Rhodospririllaceae培養基成分…………………………………………...46
表3-3 Trace element solution SL7成分…………………………………………...47
表3-4 吸收光譜操作條件…………………………………………………………..49
表3-5 不同菌綠素之最大吸光度…………………………………………………..49
表3-6 各濾鏡組所適用之螢光染劑與基本資料…………………………………..53
表3-7 本實驗中所使用之寡核苷酸探針…………………………………………..53
表3-8 各緩衝液成分………………………………………………………………..53
表3-9 Formamide濃度與NaCl濃度對照表…………………………………….54
表3-10 pufM primers之目標族群及其序列……………………………………...56
表3-11 16S rDNA primers之目標族群及其序列…………………………….…56
表3-12 DNA序列長度對應所需之瓊脂糖膠體濃度…………………………….58
表3-13 變性梯度膠所使用之各化學物質…………………………………………59
表4-1 各水廠中紫色不含硫光合作用細菌之計數結果…………………………..61
表4-2 各處理廠活性污泥中純化紫色不含硫光合作用細菌數目………………..64
表4-3 純菌光譜分析結果…………………………………………………………..65
表4-4 各污水處理廠活性污泥菌相結構…………………………………………..68
表4-5 菌數及菌相比較……………………………………………………………..71
表4-6 DGGE分析活性污泥樣本獲得之亮帶...…………………………………..88
表4-7 紫色不含硫光和作用細菌數量與菌種關係表……………………………..89
表4-8 各污水處理廠活性污泥分離純化菌株之定序編號………………………111
表 4-9 pufM primer sets設計來源……………………………………………..112
表 4-10 中正污水處理廠活性污泥分離之各純菌定序及比對結……………..114
表4-11 暨南大學污水處理廠活性污泥分離之各純菌定序及比對結果……….117
表 4-12 暨南大學A2O模廠厭氧槽活性污泥分離之各純菌定序及比對結果….119
表 4-13 暨南大學A2O模廠無氧槽活性污泥分離之各純菌定序及比對結果.121
表 4-14 暨南大學A2O模廠好氧槽活性污泥分離之各純菌定序及比對結果…123
表 4-15各污水處理廠純化出之菌種比對結果……………………………….....124
圖 目 錄
圖2-1 標準活性污泥處理程序示意圖……………………………………………....6
圖2-2 葉綠素a與菌綠素a結構上之差異………………………………………...12
圖2-3 葉綠素a與Bchl a,b,c,d,e構造圖………………………………………….15
圖2-4 光合菌之分類示意圖………………………………………………………..21
圖2-5 變性梯度凝膠電泳原理……………………………………………………..41
圖2-6 變性梯度凝膠電泳呈像圖……………..……………………………………42
圖3-1 文獻中三菌種之光譜圖……………………………………………………..49
圖3-2 聚合酶連鎖反應操作條件示意圖……………………………………..……57
圖4-1 各廢污水處理廠活性污泥菌相組成柱狀圖…………………………...…69
圖4-2 台中酒廠污水處理廠活性污泥FISH結果……………………………….73
圖4-3 台中工業區聯合污水處理廠活性污泥FISH結果……………………….74
圖4-4 福田水資源回收中心活性污泥FISH結果……………………………….75
圖4-5 中興新村中正污水處理廠活性污泥FISH結果………………………….76
圖4-6 暨南大學SBR處理實廠活性污泥FISH結果……………….…………77
圖4-7 暨南大學A2O模廠厭氧槽活性污泥FISH結果………………………..78
圖4-8 暨南大學A2O模廠無氧槽活性污泥FISH結果………………………..79
圖4-9 暨南大學A2O模廠好氧槽活性污泥FISH結果………………………..80
圖4-10 環境樣本測試pufM primers……………………………………………...82
圖4-11 分離純菌株測試pufM primers……………………………………………83
圖4-12 混合純菌之電泳分析……………..………………………………………..84
圖4-13 環境樣本進行DGGE之再現性……………………….………………….85
圖4-14 以瓊脂糖凝膠電泳分析各污水廠活性污泥…………...………………….86
圖4-15以變性梯度凝膠電泳分析各污水廠活性污泥………..…………………..87
