林孫權、董明澄、劉正義、張照夫、黃萬居、鄭清木。1972。假性狂犬病之發生報告。中華民國微生物學會雜誌 5: 56-68。
林盈秀。1996。假性狂犬病毒(TNL株)立即早期基因之選殖與表現。中興大學獸醫微生物學研究所碩士論文。張菁雯。1997。假性狂犬病毒立即早期蛋白於真核細胞之表現及功能分析。中興大學獸醫微生物學研究所碩士論文。張碧真。2002。假性狂犬病毒立即早期基因與病毒致病機制之相關性研究。中興大學獸醫微生物學研究所碩士論文。Aubert, M., and J. A. Blaho. 1999. The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J. Virol. 73: 2803-2813.
Babic N., T. C. Mettenleiter, G. Ugolini, A. Flamand, and P. Coulon. 1994. Propagation of pseudorabies virus in the Nervous system of the mouse after intranasal inoculation. Virology 204: 616-625.
Baskerville, A., J. B. McFerran, and C. Dow. 1973. Aujeszky’s disease in pigs. Vet. Bull. 43: 466-480.
Baumeister, J., B. G. Klupp, and T. C. Mettenleiter. 1995. Pseudorabies virus and equine herpesvirus 1 share an nonessential gene which is absent in other herpesviruses and Located adjacent to a highly conserved gene cluster. 69: 5560-5567.
Ben-Porat, T., M. Kervina, and A. S. Kaplan. 1975a. Early functions of the genome of herpesvirus. Virology 65: 355-362.
Ben-Porat, T., Rixon, F. J., and M. L. Blankenship. 1979b. Analysis of Blair ED, Blair CC, Wagner EK. Herpes simplex virus virion stimulatory protein mRNA leader contains sequence elements which increase both virus-induced transcription and mRNA stability. J. Virol. 61: 2499-2508.
Ben-Porat, T., and, A. S. Kaplan. 1981c. Organization and replication of pseudorabies virus DNA. In Y, Becker(ed.), Herpesvirus DNA. Martinus Nijhoff Publishers, The Hague, Boston, London.
Ben-Porat, T., and A. S. Kaplan. 1985d. Molecular biology of pseudorabies virus. P.105-173. In B. Roizman (ed.), the Herpesviruses, Vol.III, Plenum press, New York.
Booher, R. N., C. E. Alfa, J. S. Hyams, and D. H. Beach. 1989. The fission yeast cdc2/cdc3/suc1 protein kinase: regulation of catalytic activity and nuclear localization. Cell 58: 485-497.
Bratanich, A. C., and C. J. Jones. 1992. Localization of cis-acting sequences in the latency-related promoter of bovine herpesvirus 1 which are regulated by neuronal cell type factors and immediate-early genes. J. Virol. 66: 6099-6106.
Brown, C. R., M. S. Nakamura, J. D. Moscan, G. S. Hayward, S. E. Straus, and L. P. Perera. 1995. Herpes simplex virus trans-regulatory protein ICP27 stabilizes and binds to 3'' ends of labile mRNA. J. Virol. 69: 7187-7195.
Bryant, H. E., S. E. Wadd, A. I. Lamond, S. J. Silverstein, and J. B. Clements. 2001. Herpes simplex virus IE63 (ICP27) protein interacts with spliceosome-associated protein 145 and inhibits splicing prior to the first catalytic step. J. Virol. 75: 4376-4385.
Bunnell, S. M., and S. A. Rice. 2000. The conserved carboxyl-terminal half of herpes simplex virus type 1 regulatory protein ICP27 is dispensable for viral growth in the presence of compensatory mutations. J. Virol. 74: 7362-7374.
Cheung, A. K. 1989. DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus. Nucl. Acids Res. 17: 4637-4646.
Cheung, P., K. S. Ellison, R. Verity, and J. R. Smiley. 2000. Herpes simplex virus ICP27induces cytoplasmic accumulation of unspliced polyadenylated alpha-globin pre-mRNA in infected HeLa cells. J. Virol. 74: 2913-2919.
Chlan, C. A., C. Coulter, and L. T. Feldman. 1987. Binding of the pseudorabies virus immediate-early protein to single-stranded DNA. J. Virol. 61: 1855-1860.
