跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 17:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林正晏
論文名稱:水井厭氧腐蝕模擬管柱之菌相研究―螢光原位雜交技術結合化學分析
指導教授:洪俊雄洪俊雄引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:138
中文關鍵詞:螢光原位雜交硫酸鹽還原細菌釋氧物質硫化物
外文關鍵詞:fluorescence in situ hybridzationsulfate reducing bacteriaoxygen release compoundsulfide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
在水井腐蝕問題上,以硫酸鹽還原細菌(Sulfate Reducing Bacteria,SRB)產生的硫化氫腐蝕最為嚴重。本研究著重於探討添加抑制劑後對SRB的影響,藉由螢光原位雜交(Fluorescence in situ Hybridzation,FISH)進行SRB、古細菌以及硫氧化菌的菌數分析,以瞭解不同種類抑制劑以及抑制劑量對微生物族群結構之變化,以及對SRB與硫化氫所造成的影響為何。
在井水分析中,由傳統SRB計數培養方法與FISH均證實受腐蝕的井水中存在著SRB,顯示SRB的存在可能造成井水腐蝕。但在傳統培養上,培養基對微生物的選擇性、微生物的活性以及培養技術誤差……等因素,常造成分析上環境中微生物的族群結構上造成偏差與低估。由井水樣品的採樣分析中,在安慶三的地區中,地下水中SRB及T. Thiooxodans與T. Ferrooxidans所佔的比例較表層水高,表示該地區的SRB在地下水中較具優勢,當SRB增加時,T. Thiooxodans與T. Ferrooxidans 的比例也隨之增加,可能SRB所產生的還原硫可當作硫氧化細菌的電子接受者,並促成水井內部的硫循環。
為瞭解造成水井產生硫化氫腐蝕問題,因此在管柱培養中,於SRB產生硫化氫後,添加各類型抑制劑來控制水中的硫化氫。實驗時分析pH、溶氧、ORP、TOC、溶解性硫化物、硫酸鹽…等水質參數的變化以及藉由螢光原位雜交法瞭解水中細菌結構之變化。在管柱培養初期,由FISH與硫化氫的分析顯示,當探針SRB385的雜交訊號開始產生的同時,水中硫化氫的濃度便突然增加,證實SRB385探針能有效的顯示出SRB族群變化。
添加抑制劑的管柱培養中,過氧化鎂與釋氧物質(oxygen release compound,ORC®TM)的添加並沒有立即對硫化物產生抑制反應,需等到SRB385的雜交訊號消失後才有明顯的成效,顯示過氧化鎂與ORC對SRB並沒有立即的抑制成效,但添加過氧化鎂與ORC會影響硫酸鹽還原速率(Sulfate Reduction Rate,SRR),無添加抑制劑時SRR為7.68 mg‧L-1‧day-1(R2為0.8958);添加10克過氧化鎂則SRR降為2.15 mg‧L-1‧day-1(R2為0.7177);當再添加10 克ORC後, SRR為-0.1238 mg‧L-1‧day-1 (R2為0.0175),顯見添加ORC較過氧化鎂能有效的降低硫酸鹽還原作用之發生。在管柱培養過程中,溶氧一直維持在極低的濃度下,顯示過氧化鎂與ORC釋出的溶氧會立即被消耗,但水中的硫化氫仍長期維持在高濃度的狀態下,這結果顯示當水中有足夠的硫酸根供SRB利用時,硫化氫被抑制劑氧化的速率並不會遠大於SRB產生硫化氫的速率,直到水中硫酸根濃度很低時,硫化氫的濃度才有明顯的減少。
當硫化物濃度高時,添加10 ml氯化鐵(aq)會明顯造成硫化物濃度的下降,添加鐵鹽之結果會造成硫化鐵的沈澱現象,但是溶解性硫化物的莫耳數減少量為1.044 mmol;添加250 ppm氯化鐵溶液10 ml,所造成的莫耳數變化為9.26 μmol,兩者相差甚大。因此無論是沈澱或者是氧化還原反應均無法有效解釋硫化物濃度大量減少的原因,最可能的原因便是添加鐵鹽會促進利用微生物利用硫化物的活性。
同時添加1 ml過氧化氫以及10 ml氯化鐵溶液的效應,會造成六號管柱的溶解性硫化氫濃度在第五十四天到第七十五天間均低於 10 mg/L。但SRB的細菌比例卻由第五十四天的9.29%緩慢的上升到第七十天的45.70%,顯示添加低劑量過氧化氫以及鐵鹽的效應,會對SRB造成立即性的抑制作用,同時鐵鹽的添加用於促進利用硫化物的微生物生長。由FISH分析的資料也指出,過氧化氫對SRB有很強的抑制作用,但缺乏持效性,當水中溶氧低於0.5 mg/L後,溶氧則不足以抑制SRB生長,造成SRB在管柱培養環境中仍有機會成為優勢族群。
Sulfate reducing bacteria(SRB) produces hydrogen sulfide which is most critical problem in corroded-well .This research discuss as the addition of inhibitors how to influence SRB activity variation for reducing corrosion . bacterium structure transform analysis eubacteria、archaea、SRB and sulfur-oxidizing bacteria by fluorescence in situ hybridzation (FISH) .  utilizing FISH to understand in different inhibitor species and different inhibitor dosage how to influence SRB activity and hydrogen sulfide production .