圖4-16亮帶相對位置概略圖(圖4-15)....……….………………….……………..87
圖4-17以瓊脂糖凝膠電泳分析中正污水處理廠分離出之18株純菌…....…….91
圖4-18 以變性梯度凝膠電泳分析比對中正污水處理廠活性污泥與其純化出之13株純菌……………………………………………………………………...92
圖4-19亮帶相對位置概略圖(圖4-18)…..………………………….……………..92
圖4-20以瓊脂糖凝膠電泳分析暨南大學SBR處理廠所分離出之15株純菌…95
圖4-21變性梯度凝膠電泳分析比對暨南大學SBR活性污泥及其9株純菌…96
圖4-22亮帶相對位置概略圖(圖4-21)…..………………………….……………..96
圖4-23瓊脂糖凝膠電泳分析暨南大學A2O模廠分離厭氧階段之18株純菌…99
圖4-24變性梯度凝膠電泳比對暨南大學A2O模廠厭氧槽中活性污泥及11株純菌……………………………..……………………………………...100
圖4-25亮帶相對位置概略圖(圖4-24)………...…………………..……………..100
圖4-26瓊脂糖凝膠電泳分析暨南大學A2O模廠分離無氧階段之13株純菌…102
圖4-27變性梯度凝膠電泳比對暨南大學A2O模廠無氧槽中活性污泥及7株純菌………………………………………………………………………...103
圖4-28亮帶相對位置概略圖(圖4-27)...…….…………………….……………..103
圖4-29瓊脂糖凝膠電泳分析暨南大學A2O模廠分離好氧階段之7株純……105
圖4-30變性梯度凝膠電泳比對暨南大學A2O模廠好氧槽中活性污泥及7株純菌………………………………………………………………………...106
圖4-31亮帶相對位置概略圖(圖4-30)…..……..………………….……………..106
國內文獻
張怡塘、林瑩峰、章裕民、方鴻源、邱應志、袁又罡 (1997),環境微生物,中華民國環境工程學會。
歐陽嶠暉 (2000),下水道工程學,長松出版社,臺北市。
梁凱莉及高惠娟編譯(1997) ,普通生物化學,初版。合記圖書初版社,台北。
呂慶慧(1992),活性污泥法添加及未添加光合作用菌處理屠宰廢水之功能比較。成功大學環境工程研究所碩士論文。台南。
李文和(1990),應用生物及化學方法處理垃圾滲出水之研究,碩士論文,國立台灣大學環境工程研究所。
林金昇(1990),利用光合細菌處理高濃度有機廢水影響因素之探討,碩士論文,國立台灣大學環境工程研究所。
游文宏(1995),黑麴菌、枯草桿菌、光合菌之生物習性及其添加對養殖環境的影響,碩士論文,國立台灣海洋大學水產養殖研究所。
陳展添(1993),活性污泥法添加及未添加光合菌處理經厭氧處理後之養豬廢水場廢水,碩士論文,國立成功大學環境工程研究所。
吳培堯(1991),以紫色不含硫光合作用菌處理豬糞尿廢水之硫化氫。中興大學環境工程學系學士論文。台中。
李季眉(1988),以紫色含硫光合作用細菌Amoebobacter pedioformis strain CML2處理豬糞尿廢水之硫化氫。第十三屆廢水處理技術研討會論文集。第206~215頁。
李季眉(1990),以固定化之紫色含硫光合作用細菌處理豬糞尿廢水之硫化氫。第十五屆廢水處理技術研討會論文集。第313~327頁。
李季眉(1991),以固定化之紫色含硫光合作用細菌處理豬糞尿廢水之硫化氫─連續流程試驗。第十六屆廢水處理技術研討會論文集。第157~168頁。
陳樹功及王西華(1982),利用光合菌處理澱粉廢液─Rhodopseudomonas之分離與應用。第一屆廢水處理技術研討會論文集。第213-223頁。
顏子穎及王海林 譯(1998),精編分子生物學實驗指南,科學出版社,北京市。
陳嘉芬(1999),現代遺傳學,藝軒圖書出版社,台北市。
劉文佐(2000),氣膠微生物族群之分子生物技術建立,國立中央大學環境工程學刊第六期。
林瑤玓(2002),紫色不含硫光合作用細菌於連續流產氫之研究。碩士論文,國立中興大學環境工程研究所。
梁榮元(1990),添加光合細菌及混養文蛤對斑節蝦養殖系統的影響。碩士論文,國立台灣海洋大學水產養殖研究所。
宋作人(1994),活性污泥法添加及未添加光合菌處理魚市場廢水。碩士論文,國立成功大學環境工程研究所。
蘇慧慈(1996),原位分子生物技術。徐氏基金會,台北。
國外文獻
Achenbach, L. A., Carey, J., and Madigan, M. T. (2001). "Photosynthetic and Phylogenetic Primers for Detection of Anoxygenic Phototrophs in Natural Environments." Applied and Environmental Microbiology, 67(7), 2922-2926.