Ciacci-Zanella, J., M. Stone, G. Henderson, and C. Jones. 1999. The latency-related gene of bovine herpesvirus 1 inhibits programmed cell death. J. Virol. 73: 9734-9740.
Cochrane, A. W., A. Perkins and C. A. Rosen. 1990. Indentification of sequences important in the nucleolar localization of human immunodeficiency virus rev:relevance of uncleolar localization to function. J. Virol. 64: 881-885.
Cromlish, W. A., S. M. Abmayr, J. L. Workman, M. Horikoshi, and R. G. Roeder. 1989. Transcriptionally active immediate-early protein of pseudo-rabies virus binds to specific sites on class II gene promoters. J. Virol. 63: 1869-1876.
Dang, C. V., and W. M. F. Lee. 1989. Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p54, HSP70, and HIV tat proteins. J. Biol. Chem. 264: 19-23.
Davison, A. J., and N.M. Wilkie. 1983. Location and orientation of homologous sequences in the genomes of five herpesviruses. J. Gen. Virol. 64: 1927-1942.
Dijkstra, J. M., N. Visser., T. C. Mettenleiter., and B. G. Klupp. 1996a. Identification and characterization of pseudorabies virus glycoprotein gM as a nonessential virion component. J. Virol. 70: 5684-5688.
Dijkstra, J. M., A. Brack., A. Jons., B. G. Klupp., and T. C. Mettenleiter. 1998b. Different point mutations within the conserved N-glycosylation motif of pseudorabies virus glycoprotein M result in expression of a nonglycosylated from of the protein. J. Gen. Virol. 79: 851-854.
Estridge JK, Kemp LM, La Thangue NB, Mann BS, Tyms AS, Latchman DS. 1989. The herpes simplex virus type 1 immediate-early protein ICP27 is obligately required for the accumulation of a cellular protein during viral infection. Virology 97: 316-327.
Feldman, L., F. J. Rixon, J. Jean, T. Ben-Porat, and A. S. Kaplan. 1979. Transcription of the genome of pseudorabies virus (a herpesvirus) is strictly controlled. Virology 97: 316-327.
Fenner, F. J., E. P. J. Gibbs, F. A. Murphy, R. Rott, M. J. Studdert, and D. O. White. 1993. " Herpesviridae. " Veterinary Virology 2nd ed. pp.337-368. Academic Press, Inc. San Diego.
Fenwick, M. L., and J. Clark. 1983. The effect of cycloheximide on the accumulation and stability of functional α-mRNA in cells infected with herpes simplex virus. J. Gen. Virol. 64: 1955-1963.
Francis, A. L., L. Grandoville, and G. Miller. 1997. Alteration of a single serine in the basic domain of the Epstein-Barr virus ZEBRA protein separates its functions of transcriptional activation and disruption of latency. J. Virol. 71: 3054-3061.
Grazow, H., F. Weiland, A. Jons, B. G. Klup, A. Karger, and T. C. Mettenleiter. 1997. Ultrastructural analysis of the replication cycle of pseudorabies virus in cell culture: a reassessment. J. Virol. 71: 2072-2082.
Gustafson, D. P. 1986. Pseudorabies. In diseases of swine. 6th ed., A. D. Leman(ed.), Iowa State University Press, Ames, Iowa, USA, pp.274-289.
Hampl, H., T. Ben-Porat., L. Ehrlicher., K. O. Habermehl., and A. S. Kaplan. 1984. Characterization of the envelope proteins of pseudorabies virus. J. Virol. 52(2): 583-590.
Hann, L. E., Cook, W. J., Uprichard, S. L., Knipe, D. M., and D. M. Coen. 1998. The role of herpes simplex virus ICP27 in the regulation of UL24 gene expression by differential polyadenylation. J. Virol. 72: 7709-7714.
Hardwicke, M. A., P. J. Vaughan, R. E. Sekulovich, R. O’Conner, and R. M. Sandri-Goldin. 1989. The regions important for the activator and repressor functions of the herpes simplex virus type 1 α protein ICP27 to the C-terminal half of the molecule. J. Virol. 63: 4590-4602.
Hardy, W. R., and R. M. Sandri-Goldin. 1994. Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J. Virol. 68: 7790-7799.