In well sample analysis, this experimental result confirm that SRB existence in well by traditional microbiological culturing techniques and FISH, revealing SRB action maybe cause corroded-well problem, but traditional microbiological culturing techniques easy to cause bacterium structure analysis bias for medium selectiveness、bacteria activity diversity、experimentation aberration in environment sample . In sample of Anqing-3 , SRB385 and THIO820 hybridzation signal percentage in ground water is higher than surface water ,Which reveal SRB transmission pass way maybe from groundwater to supply . When SRB385 hybridzation signal percentage increase THIO820 hybridzation signal percentage increase together , because SRB produce hydrogen sulfide which supply electron donor for T. Thiooxodans and T. Ferrooxidans .
In column culturing experiment add different inhibitor species in media . The experimentation purpose is to understand inhibitor how control hydrogen sulfide to produce . The experimentation analysis pH、DO、ORP、total organic carbon、dissolved sulfide and sulfate to understand chemical parameter variation ﹔The experimentation is to understand bacteria structure transform by FISH techniques . The initial stage of experiment , dissolved sulfide concentration increase when SRB385 hybridzation signal percentage produce .This result to prove SRB385 probe can represent SRB group .
In additive-inhibitor of column culturing experiment , addition magnesium peroxide or oxygen release compound (ORC) do not have immediately effect for hydrogen sulfide produce control . The sulfide concentration obvious decrease until SRB385 hybridzation signal disappear . The result to prove magnesium peroxide or ORC do not have immediately effect for SRB activity control . But addition magnesium or ORC can influence Sulfate Reduction Rate(SRR) . In non-additive- inhibitor of column culturing experiment , the SRR is 7.68 mg‧L-1‧day-1 (R2 is 0.8958)﹔In additive-magnesium peroxide of column culturing experiment , the SRR is 2.15 mg‧L-1‧day-1(R2 is 0.7177)﹔In additive-magnesium peroxide and ORC of column culturing experiment .After addition magnesium peroxide and ORC , the SRR is -0.1238 mg‧L-1‧day-1 (R2 is 0.0175) . The result to prove addition magnesium peroxide or ORC can reduce sulfate reduction . In column culturing experiment process , DO keep low concentration all along , the result to reveal magnesium peroxide or ORC release oxygen which is consummated in a moment . If media had enough sulfate to provide SRB to utilize , the hydrogen sulfide keep high concentration in long-term. The result reflect inhibitor to oxidize sulfate rate is not obviously high than sulfide produce rate .
When sulfide keep high concentration , addition 10 ml of iron(Ⅲ) chloride can seriously change sulfide concentration and produce iron sulfide precipitation . addition iron(Ⅲ) chloride mole number is 9.26 μmol , but decreased sulfide concentration is 1.044 mmol , the result can not explain by chemical reaction cause sulfide concentration seriously change , probably addition iron can provide some bacteria usefully oxidation sulfide .
When addition 1 ml hydrogen peroxide and 10 ml of iron(Ⅲ) chloride together , the effect mark sulfide concentration rapidly disappear and sulfide maintain low concentration for next twenty five days . Addition inhibitor and iron cause SRB385 hybridzation signal percentage decrease from 52.42 % to 9.29 % . After that SRB385 hybridzation signal percentage moderately increase . The result reflect sulfide effective control by addition 1 ml hydrogen peroxide and 10 ml of iron(Ⅲ) chloride together . result indicate that addition 1 ml hydrogen peroxide and 10 ml of iron(Ⅲ) chloride together can decrease SRB activity or increase sulfide oxidation efficiency . This experiment prove that hydrogen peroxide can rapidly exterminate SRB group. But SRB maybe revive when dissolved oxygen concentration is smaller than 0.5 mg/L .