Amann, R. I., Krumholz, L., and Stahl, D. A. (1990). "Fluorescent-Oligonucleotide Probing of Whole Cells for Determinative, Phylogenetic, and Environmental Studies in Microbiology." Journal of Bacteriology, 172(2), 762-770.
Amann, R. I., Ludwig, W., and Schleifer, K.-H. (1995). "Phylogenetic Identification and In Situ Detection of Individual Microbial Cells Without Cultivation." Microbiology Review, 59(1), 143-169.
Amann, R. I., Snaidr, J., Wagner, M., Ludwig, W., and Schleifer, K.-H. (1996). "In Situ Visualization of High Genetic Diversity in a Natural Microbial Community." Journal of Bacterioloigy, 178, 3496-3500.
Bark, K., Sponner, A., Kaempfer, P., Grund, S., and Dott, W. (1992). "Differences in Polyphosphate Accumulation and Phosphate Adsorption by Acinetobacter Isolates from Wastewater Producing Polyphosphate: AMP Phosphotransferase." Water Research, 26(10), 1379-1388.
Barker, P. S., and Dold, P. L. (1996). "Denitrification Behavior in Biological Excess Phosphorus Removal Activated Sludge Systems." Water Research, 30(4), 769-780.
Beacham, A. M., Seviour, R. J., and Lindrea, K. C. (1992). "Polyphosphate Accumulating Abilities of Acinetobacter Isolates from a Biological Nutrient Removal Pilot Plant." Water Research, 26(1), 121-122.
Benlloch, J., Acinas, S. G., Murcia, A. J., and Valera, F. R. (1996). "Description of Prokaryotic Biodiversity Along The Salinity of A Multipond Solar Saltern by Direct PCR Amplification of 16S rDNA." Hydromiol, 329, 19-31.
Benlloch, S., Acinas, S. G., Murcia, A. J., Valera, F. R. (1996). "Uptake and Transformation of Metals and Metalloid by Microbial Mats and Their Use in Bioremediation." Journal of Industrial Microbiology, 14, 113-118.
Bergey, D. H., and Krieg, N. R. (1984). Bergey''s Manual of Systematic Bacterology.Williams and Wilkin edt,. Baltimore.
Bond, P. L., Hugenholtz, P., Keller, J., and Blackall, L. L. (1995). "Bacterial Community Structures of Phosphate-Removing and non-Phosphate-Removing Activated Sludges from Sequencing Batch Reactors." Applied and Environmental Microbiology, 61(5), 1910-1916.
Brock, T. D., and Msdigan, M. T. (1991). Biology of Microbiologanisms, Prentice-Hall International., U.S.A.
Brodisch, K. E. U. (1984). "Interaction of Different Groups of Microorganisms in Biological Phosphate Removal." Water Science and Technology, 17(11-12), 89-97.
Brodisch, K. E. U., and Joyner, S. J. (1983). "The Role of Microorganisms other than Acinetobacter in Biological Phosphate Removal in Activated Sludge Process." Water Science and Technology, 15, 117-125.
Burrell, P. C., Phalen, C. M., and Hovanec, T. A. (2001). "Identification of Bacteria Responsible for Ammonia Oxidation in Freshwater Aquaria." Applied and Environmental Microbiology, 67(12), 5791-5800.
Cloete, T. E., and Steyn, P. L. (1988). "The Role of Acinetobacter as A Phosphorus Removing Agent in Activated Sludge." Water Research, 22(8), 971-976.
Crocetti, G. R., Hugenholtz, P., Bond, P. L., Schuler, A., Keller, J., Jenkins, D., and Blackall, L. L. (2000). "Identification of Polyphosphate-Accumulating Organisms and Design of 16S rRNA-Directed Probes for Their Detection and Quantitation." Applied and Environmental Microbiology, 66(3), 1175-1182.