Hibbard, M. K., and R. M. Sandri-Goldin. 1995. Arginine-rich regions succeeding the nuclear localization region of the herpes simplex virus type 1 regulatory protein ICP27 are required for efficient nuclear localization and late gene expression. J. Virol. 69: 4656-4667.
Huang, C. J., M. K. Rice, G. B. Devi-Rao, and E. K. Wanger. 1994. The activity of the pseudorabies virus latency-associated transcript promoter is dependent on its genomic location in herpes simplex virus recombinants as well as on the type of cell infected. J. Virol. 68: 1972-1976.
Ihara, S., L. Feldman, S. Watanabe, and T. Ben-Porat. 1983. Characterization of the immediated-early functions of pseudorabies virus. Virology 131: 437-454.
Ingram, A., A. Phelan, J. Dunlop, and J. B. Clements. 1996. Immediate early protein IE63 of herpes simplex virus type 1 binds RNA directly. J. Gen. Virol. 77: 1847-1851.
Jean, S., K. M. LeVan, B. Song, M. Levine, and D. M. Knipe. 2001. Herpes simplex virus 1 ICP27 is required for transcription of two viral late (gamma 2) genes in infected cells. Virology 283: 273-284.
Jons, A., J. M. Dijkstra., and T. C. Mettenleiter. 1998. Glycoproteins M and N of pseudorabies virus from a disulfide-linked complex. J. Virol. 72: 550-557.
Kaelin, K., S. Dezelee, M. J. Masse, F. Bvras and A. Flamand. 2000. The UL25 protein of pseudorabies virus associate with capsids and localizes to the nucleus and to microtubules. J. Virol. 74: 474-482.
Kalderon, D., B. L. Roberts, W. D. Richardson, and A. E. Smith. 1984a. A short amino acid sequence able to specify nuclear location. Cell 39: 499-509.
Kalderon, D., W. D. Richardson, A. F. Markham, and A. E. Smith. 1984b. Sequence requirements for nuclear localization of simian virus 40 large-T antigen. Nature (London). 311: 33-38.
Karger, A., and T. C. Mettenleiter. 1993. Glycoprotein gIII and gp50 play dominant roles in the biphasie attachment of pseudorabies virus. Virology 194: 654-664.
Kit, S., M. Kit., and E. C. Pirtle. 1985. Attenuated properties of thymidine kinase-negative deletion mutants of pseudorabies virus. Am. J. Vet. Res. 46: 1359-1369.
Klupp, B. G., J. Baumeister, A. Karger, N. Visser, and T. C. Mettenleiter. 1994a. Identification and characterization of a novel structural glycoprotein in pseudorabies virus, gL. J. Virol. 68: 3868-3878.
Klupp, B., W. Fuchs., E. Weiland., and T. C. Mettenleiter. 1997b. Pseudorabies virus glycoprotein L is necessary for virus infectivity but dispensable for virion localization of glycoprotein H. J. Virol. 71: 7687-7695.
Klupp, B., G. J. Baumeister., P. Dietz., H. Granzow., and T. C. Mettenleiter. 1998c. Pseudorabies virus glycoprotein gK is a virion structure component involved in virus release but is not required for entry. J. Virol. 72: 1949-1958.
Knipe, D. M., D. Senechek, S. A. Rice, and J. L. Smith. 1987. Stages in the nuclear association of the Herpes simplex transcriptional activator protein ICP4. J. Virol. 61: 276-284.
Kops, A. d. Bruyn, S. L. Uprichard, M. Chen and D. M. Knipe. 1998. Comparison of the intranuclear distributions of herpes simplex virus proteins involved in various viral functions. Virology 252: 162-178.
Kosz-Vnenchak, M., J. Jacobson, D. M. Coen, and D. M. Knipe. 1993. Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. J. Virol. 67: 5383-5393.
Kutinova, L., P. Hainz, V. Ludvikova, L. Maresova, and S. Nemckova. 2001. Immune response to vaccinia virus recombinants expressing glycoproteins gE, gB, gH, and gL of Varicella-Zoater virus. Virology 280: 211-220.
Laurent, A-M, J-J. Madjar, and A. Greco. 1998. Translational control of viral and host protein synthesis during the course of herpes simplex virus type 1 infection: evidence that initiation of translation is the limiting step. J. Gen. Virol. 79: 2765-2775.