目 錄
中文摘要 Ⅰ
英文摘要 III
目錄 VI
表目錄 XI
圖目錄 XIII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1硫化氫在環境中造成的的危害 3
2-1-1硫的循環 3
2-1-2硫化物的化學性質 4
2-1-3硫化物在環境中的分佈及危害 7
2-2井水腐蝕問題的討論 8
2-2-1造成水井腐蝕的成因 8
2-2-2金屬在水環境中的遷移 11
2-2-3生物性腐蝕 13
2-2-3-1好氧微生物腐蝕 14
2-2-3-2厭氧微生物腐蝕 17
2-3影響硫循環的微生物 19
2-3-1硫酸鹽還原細菌 20
2-3-1-1硫酸鹽還原細菌的生理特性 20
2-3-1-2環境中的硫酸鹽還原細菌研究 22
2-3-1-3溶氧對硫酸鹽還原細菌的影響 23
2-3-2硫氧化細菌 25
2-3-2-1硫氧化細菌的生理特性 25
2-3-2-2白硫桿菌(Thiobacillus)的生理特性 26
2-3-2-3硫氧化細菌利用硫化物的研究 29
2-4利用生物復育的技術降低環境中硫化氫的危害 31
2-4-1生物復育(bioremediation) 31
2-4-2添加藥劑進行生物復育的研究 32
2-4-2-1用過氧化氫(hydrogen peroxide)進行生物復育之研究 32
2-4-2-2使用釋氧物質(oxygen release compound)進行生物復育之研究 34
2-4-3抑制硫化氫產生的方法 37
2-4-3-1增加水中溶氧抑制硫化氫產生 38
2-4-3-2藉由控制pH值抑制劑抑制硫化氫產生 39
2-4-3-3添加殺菌劑或抑制劑抑制硫化氫產生 40
2-5螢光原位雜交法(Fluorescence in-situ hybridization, FISH) 42
2-5-1 16S rRNA 42
2-5-2螢光原位雜交法的原理 43
2-5-3螢光原位雜交法之優點 43
2-5-4螢光原位雜交法在影響硫循環微生物上的偵測 45
2-5-4-1 螢光原位雜交法在硫酸鹽還原菌的偵測 45
2-5-4-2螢光原位雜交法在硫氧化細菌的偵測 46
第三章 材料與方法 49
3-1 實驗樣品 49
3-1-1井水水樣的來源 49
3-1-2 混合菌種的保純與培養 52
3-1-2-1 傳統SRB計數培養 52
3-1-2-2 增殖培養 52
3-1-2-3 管柱培養 52
3-2 實驗架構 55
3-3 實驗設備 56
3-3-1 實驗儀器 56
3-3-2 實驗材料 57
3-3-3 實驗用藥 57
3-3-4 實驗用水 57
3-4 分析方法 58
3-4-1 螢光原位雜交法(Fluorescence in situ hybridization, FISH) 59
3-4-1-1 Gelatin Slides的製作 59
3-4-1-2 濾膜固定 60
3-4-1-3雜交(Hybridization) 60
3-4-1-4 清洗(Washing) 62
3-4-1-5 DAPI染色 63
3-4-1-6 螢光顯微鏡觀察 63
3-4-2 化學參數分析 64
3-4-2-1 溶氧(Dissolved Oxygen,DO) 64
3-4-2-2 pH值 64
3-4-2-3 氧化還原電位(Oxidation Reduction Potential,ORP)
65
3-4-2-4 總有機碳(Total Organic Carbon,TOC) 65
3-4-2-5 溶解性硫化物(Dissolved Sulifde) 65
3-4-2-6 硫酸根(Sulfate) 66
3-4-2-7細胞密度(O.D.) 66
第四章 結果與討論 67
4-1井水採樣分析與FISH實驗方法測試 67
4-1-1濾膜濃縮之FISH分析方法之建立 68
4-1-2 以濾膜濃縮之FISH分析水井樣品之問題 69
4-1-3濾膜濃縮之FISH分析井水之菌群結構 71
4-1-4傳統SRB計數培養方法分析水井中SRB密度 77
4-2管柱培養實驗 79
4-2-1管柱培養實驗之對照組 80
4-2-1-1無添加抑制劑之對照組 81
4-2-1-1-1無添加抑制劑之對照組-化學參數分析 81
4-2-1-1-2無添加抑制劑之對照組-FISH分析 84
4-2-1-1-3無添加抑制劑之對照組-添加試驗 88
4-2-1-2 微生物生長異常遲緩之對照組 91