Davelaar, D. (1978). "Biological Removal of Phosphorus from Wastewater in a Nitrifying/Denitrifying Activated Sludge System." Agricultural University, Wageningen, The Netherlands.
DeLong, E. F., Wickham, G. S., and Pace, N. R. (1989). "Phylogenetic Stains: Ribosomal RNA-based Probes for The Identification of Single Cells." Science, 243, 1360-1363.
Feng, T. H. (1962). "Phosphorus and the the Activated Sludge Process."Water and Sewage Works,431-434.
Ferris, M. J., and Ward, D. M. (1997). "Seasonal Distributions of Dominant 16S rRNA-Defined Populations in A Hot Spring Microbial Mat Examined by Denaturing Gradient Gel Electrophoresis." Applied Environmental Microbiology, 63, 1375-1381.
Florentz, M., and Hartemann, P. (1984). "Screening for Phosphate Accumulating Bacteria Isolated from Activated Sludge." Environmental Technology Letters, 5, 457-463.
Fuhs, G. W., and Chen, M. (1975). "Microbiological Basis of Phosphate Removal in The Activated Sludge Process for The Treatment of Wastewater." Microbial Ecology, 2, 119-138.
Gaudy, A. F. (1980). Microbiology for Environmental Scientistis and Engineers, McGraw-Hill, U.S.A.
Gloe, A., Pfennig, N., Brockmann, H., and Trowitsh, W. (1975). "Relation Between Chlorophyll a and The Bacteriochlorophylls a, b, c, d, and e." Arch. Microbio,102,103-109.
Gobel, F. (1978). "Direct Measurement of Pure Absorbance Spectra of Living Phototrophoic Microorganism." Biochimica et Biophysica Acta, 538, 593-602.
Hao, O. J., and Chang, C. H. (1987). "Kinetics of Growth and Phosphate Uptake in Pure Culture Studies of Acinetobacter species." Biotechnology and Bioengineering, 29(7), 819-831.
Harwood, C., and Gibson, J. (1988). "Anaerobic and Aerobic Metabolism of Diverse Aromatic Compounds by The Photosynthetic Bacteria Rhodopseudomonas Palustris." Applied and Environmental Microbiology, 54(3), 712-717.
Hesselmann, R. P. X., Werlen, C., Hahn, D., van der Meer, J. R., and Zehnder, A. J. B. (1999). "Enrichment, Phylogenetic Analysis and Detection of A Bacterium That Performs Enhanced Biological Phosphorus Removal in Activated Sludge." Systematic and Applied Microbiology, 22, 454-465.
Hsu, A. (1997). "The Quality and Nutritive Value of Single Cellopr Tein Poduced by Photosynthetic Bacteria and Chlorella." Taiwan Livestock Res(Chinese), 10(2), 193-200.
Hung, C.-H. (2000). "Separation and Concentration of Polyphosphate-Accumulating Organisms from Enhanced Biological Phosphorus Removal Processes", University of Wisconsin-Madison, Madison, Wisconsin, USA.
Imhoff, J. F. (1982). "Occurrence and Evolutionary Singificance of Two Sulfur Assimilation Pathways in Rodospirillaceae." Achieves of Microiology, 132, 197-203.
Imhoff, J. F., and Truper, G. H. (1992). "The Genus Rhodospirillum and related Genera". In: H. Balows, H. G. Truper., M. Dworkin, W. Hareder and K. H. Schleifer (2nd ed.), The Prokaryotes,Vol. 3. Springer-Verlag, New York.
Ingraham, J. L., Maaloe, O., and Neidhardt, F. C. (1983). Growth of the Bacteria Cell. Sunderland, Massachusetts. Sinauer., 12-107.
Jenkins, D., and Tandoi, V. (1991). "The Applied Microbiology of Enhanced Biological Phosphate Removal: Accomplishments and Needs." Water Research, 25(12), 1471-1478.
Jorgensen, K. S., and Pauli, A. S. L. (1995). "Polyphosphate Accumulation Among Denitrifying Bacteria in Activated Sludge." Anaerobe, 1(3), 161-168.