Lee, G., J. Wu, P. Luu, P. Ghazal, and O. Flores. 1996. Inhibition of the association of RNA polymerase II with the preinitiation complex by a viral transcriptional repressor. Proc. Natl. Acad. Sci. USA 93: 2570-2575.
Lenhninger, A. L., D. L. Nelson, and M. M. Cox. 1993. Principles of biochemistry. 2nd ed.
Lengyel, J., C. Guy, V. Leong, S. Borge, and S. A. RiceLengyel. 2002. Mapping of functional regions in the amino-terminal portion of the herpes simplex virus ICP27 regulatory protein: importance of the leucine-rich nuclear export signal and RGG Box RNA-binding domain. J. Virol. 76: 11866-11879.
Lilley, C. E., F. Groutsi, Z. Han, J. A. Palmer, P. N. Anderson, D. S. Latchman, and R. S. Coffin. 2001. Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J. Virol. 75: 4343-4356.
Loiacono, C. M., R. Myers, and W. J. Mitchell. 2002. Neurons differentially activate the herpes simplex virus type 1 immediate-early gene ICP0 and ICP27 promoters in transgenic mice. J. Virol. 76: 2449-2459.
Lokensgard, J. R., D. G. Thawley, and T. W. Molitor. 1990. Pseudorabies virus latency: restricted transcription. Arch. Virol. 110: 129-136.
Maeda, K., S. Hayashi, Y. Tanioka, Y. Matsumoto, and H. Otsuka. 2002. Pseudorabies virus (PRV) is protected from complement attack by cellular factors and glycoprotein C (gC). Virus Res. 84: 79-87.
Martin., K. J., J. W. Lillie, and M. R. Green. 1990. Transcriptional activation by the pseudorabies virus immediate-early protein. Genes Dev. 4: 2376-2382.
McFerran, J. B., and C. Dow. 1964. The excretion of Aujeszky’s disease virus by experimentally infected pigs. Res. Vet. Sci. 5: 405-410.
McGregor F., A. Phelan, J. Dunlop, and J. B. Clements. 1996. Regulation of herpes simplex virus poly(A) site usage and the action of immediate-early protein IE63 in the early-late switch. J. Virol. 70: 1931-1940.
McMahan, L., and P. A. Schaffer. 1990. The repressing and enhancing functions of the herpes simplex virus regulatory protein ICP27 map to the C-terminal regions and are required to modulate virus gene expression very early in infection. J. Virol. 64: 3471-3485.
Mears, W. E., V. Lam, and S. A. Rice. 1995a. Identification of nuclear and nucleolar localization signals in the herpes simplex virus regulatory protein ICP27. J. Virol. 69:935-947.
Mears, W. E., and S. A. Rice. 1996b. The RGG box motif of the herpes simplex virus ICP27 protein mediates an RNA-binding activity and determines in vivo methylation. J. Virol. 70: 7445-7453.
Mears, W. E., and S. A. Rice. 1998c. The herpes simplex virus immediate-early protein ICP27 shuttles between nucleus and cytoplasm. Virology 242: 128-37.
Mettenleiter. T. C., H. Kern., and I. Rauh. 1990a. Isolation of a viable herpesvirus (pseudorabies virus) mutant specifically lacking all four know nonessential glycoproteins. Virol.179: 498-503.
Mettenleiter, T. C., L. Zsak., F. Zuckermann., N. Sugg., H. Kern., and T. Porat. 1990b. Interaction of glycoprotein gIII with a cellular heparinlike substance mediateds adsorption of pseudorabies virus. J. Virol. 64: 278-286.
Mettenleiter, T. C. 1994c. Pseudorabies (Aujeszky’s disease) virus: state of the art. Acta Vet. Hungarica 42: 153-177.
Mettenleiter, T. C. 2000d. Aujeszky’s disease(pseudorabies) virus: the virus and molecular pathogenesis-state of the art Vet. Res. 31: 99-115.
Misra, V., S. Walker, S. Hayes, and P. O’Hare. 1995. The bovine herpes-virus 1 gene trans-inducing factor activates transcription by mechanisms different from those of its herpes simplex virus type 1 counterpart VP16. J. Virol. 69: 5209-5216.
Mitchell, W.J. 1995. Neurons differentially control expression of a herpes simplex virus type 1 immediate-early promoter in transgenic mice. J. Virol. 69: 7942-7950.
