跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 13:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丁偉諭
論文名稱:台中都會區酸性空氣污染物之季節性變化
指導教授:鄭曼婷鄭曼婷引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:季節性變化PM2.5酸性空氣污染物
相關次數:
  • 被引用被引用:20
  • 點閱點閱:1365
  • 評分評分:
  • 下載下載:130
  • 收藏至我的研究室書目清單書目收藏:0
為了瞭解台中都會區酸性空氣污染物之季節性變化,本研究於2002年1月至12月於台中市以環形擴散採樣器採集酸性空氣污染物,數據涵蓋四季,共採集了122組日夜樣本。氣狀污染物HNO2、HNO3及NH3整年平均濃度依序為3.1、1.8及8.3 μg/m3。在粒狀物方面PM2.5、SO4=、NO3-及NH4+其整年平均濃度依序為42.2、7.6、5.6及4.3 μg/m3,PM2.5水溶性離子中以SO4=,NO3-及NH4+為主要組成,三者年平均濃度佔PM2.5質量濃度的41.5%。
PM2.5,NO3-,SO4=及 NH4+中, PM2.5和NO3-有相同的季節性變化,其濃度以春季最高,依序為冬秋及夏季。尤其NO3-季節性變化及差距最為明顯,夏季溫度高,硝酸銨易揮發,因此不利硝酸銨微粒生成,相對的硝酸和氨氣體濃度均以夏季最高,而SO4=及 NH4+濃度有相同的季節性變化,仍然是以春季最高而夏季最低,而二者在PM2.5中的百分比以夏季最高,顯示夏季光化作用易產生(NH4)2SO4,細粒中SO4=及 NH4+的百分比分別高達21.6%及11.4%。酸性氣體的季節性變化與微粒不同,從HNO2易光解和NH4 NO3於白天高溫易揮發的特性觀點,可見HNO2濃度以冬季最高,夏季最低,而HNO3則正好相反。
利用污染物之間的相關性分析不同季節NO3-和SO4=的可能來源,秋冬NO3-及PM2.5受到交通污染源的影響,而SO4=與SO2並無顯著相關性。SO4=於春夏冬三季與O3max呈現良好相關性,顯示受光化反應對區域性的硫酸鹽生成有明顯的影響。
[NO3-]/[SO4=]比值於四季採樣期間介於0.2∼2.6之間,在冬季及春季期比值多在1以上,顯示這段期間PM2.5受到硝酸鹽微粒影響較大,而就NO3-與NOx及CO之相關性顯示於冬季本地區確實受到明顯的交通污染影響。
In order to understand the seasonal variations of acidic air pollutants, in Taichung city, Taiwan, an annular denuder system (ADS) was used to collect air samples during day-time and night-time from January to December, 2002. The results showed average concentrations of HNO2, HNO3 and NH3 were 3.1, 1.8, and 8.3μg/m3, respectively. The annual mean concentrations of mass, SO4=, NO3- and NH4+ in PM2.5 were 42.2, 7.6, 5.6 and 4.3 μg/m3, respectively. The SO4=, NO3- and NH4+ were the dominant ionic species, which accounted for 41.5% in PM2.5.
The concentrations of PM2.5 and NO3- in spring were higher than those obtained in winter and summer. The concentrations of HNO3 and NH3 were higher in summer because of the volatility under the higher temperature. The percentage of SO4=and NH4+ in PM2.5 were 21.6% and 11.4% during the summer, respectively, which might result from the photochemical reactions. In particular, the concentrations of HNO2 were lowest in summer, which resulted from the photolysis reactions of HNO2. In contrast to HNO2, the concentrations of HNO3 were highest in summer due to the volatility of particulate ammonium nitrate.
The analyses of the correlation between the air pollutants, which suggesting that the major source of NO3- and PM2.5 were the traffic emissions during the fall and winter. NO significant correlation between SO4= and SO2 were observed. However SO4= and O3max appeared well correlation in spring, summer and winter, which might indicate the regional SO4= were the products by photochemical reactions.