4-2-1-2-1微生物生長異常遲緩之對照組-化學參數分析 91
4-2-1-2-2微生物生長異常遲緩之對照組-FISH分析 93
4-2-1-2-3微生物生長異常遲緩之對照組- 添加試驗 96
4-2-1-3 硫氧化菌探針THIOPA511之測試 97
4-2-2添加固體抑制劑之實驗組 97
4-2-2-1添加高劑量之過氧化鎂的實驗組 98
4-2-2-1-1添加高劑量之過氧化鎂之實驗組-化學參數分析 98
4-2-2-1-2添加高劑量之過氧化鎂之實驗組-FISH分析 100
4-2-2-1-3添加高劑量之過氧化鎂之實驗組-添加試驗 104
4-2-2-2二次添加高劑量之過氧化鎂之實驗組 105
4-2-2-2-1二次添加高劑量之過氧化鎂之實驗組-化學參數分析 105
4-2-2-2-2二次添加高劑量之過氧化鎂之實驗組-FISH分析
108
4-2-2-2-3二次添加高劑量之過氧化鎂之實驗組-添加試驗
111
4-2-2-3添加高劑量之過氧化鎂與ORC之實驗組 112
4-2-2-3-1添加高劑量之過氧化鎂與ORC之實驗組-化學參數分析 112
4-2-2-3-2添加高劑量之過氧化鎂與ORC之實驗組-FISH分析 114
4-2-3添加過氧化氫之實驗組 117
4-2-3-1添加過氧化氫之實驗組化學參數分析 117
4-2-3-2添加過氧化氫之實驗組-FISH分析 120
第五章 結論與建議 125
5-1結論 125
5-2建議 128
參考文獻 129
表目錄
表2-1 金屬硫化物的溶度積 6
表2-2 水井腐蝕指標 11
表2-3 在不同氧化還原環境下對金屬的影響 12
表2-4 好氧腐蝕微生物之特性 15
表2-5 厭氧腐蝕之主要微生物的生長習性 18
表2-6 SRB的生理特性分類 21
表3-1 水資源局列為評估之十三口井之背景水質資料 50
表3-2 水井腐蝕改善與評估規劃之觀測井之背景資料 50
表3-3 水井採樣實驗資料 50
表3-4 SRB傳統計數培養之稀釋液成分 53
表3-5 SRB傳統計數培養之固體培養基成分 53
表3-6 增殖培養液之成分 54
表3-7 管柱實驗培養液之成分 54
表3-8 管柱實驗時添加之藥品 57
表3-9 實驗所使用之探針 61
表3-10 緩衝液成分之 Formamide濃度與NaCl濃度對照表 62
表3-11 螢光顯微鏡之濾鏡組性質 62
表4-1 SRB在傳統計數培養與FISH分析資料 77
表4-2管柱培養實驗之資料 80
表4-3 無添加抑制劑之對照組-添加藥劑之時間與目的 88
表4-4 微生物生長異常遲緩之對照組-添加藥劑之時間與目的
96
表4-5 添加過氧化鎂之實驗組-添加藥劑之時間與目的 105
表4-6 二次添加過氧化鎂之實驗組-添加藥劑之時間與目的
112
表4-7 添加過氧化鎂以及ORC之實驗組-添加藥劑之時間與目
117
表4-8 添加過氧化氫之實驗組-添加藥劑之時間與目的 120
圖目錄
圖2-1 硫的循環 4
圖2-2 硫化氫在水中的平衡分佈 5
圖2-3 下水道中硫化氫的形成以及硫化氫被氧化成硫酸所造成冠狀腐蝕的情形 8
圖2-4 Von wolzogen Kur & Van der Vulgt之陰極去極化理論所提出之厭氧腐蝕反應機制機制圖 18
圖2-5 硫氧化菌屬於不同 pH 值污泥中之分佈情形 27
圖2-6 硫氧化菌(T. thioparus)與硫還原細菌(D. desulfuricans)間的交互作用圖 30
圖3-1 研究之總實驗架構 55
圖3-2 管柱培養實驗之分析流程圖 58
圖4-1 井水樣品中異常螢光訊號現象 70
圖4-2 井水分析之總菌數分佈 72
圖4-3 安慶三-20之菌群結構分佈 72
圖4-4 安慶三-180之菌群結構分佈 72
圖4-5 安慶三-20以探針EUB338雜交之FISH影像 73
圖4-6 安慶三-20以探針ARCH915雜交之FISH影像 73
圖4-7 安慶三-20以探針SRB385雜交之FISH影像 74
圖4-8 安慶三-20以探針THIO820雜交之FISH影像 74
圖4-9 頂山二-20之菌群結構分佈 76
圖4-10 安慶四之菌群結構分佈 76
圖4-11 紀二之菌群結構分佈 76
圖4-12 井水樣品中之SRB聚集生長狀況 78
圖4-13 無添加抑制劑之對照組之化學分析結果 82
圖4-14 無添加抑制劑之對照組的FISH分析結果 85