Nakamichi, K., Y. Matsumoto, and H. Otsuka. 2002. Bovine herpesvirus 1 glycoprotein G is necessary for maintaining cell-to-cell junctional adherence among infected cell. Virology 294: 22-30.
Nigg, E. A. 1997. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386: 779-787.
Ono, E., Y. Sakoda, S. Taharaguchi, S. Watanabe, N. Tonomura, H. Kida, and Y. Shimizu. 1995a. Inhibition of pseudorabies virus replication by a chimeric trans-gene product repressing transcription of the immediate-early gene. Virology 210: 128-140.
Ono, E., T. Tasaki, T. Kobayashi, S. Taharaguchi, H. Nikami, I. Miyoshi, N. Kasai, J. Arikawa, H. Kida, and Y. Shimizu. 1999b. Resistance to pseudorabies virus infection in transgenic mice expressing the chimeric transgene that represses the immediate-early gene transcription. Virology 262: 72-78.
Pensaer, M., and R. B. Morrison. 2000. Challenges of the final stages of the ADV eradication program. Vet. Res. 31: 141-145.
Pensaert, M. B., and J. P. Kluge. 1989. "Pseudorabies virus (Aujeszky''s disease)" Virus Infections of Porcines pp39-64. Elsevier Science Publishers B. V. Amsterdam.
Perng, G., S. Slanina, A. Yukht, H. Ghiasi, A. Nesburn, and S. Wechsler. 2000. The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J. Virol. 74: 1885-1891.
Phelan, A., and J. B. Clements. 1997. Herpes simplex virus type 1 immediate early protein IE63 shuttles between nuclear compartments and the cytoplasm. J. Gen. Virol. 78: 3327-3331.
Preston, C. M., A. Rinaldi, and M, J. Nicholl. 1998a. Herpes simplex virus type 1 immediate early gene expression is stimulated by inhibition of protein synthesis. J. Gen. Virol. 79: 117-124.
Preston, C. M. 2000b. Repression of viral transcription during herpes simplex virus latency. J. Gen. Virol. 81: 1-19.
Priola, S. A., D. P. Gustafson, E. K. Wagner, and J. G. Stevens. 1990a. Major portion of the latent pseuodrabies virus genome is transcribed in tri-geminal ganglia of pigs. J. Virol. 64: 4755-4760.
Priola, S. A., and J. G. Stevens. 1991b. The 5’ and 3’ limits of transcription in the pseudorabies virus latency associated transcription unit. Virology 182: 852-856.
Rice, S. A., and D. M. Knipe. 1988a. Gene-specific transactivation by herpes simplex virus type 1 alpha protein ICP27. J. Virol. 62: 3814-3823.
Rice, S. A., L. Su, and D. M. Knipe. 1989b. Herpes simplex virus alpha protein ICP27 possesses separable positive and negative regulatory activities. J. Virol. 63: 3399-3407.
Rice, S. A., and V. Lam. 1993c. The acidic amino-terminal region of herpes simplex virus type 1 alpha protein ICP27 is required for an essential lytic function. J. Virol. 67: 1778-1787.
Rice, S. A., and V. Lam. 1994d. Amino acid substitution mutations in the herpes simplex virus ICP27 protein define an essential gene regulation function. J. Virol. 68: 823-833.
Rice, S. A., M. C. Long, V. Lam, P. A. Schaffer, and C. A. Spencer. 1995e. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program. J. Virol. 69: 5550-5559.
Roizman, B. 1996. Herpesviridae. In B. N. Fields, D. M. Knipe, P. M. Howley(eds), Virology, 3rd ed. Lippincott-Raven Publishers, Philadelphia. 2221-2230.
Rziha, H., T. C. Mettenleiter, V. Ohlinger, and G. Wittmann. 1986. Herpesvirus (pseudorabies virus) latency in swine: Occurrence and physical state of viral DNA in neural tissues. Virology 155: 600-613.
Sacks, W. R., C. C. Greene, D. P. Ashman, and P. A. Schaffer. 1985. Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J. Virol. 55: 796-805.
Samaniego, L. A., A. L. Webb and N. A. Deluca. 1995. Functional interaction between herpes simplex virus immediate-early proteins during infection:gene expression as a consequence of ICP27 and different domains of ICP4. J. Virol. 69: 5705-5715.