The ratio of [NO3-]/[SO4=] varied from 0.2 to 2.6 during the whole sampling period. The ratios were mostly higher than 1 during the spring and winter, which showed the strong effect of nitrate on PM2.5 in these seasons. However, good correlations were found among NO3-, NOx and CO during the winter. These results showed the effect of traffic emissions on particulate nitrate.
目 錄
第一章 前言…...…...............................................................1-1
1.1 研究緣起..................................................................1-1
1.2 研究目的..................................................................1-3
1.3 研究方法………………………………………......1-3
第二章 文獻回顧.................................................................2-1
2.1 懸浮微粒來源及組成……………...........................2-1
2.2 懸浮微粒之特性及粒徑分布…...............................2-2
2.3 硫酸鹽及硝酸鹽之形成機制…...............................2-3
2.4 亞硝酸及硝酸之生成機制.......................................2-4
2.5 台中都會區氣膠特性..............................................2-6
2.6 酸性空氣污染物季節性變化相關研究..................2-8
2.7 國內外酸性空氣污染物的分析結果......................2-6
2.8 台中縣市境內各行業污染物排放資料................2-13
2.9 2002年四季採樣期間溫度、相對濕度及風速之
變化.......................................................................2-14
第三章 研究方法.................................................................3-1
3.1 採樣規劃...................................................................3-1
3.1.1 採樣時間...................................................................... ..3-1
3.1.2 採樣測站之環境描述.....................................................3-1
3.1.3 採樣濾紙處理程序.........................................................3-3
3.1.4 採樣儀器設備.................................................................3-3
3.2 分析項目...................................................................3-8
3.2.1 氣膠水溶性離子分析....................................................3-8
3.2.2 氣狀污染物分析............................................................3-9
第四章 結果與討論..............................................................4-1
4.1 觀測值與環保署空品測站監測值之比較…….......4-1
4.2 大氣氣膠質量濃度變化分析...................................4-3
4.3 氣膠水溶性陰陽離子(NO3-、SO4=、NH4+)及氣狀
污染物四季質量濃度變化.......................................4-6
4.4 氣膠水溶性陰陽離子當量濃度平衡及酸鹼性
分析………………………….……………………4-15
4.5 影響PM2.5濃度的因子..........................................4-18
4.5.1 PM2.5中氣膠水溶性陰陽離子相關性分析.................4-18
4.5.2 PM2.5、NO3-及SO4=與氣狀污染物四季的相關性
分析……………………………….…………………..4-21
4.5.3 [NO3-]/[SO4=]季節性之變化………………................4-23
4.5.4 風速與PM2.5的關係…................................................4-25
4.5.5 硝酸鹽微粒與溫度及相對濕度之關係…..................4-26
4.6 HNO2與HNO3日夜變化.....................................4-29
4.6.1 HNO2與NO、NO2及相對濕度之關係….................4-32
4.6.2 HNO3與溫度及相對濕度之關係…...........................4-35
4.7 農廢燃燒事件日探討……………………...……….. 4-37
第五章 結論..................................................................................5-1第六章 建議..................................................................................6-1
參考文獻
附錄
附錄一、環形擴散採樣器實驗步驟………………………………………...Ⅰ-1
 採樣前準備工作
 採樣流程
 實驗室處理程序
 濃度計算公式
附錄二、2002年採樣期間之空氣品質狀態..........………………………...Ⅱ-1
附錄三、2002年採樣期間酸性空氣污染物時間序列圖………….............Ⅲ-1
附錄四、農廢燃燒排放數據………………………………………………..Ⅳ-1
 稻草燃燒排放之PM2.5組成數據
 生質燃燒排放的影響指標
 不同類型農廢燃燒所排放之粒狀物組成
1. Akira, U., and W. Shinji“Temperature and Humidity Dependence on Aerosol Composition in the Northern Kyushu Japan, ”Atmospheric Environment, Vol. 30, No. 13, pp. 2379-2386 (1996).