圖4-15 無添加抑制劑之對照組之微生物密度隨時間之變化 86
圖4-16 無添加抑制劑之對照組,在實驗第零天時,以探針SRB385進行FISH分析之結果 89
圖4-17 無添加抑制劑之對照組,在實驗第十四天時,以探針SRB385進行FISH分析之結果 89
圖4-18 無添加抑制劑之對照組,在實驗第三十五天時,以探針SRB385進行FISH分析之結果 89
圖4-19 微生物生長異常遲緩之對照組之化學分析結果 92
圖4-20 微生物生長異常遲緩之對照組的FISH分析結果 94
圖4-21 微生物生長異常遲緩之對照組,在實驗第零天時,以探針ARCH915進行FISH分析之結果 95
圖4-22 微生物生長異常遲緩之對照組,在實驗第零天時,以探針SRB385進行FISH分析之結果 95
圖4-23 微生物生長異常遲緩之對照組,在實驗第三十五天時,以探針SRB385進行FISH分析之結果 95
圖4-24 添加高劑量之過氧化鎂之實驗組之化學分析結果 99
圖4-25 添加高劑量之過氧化鎂之實驗組的FISH分析結果 101
圖4-26 添加高劑量之過氧化鎂實驗組中微生物密度隨時間之變化 102
圖4-27 添加高劑量之過氧化鎂實驗組,在實驗第零天時,以探針SRB385進行FISH分析之結果 103
圖4-28 添加高劑量之過氧化鎂實驗組,在添加10克過氧化鎂後,於實驗第十天時,以探針SRB385進行FISH分析之結果
103
圖4-29 添加高劑量之過氧化鎂實驗組,在實驗第三十五天時,以探針SRB385進行FISH分析之結果 103
圖4-30 添加高劑量之過氧化鎂之實驗組之化學分析結果 106
圖4-31 二次添加高劑量之過氧化鎂之實驗組的FISH分析結果 109
圖4-32 二次添加高劑量之過氧化鎂實驗組中微生物密度隨時間之變化 110
圖4-33 添加高劑量之過氧化鎂以及釋氧物質(ORC)之實驗組的化學分析結果 113
圖4-34 添加過氧化鎂以及釋氧物質(ORC)之實驗組的FISH分析結果 115
圖4-35 過氧化鎂以及釋氧物質(ORC)之實驗組中微生物密度隨時間之變化 116
圖4-36 添加高劑量之過氧化氫之實驗組之化學分析結果 118
圖4-37 添加高劑量之過氧化氫之實驗組的FISH分析結果 121
圖4-38 添加高劑量之過氧化氫之實驗組中微生物密度隨時間之變化
122
李振高,許光輝 (1991),微生物生態學,東南大學出版社。
吳先琪,王美雪,施養信,劉泰銘 (編譯),(2000),廢水微生物學,國立編譯館,臺北巿。
郁經昌 (1979),地質, 2: 77-87。
范力中 (1992),過氧化氫對受有機酸污染之地下水現地生物復育的影響,國立中興大學環境工程研究所 碩士論文,台中。
陳文藝 (1988),硫酸鹽生物還原程序之基礎研究,國立交通大學土木研究所 碩士論文,新竹。
陳靜生 (1992),水環境化學,曉園出版社,臺北巿。
陳滄欣 (1998),以過氧化氫作為電子接受者在受油污染之土壤及地下水生物復育之研究,屏東科技大學環境工程與科學研究所 碩士論文,屏東。
張文亮 (1999),臺灣地區地下水井體維護與管理技術,經濟部水資源局
張育傑,張怡塘,鄧嘉瑩,譚佳奇,曾雅楓,高君怡 (2001),觀測井腐蝕改善之評估與規劃,經濟部水資源局。
彭誌強 (2002),以FISH(Fluorescence in situ Hybridization)研究污泥同時好氧消化及金屬溶出程序之菌相變化,國立中興大學環境工程研究所 碩士論文,台中。
鮮祺振 (編譯),(1992),金屬腐蝕及其控制,徐氏基金會,台北巿。
鮮祺振 (編譯),(1998),金屬腐蝕膜特性探討,徐氏基金會,台北巿。
盧至人 (編譯),(1997),地下水的污染整治,國立編譯館,臺北巿。
蘇慧慈 (1996),原位分子生物學技術,徐氏基金會,台北縣。
Aller , L. , T. W. Bennett , G. Hacjett , R. J. Petty , J. H. Lehr , H. Sedoris , D. M.Nielson, and J. E. Denne. (1991) Handbook of suggested practices for the design and installation of ground-water monitoring wells. EPA160014-891034.