Kampfer, P., Erhart, R., Beimfohr, C., Boringer, J., Wagner, M., and Amann, R. (1996). "Characterization of Bacterial Communities from Activated Sludge: Culture-Dependent Numerical Identification Versus In Situ Identification Using Group- and Genus-Specific rRNA-Targeted Oligonucleotide Probes." Microbial Ecology, 32, 101-121.
Kavanaugh, R. G., and Randall, C. W. (1994). "Bacterial Populations in A Biological Nutrient Removal Plant." Water Science and Technology, 29(7), 25-34.
Kawaharasaki, M., Tanaka, H., Kanagawa, T., and Nakamura, K. (1999). "In Situ Identification of Polyphosphate-Accumulating Bacteria in Activated Sludge by Dual Staining with rRNA-Targeted Oligonucleotide Probes and 4 '',6-Diamidino-2-Phenylindole (DAPI) at a Polyphosphate-Probing Concentration." Water Research, 33(1), 257-265.
Klemme, J. H., Yamamura, M., Alutsu, S., and Miyake, J. (1980). "Dissimiltaory Nitrate Reduation by Strains of the Facultative Phototrophic bacterium Rhodopseudomonas palustris." FEMS Microbiology Letters, 9, 137-140.
Kobayashi, M., Hirotani, H., Agui, Y., and Takahluent, E. (1990). "Removal of Coliphages from Wastewater Effluent by Phototrophic Bacteria." Wat. Sci. Tech., 22(9), 59-63.
Kobayashi, M., and Nakanishi, H. (1971). "Construction of A Purification Plant for Polluted Water Using Photosynthetic Bacteria." J. Ferment. Technol, 49(9), 917-925.
Kobayashi, M., and Ye, W. (1986). "Role of Phtotrophic Bacteria in Nature and The Fuel Gas Production. pp.1~9. In:Fourth International Symposium on Microbioal Ecology." ICOM ConFerener, Ljubljana, Yugoslavia.
Levin, G. V., and Shapiro, J. (1965). "Metabolic Uptake of Phosphorus by Wastewater Organism." Journal Water Pollution Control Federation, 37(6), 800-821.
Liu, W. T., Marsh, T. L., Cheng, H., and Forney, L. J. (1997). "Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphisms of Genes Encoding 16S rRNA." Applied and Environmental Microbiology, 63, 4516-4522.
Liu, W.-T., Mino, T., Nakamura, K., and Matsuo, T. (1996). "Glycogen Accumulating Population and Its Anaerobic Substrate Uptake in Anaerobic-Aerobic Activated Sludge without Biological Phosphate Removal." Water Research, 30(1), 75-82.
Lotter, L. H. (1985). "Role of Bacterial Phosphate Metabolism in Enhanced Phosphorus Removal from the Activated Sludge Process." Water Science and Technology, 17, 127-138.
Madigan, M. T., Martinko, J. M., and Parker, J. (2003). Brock Biology Of Microorganisms, Pretice Hall, U.S.A.
Maidak, B., Cole, J., Lilburn, T., Parker, C. J., Saxman, P., Farris, R., Garrity, G., Olsen, G., Schmidt, T., and Tiedje, J. (2001). "The RDP-II (Ribosomal Database Project)." Nucleic Acids Research., 29, 173-174.
Manz, W., Wagner, M., Amann, R., and Schleifer, K. H. (1994). "In Situ Characterization of the Microbial Consortia Active in Two Wasterwater Treatment Plants." Water Research, 28, 1715-1725.
Metcalf & Eddy, (1991). Wastewater Engineering: Treatment, Disposal, and Reuse, McGraw-Hill, New York,U.S.A.
Minnick, M. F., Mcallister, S. J., and Battisti, J. M. (1995). "Nucleotide Sequence Analysis of the 23S Ribosomal RNA-encoding Gene of Bartonella bacilliformis." Gene, 162, 75-79.
Mino, T., Vanloosdrecht, M. C. M., and Heijnen, J. J. (1998). "Microbiology and Biochemistry of the Enhanced Biological Phosphate Removal Process." Water Research, 32(11), 3193-3207.
Murphy, M., and Lotter, L. H. (1986). "The Effect of Acetate and Succinate on Polyphosphate Formation and Degradation in Activated Sludge, with Particular Reference to Acinetobacter calcoaceticus." Applied Microbiology and Biotechnology, 24(6), 512-517.