2. Arimoto, R., Duce, R.A, Savoie, D.L., Prosper, J.M., Talbot, R., Cullen, J.D.j Tomza, U., Lewis, N.F. and Ray, B.J. “Relationships among Aerosol Constituents from Asia and the North Pacific during Pem-West A.,” Journal of Research 101, pp.2011-2023.
3. Atkinson, R., D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr, M. J. Rossi, and J. Troe, “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement VI,” 26(6), pp. 1329-1471.
4. Brook, J. R., T. F. Dann and R. T. Burnett,“The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Particulate Matter at Multiple Canada Locations,”J. Air & Waste Manage. Assoc., Vol. 47, pp. 2-19 (1997).
5. Brook, J. R., T. F. Dann and R. T. Burnett,“The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Particulate Matter at Multiple Canada Locations,”J. Air & Waste Manage. Assoc., Vol. 47, pp. 2-19 (1997).
6. Colbeck I. And R. M. Harrison, “Ozone-Secondary Aerosol-Visibility Relationships in North-West England,” The Science of Total Environment, Vol. 34, pp. 87-100 (1984).
7. Danalatos D. and S. Glavas, ”Atmospheric Nitric Acid Concentrations in a Mediterranean site, Patras, Greece,” Atmospheric Environments Vol. 29 No.15, pp. 1849-1852 (1995).
8. Danalatos D. and S. Glavas, ”Gas Phase Nitric Acid , Ammonia and Related Particulate Matter at a Mediterranean Coastal site, Patras, Greece,” Atmospheric Environments Vol. 33 , pp. 3417-3425 (1999).
9. Day, D.E., W.C. Malm and S.M. Kreidenweis, “Seasonal Variations in Aerosol Composition and Acidity at Shenandoah and Great Smoky Mountains National Parks,” J. Air Waste Manage. Assoc., Vol. 47, pp. 411-418 (1997).
10. Finlayson-Pitts, B. J. and J. N. Pitts, Jr., Chemistry of the Upper and Lower Atmosphere, Academic Press, London, pp. 264-293.
11. Harrison R. M. and C. A. Pio, “Size-differentiated Composition of Inorganic Atmospheric Aerosols of Both Marine and Polluted Continental Origin,”Atmospheric Environment, Vol. 17, pp. 1733-1738 (1983).
12. Harrison R. M. and A. M. N. Kitto,“Field Intercomparison of Filter Pack and Denuder Sampling Methods for Reactive Gaseous and Particulate Pollutants,” Atmospheric Environment, Vol. 24A, No. 10, pp. 2633-2640 (1990).
13. Harrison, R. M., J. D. Peak, and G. M. Collins, “Tropospheric cycle of nitrous acid,” Journal of Geophysical Research, 101(D9), pp. 14429- 14439(1996).
14. Lee H. S., C. M. Kang, B. W. Kang, and H. K. Kim, ”Seasonal Variations of Acidic Pollutants in Seoul, South Korea,” Atmospheric Environment Vol. 33 , pp.3143-3152(1999).
15. Liu rt al.,”Comparison of Aerosol Acidity in Urban and Semi-rural Environments,” Atmospheric Environment Vol. 30 ,No. 8, pp.1237-1245 (1996).
16. Matsumoto M. and T. Okita,”Long Term Measurements of Atmospheric Gaseous Aerosol Species Using an Annular Denuder System in Nara, Japan,” Atmospheric Environment Vol. 32 ,No. 8, pp.1419-1425(1998)
17. Mehlmann A. and P. Warneck,“Atmospheric Gaseous HNO3, Particulate Nitrate, and Aerosol Size Distributions of Major Ionic Species at a Rural Site in Western Germany,”Atmospheric Environment, Vol. 29, No. 17, pp. 2359-2373 (1995).
18. Ohta, S. and T. Okita, “A Chemical Characterization of Atmospheric Aerosol in Sapporo,” Atmospheric Environment, Vol. 24A, No. 4, pp. 815-822 (1990).
19. Reisinger, A. R., “Observations of HNO2 in the polluted winter atmosphere: possible heterogeneous production on aerosols,” Atmospheric Environment, Vol. 33 , pp. 3865-3874(2000).