Amann , R. I., B. J. Binder , R. J. Olson , S. W. Chisholm, R. Devereux , and D. A. Stahl. (1990a) Combination of 16S rRNA-targeted oligonu- cleotides probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology., 56 (6)﹕ 1919-1925.
Amann , R. I., L. Krumholz ,and D. A. Stahl. (1990b) Fluorescent -oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology. 172 (2): 762-770.
Amann , R. I., W. Ludwig, and K.-H Schleifer. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59 (1): 143-169.
Amann, R. I., J. Stromley, R. Devereux, R. Key, and D. A. Stahl. (1992). Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol., 58 (2): 614-623.
Angenent , L. T. , D. Zheng , S. Sung , and L. Raskin. (2000) Methanosaeta fibers in anaerobic migrating blanket reactors. Water Science and Technology, 41: 35-39.
Bade , K. , W. Manz , and U. Szewzyk . (2000) Behavior of sulfate reducing bacteria under oligotrophic conditions and oxygen stress in particle-free system3 2elated to drinking water. FEMS Microbiology Ecology, 32 (3): 215-223.
Benne , C. A., F. P. Kroon , M. Harmsen , L. Tavares, C. A. Kraaijeveld, , and J.C. De Jong . (1998). Comparison of neutralizing and hemagglutination-inhibiting antibody responses to influenza a virus vaccination of human immunodeficiency virus-infected individuals. Clin. Diagn. Lab. Immunol., 5 (1): 114-117.
Blais , J. F., R. D. Tyagi, and J. C. Auclair. (1992) Bioleaching of metals from 3ewage sludge by sulfur-oxidizing bacteria. Journal of Environmental Engineering,118: 690-707.
Buzea , D. C., and E. J. DeStefanis. (1999) Accelerated bioremediation as an alternative to conventional remedial technologies.
Chair , N. S., L. M. Perry, and F. P. Gene.(1994). Chemistry for Environmental Engineering., McGraw-Hill, New York
Chang , Y.-J., A. D. Peacock, P. E. Long, J. R. Stephen, J. P. McKinley, S. J. Macnaughton, A. K. M. A. Hussain, A. M. Saxton, and D. C White. (2001) Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl. Environ. Microbiol., 67 (7): 3149-3160.
Chapman, S.W., B. T. Byerley , D. J. Smyth , R. D. Wilson, and D. M. Mackay. (1997) Semi-passive oxygen release barrier for enhancement of intrinsic bioremediation. In Situ and On-Site Bioremediation, 4: 209-214.
Cututchet , G., P. Tedesco, and E. Donati. (1996) Combined degradation of covellite by thiobacillus thiooxidans and thiobacillus ferrooxidans. biotechnology Letters 18: 1471-1476.
Dannenberg , S., M. Kroder, W. Dilling, , and H. Cypionka. (1992) Oxidation of H2、organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch. Microbiol., 158: 93-99.
Dawood , Z., L. Ehrenreich , and V. S. Brozel. (1998) The effect of molecular oxyge. on sulfite reduction by Shewanella putrefaciens. FEMS Microbiology Letters, 164 (2): 383-387.
Defibaugh , S. T., and D. S. Fischman. (1999) Biodegradation of MTBE utilizing a magnesium peroxide compound: A Case Study. in In Situ Bioremediation of Petroleum Hydrocarbon and Other Organic Compounds.
DeLong , E. F., G. S. Wickham, , and N. R. Pace. (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science, 243: 1360-1363.
Devereux , R., M. D. Kane, J. Winfrey, and D. A. Stahl. (1992) Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst. Appl. Microbiol., 15: 601-609.