Sandri-Goldin, R. M., and G. E. Mendoza. 1992a. A herpesvirus regulatory protein appears to act post-transcriptionally by affecting mRNA processing. Genes Dev. 6: 848-863.
Sandri-Goldin, R. M. 1998b. ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes Dev. 12: 868-79.
Sekulovich, R. E., K. Leary, and R. M. Sandri-Goldin. 1988. The herpes simplex virus type 1 α protein can act as a trans-repressor or a trans-activator in combination with ICP4 and ICP0. J. Virol. 62: 4510-4522.
Sellison, K. S., S. A. Rice, R. Verity, and J. R. Smiley. 2000. Processing of alpha-globin and ICP0 mRNA in cells infected with herpes simplex virus type 1 ICP27 mutants. J. Virol. 74: 7307-7319.
Singh, M., c. F, L. J. Bello, W. C. Lawrence, and M. Schwyzer. 1996. Identification and characterization of BICP27, an early protein of bovine herpesvirus 1 which may stimulate mRNA 3'' processing. J. Gen. Virol. 77: 615-625.
Smith, M. R., and W. C. Greene. 1992. Characterization of a novel nuclear localization signal in the HTLV-1 Tax transactivator protein. Virology 187: 316-320.
Smith, I. L., M. A. Hardwicke, and R. M. Sandri-Goldin. 1992. Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 186: 74-86.
Soliman, T. M., R. M. Sandri-Goldin, and S. J. Silverstein. 1997a. Shuttling of the herpes simplex virus type 1 regulatory protein ICP27 between the nucleus and cytoplasm mediates the expression of late proteins. J. Virol. 71: 9188-9197.
Soliman, T. M., and S. J. Silverstein. 2000b. Herpesvirus mRNAs are sorted for export via Crm1-dependent and independent pathways. J. Virol. 74: 2814-2825.
Song, B., K-C. Yeh, J. Liu, and D. M. Knipe. 2001. Herpes simplex virus gene products required for viral inhibition of expression of G1-phase functions. Virology 290: 320-328.
Spector, Deborah H. 1996. Activation and regulation of human cytomegalovirus early genes. Inter virol. 39: 361-377.
Taharaguchi, S., E. Ono, S. Yamada, Y. Shimizu, and H. Kida. 1995. Mapping of a functional region conferring nuclear localization of pseudo-rabies virus immediately-early protein. Arch. Virol. 140: 1737-1746.
Uprichard, S., and D. Knipe. 1996. Herpes simplex ICP27 mutant viruses exhibit reduced expression of specific DNA replication genes. J. Virol. 70: 1969-1980.
Vaughn, P., K. Thibault, M. Hardwicke, and R. Sandri-Goldin. 1992. The herpes simplex virus immediate early protein ICP27 encodes a potential metal binding domain and binds zinc in vitro. Virology 189: 377-384.
Vlcek, C., Z. Kozmik, V. Paces, S. Schirm, and M. Schwyzer. 1990. Pseudorabies virus immediate-early gene overlaps with an oppositely oriented open reading frame: characterization of their promoter and enhancer regions. Virology 179: 365-377.
Whealy, M. E., Card, J. P., Meade, R. P., Robbins, A. K. and Enquist, L. W. 1991. Effect of brefeldin A on alphaherpesvirus membrane protein glycosylation and virus egress. J. Virol. 65: 1066-1081.
Wittmann, G. 1991. Spread and control of Aujeszky’s disease (AD). Comp. Immun. Microbiol. Infect. Dis. 14: 165-173.
Wu, C., Haper, L., and Ben-Porat, T. 1986a. Cis function involved in replication and cleavage / encapsidation of pseudorabies virus. J. Virol. 59: 318-327.
Wu, C., and K. W. Wilcox. 1991b. The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and Varicella-Zoster virus ORF62 genes recognize similar sites in the corres-ponding promoters. J. Virol. 65: 1149-1159.
Zhao, I.-J., and R. Padmanabhan. 1988. Nuclear transport of adenovirus DNA polymerase is facilitated by interaction with preterminal protein. Cell 55: 1005-1015.
Zuckermann, F. A. 2000, Aujeszky’s disease virus: opportunities and challenges. Vet. Res. 31: 121-131.