Muyzer, G., Waal, E. C., and Uitterlinden, A. G. (1993). "Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA." Applied and Environmental Microbiology, 59(3), 695-700.
Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasaki, M., Masuda, K., and Kamagata, Y. (1995). "Microlunatus Phosphorus gen. nov., sp. nov., a New Gram-Positive Polyphosphate-Accumulating Bacterium Isolated from Activated Sludge." International Journal of Systematic Bacteriology, 45(1), 17-22.
Nakamura, K., Masuda, K., and Mikami, E. (1991). "Isolation of a New Type of Polyphosphate Accumulating Bacterium and Its Phosphate Removal Characteristics." Journal of Fermentation and Bioengineering, 71(4), 258-263.
Oerther, D. B., Pernthaler, J., Schramm, A., Amann, R., and Raskin, L. (2000). "Monitoring Precursor 16S rRNAs of Acinetobacter spp. in Activated Sludge Wastewater Treatment Systems." Applied and Environmental Microbiology, 66(5), 2154-2165.
Ohsumi, T., Shoda, M., and Udaka, S. (1980). "Influence of Cultural Conditions on Phosphate Accumulation of Arthrobacter globiformis PAB-6." Agricultural and Biological Chemistry, 44(2), 325-332.
Ohtake, H., Takahashi, K., Tsuzuki, Y., and Toda, K. (1985). "Uptake and Release of Phosphate by A Pure Culture of Acinetobacter calcoaceticus." Water Research, 19, 1587-1594.
Pelczar, M. J., Chen, E. C. S., and Krieg, N. R. (1993). Microbiology-Concepts and Applications, McGraw-Hill,USA.
Pfennig, N. (1978). "Rhodocyclus Purpureus gen. nov. and sp. nov., a Ring-shaped Vitamin B12-requiring Member of the Family Rhodospirillaceae." International Journal of Systematic Bacteriology, 28, 283-288.
Poulsen, L. K., Ballard, G., and Stahl, D. A. (1993). "Use of rRNA Fluorescence In Situ Hybridization for Measuring the Activity of Single Cells in Young and Established Biofilms." Applied and Environmental Microbiology, 59, 1354-1360.
Rees, G. N., Vasiliadis, G., May, J. W., and Bayly, R. C. (1992). "Polyphosphate and Poly-beta-Hydroxybutyrate Production in Acinetobacter spp. Isolated from Activated Sludge." Water Science and Technology, 26(9-11), 2213-2215.
Regan, J. M., Harrington, G. W., and Noguera, D. R. (2002). "Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System." Applied and Environmental Microbiology, 68(1), 73-81.
Rittmann, R. E., and McCarty, P. L. (2001). Environmental Biotechnology-Principles and Applications, McGraw-Hill, USA.
Sasikala, C., Ramana, C., and Rao, P. R. (1994). "Nitrogen Fixation by Rhodopseudomonas palustris OU11 with Aromatic Compounds as Carbon Source/Electron Donors." FEMS Microbiology Letters, 122, 75-78.
Sawada, H., and Rogers, P. L. (1977). "Photosynthetic Bacteria in Waste Treatment-Role of Rodopseudomonas capsulata with Agriculture Industrial Effluents." J. Ferment. Technol, 55(4), 326-336.
Schramm, A., de Beer, D., Wagner, M., and Amann, R. (1998). "Identification and Activities In Situ of Nitrosospira and Nitrospira spp. as Dominant Populations In a Nitrifying Fluidized Bed Reactor." Applied and Environmental Microbiology, 64(9), 3480-3485.
Shoda, M., Ohsumi, T., and Udaka, S. (1980). "Screening for High Phosphate Accumulating Bacteria." Agricultural and Biological Chemistry, 44(2), 319-324.
Sidat, M., Bux, F., and Kasan, H. C. (1999). "Polyphosphate Accumulation by Bacteria Isolated from Activated Sludge." Water South Africa., 25(2), 175-179.
Siefert, E., Itgens, R. L., and Pfennig, N. (1978). "Phototrophic Purple and Green Bacteria in a Sewage Treatment Plant." Applied and Environmental Microbiology.
Stahl, D. and Amann, R. I. (1991). "Development and Application of Nucleic Acid Probes in Bacterial Systematics". 205-248. In E. Stackebrandt and M. Goodfellow ( ed. ), Sequencing and Hybridization Techniques in Bacterial Systematics. John Wilry and Sons, Chichester, England.