Donati , E., G. Curutchet, C. Pogliani, and P. Tedesco. (1996) Bioleaching of covellite pure and mixed cultures of Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process Biochemistry 31: 129-134.
Dore , M. (1990) Oxidation of phenols in water by hydrogen peroxide on alumina supported iron. Wat. Res., 24: 973-982.
Duffy , B. E., G. Oudijk, , and J. H. Guy. (1999) Enhanced aerobic bioremediation of petroleum UST releases in Puerto Rico. In Situ Bioremediation of Petroleum, Hydrocarbon and Other Organic Compounds, 319-324.
Eilers , H., J. Pernthaler, F. O. Glockner, , and R. Amann. (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol., 66 (7): 3044-3051.
Ferris , M., & D. Ward. (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol., 63 (4): 1375-1381.
Frank , van den Ende , J. Meier, , and H. van Gemerden. (1997) Syntrophic growth of sulfate-reducing bacteria and colorless sulfur bacteria during oxygen limitation. FEMS Microbiology Ecology, 23 (1): 65-80.
Friedrich , C. G., D. Rother, F. Bardischewsky, A. Quentmeier, and J. Fischer. (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl. Environ. Microbiol., 67 (7): 2873-2882.
Hernandez , M., E. Marchand, D. Roberts, and J. Peccia. (2002) In situ assessment of active Thiobacillus species in corroding concrete sewers using fluorescent RNA probes. Internati/nal Biodeterioration and Biodegradation, 49 (4): 271--276.
Hines , M. E. , R. S. Evans , B. R. Sharak Genthner , S. G. Willis , S. Friedman , J. N. Rooney-Varga ,and R. Devereux. (1999). Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of spartina alterniflora. Appl. Environ. Microbiol., 65 (5): 2209-2216.
Ito , T., J. L. Nielsen, S. Okabe, Y. Watanabe, , and P. H. Nielsen. (2002) Phylogenetic Identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Appl. Environ. Microbiol., 68 (1) : 356-364.
Ito , T., S. Okabe , H. Satoh, and Y. Watanabe. (2002) Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Appl. Environ. Microbiol., 68 (3) : 1392-1402.
Jacobs , S., and M. Edwards. (2000) Sulfide scale catalysis of copper corrosion. Water Research, 34 (10), 2798-2808.
Johnson , J. G., and J. E. Odencrantz. (1997) Management of a hydrocarbon plume using a permeable ORC barrier. In Situ and On-Site Bioremediation, 4: 215-220.
Jones , D. A. (1996) Principles and prevention of corrosion., Prentice Hall. NJ,USA
Jorgensen , B. B. (1982) Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature 296: 643-645.
Kleikemper , J., M. H. Schroth, W. V. Sigler, M. Schmucki, S. M. Bernasconi , and J. Zeyer. (2002) Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol., 68 (4) : 1516-1523.
Krekeler , D. P. , A. Sigalevich , H. Teske, Cypionk, and Y. Cohen. (1997) A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch. Microbiol., 167: 369-375.
Kuhl , M. , and B. Jorgensen. (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environ. Microbiol., 58 (4) : 1164-1174.
Lee , S. , and T. Cutright. (1996) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Biotechnology Advances, 14 (3) : 399.
Lemos , R. S. , C. M. Gomes , M. Santana , J. LeGall , A. V. Xavier, and M. Teixeira. (2001) The "strict" anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Letters, 496 (1): 40-43.
Liu , W. , T. Marsh , H. Cheng , and L. Forney. (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol., 63 (11): 4516-4522.
Loy , A. , A. Lehner , N. Lee , J. Adamczyk , H. Meier , J. Ernst , K.-H. Schleifer , and M. Wagner. (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68: 5064-5081.
Ma , H., X. Cheng , G. Li , S. Chen , Z. Quan , S. Zhao , and L. Niu. (2000) The influence of hydrogen sulfide on corrosion of iron under different conditions. Corrosion Science, 42: 1669-1683.
Maidak , B. , J. Cole, T. Lilburn , C. J. Parker , P. Saxman , R. Farris , G. Garrity , G. Olsen , T. Schmidt , and J. Tiedje. (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res., 29: 173-174.
Maier , R. M. , I. L. Peper, and C. P. Gerba. (1999) Environmental microbiology., Academic Press, San Diego.
Manz , W. , R. Amann , W. Ludwig , M. Wagner, , and K.-H. Schleifer. (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria:problems and solutions. Syst. Appl. Microbiol., 15: 593-600.