20. Seinfeld, J. H. and S. N. Pandis., Atmospheric Chemistry and Physics, Wiley, New York, pp. 234-336(1998).
21. Shaw R. W. and H. Rodhe, Atmospheric Environment, Vol. 16, pp. 2879-2888 (1982).
22. Stelson A. W. and J. H. Seinfeld“Relative Humidity and Temperature Dependence of the Ammonium Nitrate Dissociation Constant,”Atmospheric Environment, Vol. 16, pp. 983-992 (1982).
23. Tsai, Y. I. and M. T., Cheng, “Visibility and Aerosol Chemical Compositions near the Costal Area in Central Taiwan,” The Science of The Total Environment 231, pp. 37-51 (1999).
24. Yao X , C. K. Chan, M. Fang S. Cadle, T. Chan, P. Mulawa, K. He, and B. Ye, ”The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China” Atmospheric Environment Vol. 36 , pp.4223-4234(2002).
25. Ye B., X. Ji, H. Yang, X. Yao, C. K. Chan, H. Steven, T. Chan, P. Mulawa, ”Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period” Atmospheric Environment Vol. 37 , pp.499-510(2003).
26. Zhuang H., C. K. Chen, M. Fang and A. S. Wexler,“Size Distributions of Particulate Sulfate, Nitrate, and Ammonium at a Coastal Site in Hong Kong,”Atmospheric Environment, Vol. 33, pp. 843-853 (1999).
27. 吳家興,「台灣北部地區國中學生氣喘的研究─空氣污染的影響」,國立台灣大學公共衛生學研究所碩士論文,台北 (1995)
28. 李崇德、許文昌、林能暉,「台中地區氣膠微粒化學組成及其污染來源推估」,一九九五年氣膠研討會論文專輯,台北,第 111 - 118 頁 (1995)。
29. 徐玉眉、劉遵賢、鄭福田,「大氣中氣態亞硝酸與硝酸」之觀測研究,第十七屆空污研討會論文,雲林(2000)。
30. 張維嘉,「台灣中部大氣氣膠特性及粒徑分佈---阿里山測站案例分析」,國立中興大學環境工程研究所碩士論文,台中 ( 2000 )。
31. 彭雙能,「微粒於採樣過程中反應及揮發性物種之研究」,國立中央大學環境工程研究所碩士論文,中壢(1995)。
32. 程萬里,「中部地區懸浮微粒相關之氣象條件分析」,行政院國家科學委員會研究報告 (2000)。
33. 黃美倫,「中部空品區大氣氣膠中水溶性離子微粒之特性探討」,國立中興大學環境工程研究所碩士論文,台中 (2000 )。
34. 葉峻榕,「大陸沙塵暴對中部地區酸性空氣污染物之影響」,國立中興大學環境工程研究所碩士論文,台中 (2002 )。
35. 蔡德明,吳義林,「南高屏地區懸浮微粒中水溶性離子平衡之季節性變化」,第八屆氣膠科技研討會論文集,第14-19頁,新竹市(2000)。
36. 蔡瀛逸,「台灣中部都會及沿海地區能見度與大氣氣膠化學特性關係之研究」,國立中興大學環境工程研究所博士論文,台中( 1999 )。
37. 蔡瀛逸,鄭曼婷,「高污染狀態下大氣二次氣膠組成之探討」,第十五屆空氣污染控制技術研討會論文集,第711-718頁,高雄市(1998)。
38. 鄭曼婷,「中部地區懸浮微粒特性及污染來源分析」,行政院國科會專題研究計畫期末報告 (2000)。
39. 鄭曼婷,「台中沿海及都會區氣膠特性及來源分析」,行政院國家科學委員會研究報告 (1999)。
40. 賴美秀,「中部地區懸浮微粒特性探討」,私立東海大學環境科學研究所碩士論文,台中 (2000 )。
41. 王景良,「中部空品區污染源逸散粉塵的組成分析」,國立中興大學環境工程研究所碩士論文,台中( 1999 )。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