Starr, M. P., Stolp, H., Truper, H. G., Balows, A., and Schelgel, H. G. (1981). The Prokaryotes, Springer-Uerlag, Berlin Heidelberg.
Streichan, M., Golecki, J. R., and Schoen, G. (1990). "Polyphosphate -Accumulating Bacteria from Sewage Plants with Different Processes for Biological Phosphorus Removal." FEMS Microbiology Ecology, 73(2), 113-124.
Streichan, M., and Schoen, G. (1991). "Periplasmic and Intracytoplasmic Polyphosphate and Easily Washable Phosphate In Pure Cultures of Sewage Bacteria." Water Research, 25(1), 9-14.
Stryer, L. (1995). Stryer''s:Biochemistry, W. M. Freeman and Company, New York.
Suresh, N., Warburg, R., Timmerman, M., Wells, J., Coccia, M., Roberts, M. F., and Halvorson, H. O. (1985). "New Strategies for the Isolation of Microorganisms Responsible for Phosphate Accumulation." Water Science and Technology, 17(11-12), 99-111.
Tamatani, H., Shoda, M., and Udaka, S. (1983). "Growth and Phosphate Uptake of a High Phosphate Accumulating Bacterium, Arthrobacter globiformis PAB-6 in Continuous Culture." Biotechnology and Bioengineering, 25(7), 1781-1799.
Tandoi, V., Majone, M., May, J., and Ramadori, R. (1988). "The Behaviour of Polyphosphate Accumulating Acinetobacter Isolates in an Anaerobic-Aerobic Chemostat." Water Research, 32(10), 2903-2912.
Wagner, M., Amann, R., Lemmer, H., Manz, W., and Schleifer, K. H. (1994a). "Probing Activated Sludge with Fluorescently Labeled rRNA Targeted Oligonucleotides." Water Science and Technology, 29(7), 15-23.
Wagner, M., Amann, R., Lemmer, H., and Schleifer, K. H. (1993). "Probing Activated Sludge with Oligonucleotides Specific for Proteobacteria: Inadequacy of Culture-Dependent Dethods for Describing Microbial Community Structure." Applied and Environmental Microbiology, 59(5), 1520-1525.
Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K. H. (1994b). "Development of an rRNA-Targeted Oligonucleotide Probe Specific for the Genus Acinetobacter and Its Application for In Situ Monitoring in Activated Sludge." Applied and Environmental Microbiology, 60(3), 792-800.
Wagner, M., Rath, G., Amann, R., Koops, H. P., and Schleifer, K. H. (1995). "In Situ Identification of Ammonia-Oxidizing Bacteria." Systematic and Applied Microbiology, 18(2), 251-264.
Wallner, G., and Amann, R. (1995). "Flow Cytometric Analysis of Activated Sludge with rRNA-Targeted Probes." Applied and Environmental Microbiology, 61(5), 1859-1866.
Wang, Y., Peng, X., and Zhou, S. (1990). "Experiments on Reaing of Freshwater Fish Fingerings With Culture Fluid of Photosynthetic Bacteria in Ponds." Journal of Fisheries of China, 14(4), 347-350.
Wentzel, M. C., Loetter, L. H., Ekama, G. A., Loewenthal, R. E., and Marais, G. V. R. (1991). "Evaluation of Biochemical Models for Biological Excess Phosphorus Removal." Water Science and Technology, 23, 567-576.
Wentzel, M. C., Loetter, L. H., Loewenthal, R. E., and Marais G. V. R. (1986). "Metabolic Behaviour of Acinetobacter spp. in Enhanced Biological Phosphorus Removal a Biochemical Model." Water-SA, 12(4), 209-224.
Woese, C. R. (1978). "Bacterial Evolution." Microbiology Review, 51, 211-271.
Ye, Q., Ohtake, H., and Toda, K. (1988). "Phosphorus Removal by Pure and Mixed Cultures of Microorganisms." Journal of Fermentation Technology, 66(2), 207-212.
Zheng, D., Alm, W., Stahl, D. A., and Raskin, L. (1996). "Characterization of Universal Small-Subunit rRNA Hybridization Probes for Quantitative Molecular Microbial Ecology Studies." Applied Environmental Microbiology, 62, 4504-4513.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top