Mitchell, R. (1974) Introduction to environmental microbiology. Prentice-Hall , Englewood Cliffs, N.J.
Moter, A., and U. B. Gobel. (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. Journal of Microbiological Methods., 41: 85-112.
Nakhla, G. (2003) Biokinetic modeling of in situ bioremediation of BTX compounds-impact of process variables and scaleup implications. Water Research, 37 (6): 1296-1307.
Okabe , S., T. Itoh , H. Satoh, , and Y. Watanabe. (1999) Analyses of spatial distributions of sulfate-reducing bacteria and their activity in aerobic wastewater biofilms. Appl. Environ. Microbiol., 65 (11): 5107-5116.
Peccia , J. , E. A. Marchand , J. Silverstein , and M. Hernandez. (2000) Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilium. Appl. Environ. Microbiol., 66 (7): 3065-3072.
Peck , H. D. (1962) Comparative metaliolism of inorganic sulfate compoundsin microorganism. Bacterial. Rev., 26: 67-94.
Pope , D. H. , D. Duquette , J. P. C. Wayner , and A. H. Johannes. (1984) Microbiologically influenced corrosion: a state-of-the-art review. In: Materials Techology Institute of the Chemical Process Industries
Poulsen , L. K. , G. Ballard , and D. A. Stahl. (1993) Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol., 59 (5): 1354-1360.
Ravenschlag , K., K. Sahm, and R. Amann. (2001) Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl. Environ. Microbiol., 67 (1): 387-395.
Ravenschlag , K., K. Sahm, C. Knoblauch, B. B. Jorgensen, , and R. Amann. (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Appl. Environ. Microbiol., 66 (8): 3592-3602.
Reasoner , D. J. , and E. E. Geldreich. (1985) A new medium for the enumeration subculture of bacteria from potable water. Appl. Environ. Microbiol., 49: 1-7.
Sandefur , C., and S. Koenigsberg. (2001) The efficacy of oxygen release compound: A six year review. This is a pre-print of a paper delivered at the Sixth Annual In-Situ and On-Site Bioremediation Conference, San Diego, CA
Sass , A. M. , A. Eschemann , M. Kuhl , R. Thar , H. Sass, and H. Cypionka. (2002) Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. FEMS Microbiology Ecology, 40 (1): 47-54.
Schmidtke , T., D. White, and C. Woolard. (1999) Oxygen release kinetics from solid phase oxygen in Arctic Alaska. Journal of Hazardous Materials, 64 (2): 157-165.
Schramm , A. , C. M. Santegoeds , H. K. Nielsen , H. Ploug , M. Wagner , M. Pribyl , J. Wanner , R. Amann , and D. de Beer. (1999) On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Appl. Environ. Microbiol., 65 (9): 4189-4196.
Shreir , L. L. (1976). Corrosion. Butterworth & Co LTD, London.
Sigalevich , P. , E. Meshorer , Y. Helman , and Y. Cohen. (2000) Transition from anaerobic to aerobic growth conditions for the sulfate-reducing bacterium Desulfovibrio oxyclinae results in flocculation. Appl. Environ. Microbiol., 66 (11): 5005-5012.
Teske , A. , N. B. Ramsing , K. Habicht , M. Fukui , J. Kuver , B. B. Jorgensen , and Y. Cohen. (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt). Appl. Environ. Microbiol., 64 (8): 2943-2951.
Tyre , B. , R. J. Watts, and G. C. Miller. (1991) Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide. J. Environ. Qual., 20: 832-838.
Vester , F. , and K. Ingvorsen. (1998) Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl. Environ. Microbiol., 64 (5): 1700-1707.
Wagner , M. , R. Amann , H. Lemmer , and K. Schleifer. (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol., 59 (5): 1520-1525.
West, S., and H. Crouch. (2000) Separting ions by pH control:sulfide separation. In: Analytical Chemistry (pp. 232-234): Harcourt Inc.
Widdel, F., and T. A. Hansen. (1992). The dissimilatory sulfate-and sulfur-reducing bacteria. In: A Handbook on the Biology of Bacteria : Ecophysiology,Isolation,Identification,Applicat)ons (pp. 583-624). New York.
Wong, L. T. K. , and J. G. Henry. (1988). Bacterial leaching of heavy metals form anaerobically digested sludge. In: Biotreatment Systems (pp. 125-169): Wise, D. L.(ed),CRC Press Inc., Boca Raton.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top