跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 06:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳金英
研究生(外文):Ching-Ying Wu
論文名稱:假性狂犬病毒早期調節基因UL54之選殖與表現及功能分析
論文名稱(外文):Cloning, Expression and Functional Analysis of the Pseudorabies Virus Early Regulatory Gene UL54
指導教授:黃千衿
指導教授(外文):Chienjin Huang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫微生物學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:64
中文關鍵詞:假性狂犬病毒UL54基因早期基因西方轉漬免疫過氧化氫酶染色
外文關鍵詞:Pseudorabies virusUL54 geneearly geneWestern blottingimmunoperoxidase staining
相關次數:
  • 被引用被引用:2
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
假性狂犬病毒(Pseudorabies virus, PRV)是一種Alphaherpesvirus,其基因結構及生物特性和同亞科的人類單純疱疹病毒第一型(HSV-1)相似。PRV之UL54基因產物屬於早期調節蛋白,與HSV-1的立即早期蛋白ICP27 (infected-cell protein 27)有41%的同源性。由於目前PRV UL54基因相關研究缺乏,故根據兩者間的相似性,針對UL54基因進行選殖與表現,以進一步研究其基因表現產物的功能特性。本實驗以本土株TNL病毒為模板,經過PCR增幅及TA cloning,將UL54基因選殖於pCRII-TOPO載體後,構築出pTOPOUL54質體。將此質體進行定序後,顯示TNL株全長UL54基因coding region為1092 bp,可轉譯出363個胺基酸,此序列已在GenBank登錄,序號為AY101596;與Ka株 UL54基因序列比較,具有97%的相似性。繼而將所選殖的UL54基因轉殖於原核表現系統pET28b後,轉型於大腸桿菌BL21(DE3)表現菌種,以1mM IPTG進行誘導產生重組表現蛋白。經西方轉漬(Western blotting) 分析約在45 kDa處有一明顯誘導蛋白被Anti-His抗體所辨視。進一步純化UL54表現產物,進行小白鼠之免疫以製備特異性免疫血清。經免疫過氧化氫酶染色(immunoperoxidase staining),顯示小白鼠免疫血清確能辨認PRV感染PK15細胞內之UL54病毒蛋白,而且UL54蛋白多分佈於細胞核中。進一步分析UL54蛋白在PRV感染細胞後之表現情形,發現在病毒感染後第四個小時即可偵測到40 kDa之UL54蛋白,且隨著感染時間增加其蛋白量也隨之增加。為了更深入研究UL54蛋白是否具RNA結合功能,我們將UL54基因轉接到pET32b表現載體,構築了一系列UL54之C端缺損的選殖株,經西方轉漬分析証實可分別表現N端33、81、150、261個胺基酸及全長等不同UL54之重組表現蛋白。將各個重組蛋白與Dig標幟之polyG RNA probe進行雜合反應,經Northwestern blotting分析之結果顯示只表現N端33個胺基酸的UL54重組蛋白與pET32b表現蛋白並無任何訊號產生,其餘的UL54重組蛋白與家禽里奧病毒RNA結合蛋白σNS均出現陽性反應,顯示UL54蛋白具有與polyG RNA結合的能力,且在胺基酸序號第34-81序列為與RNA結合所必需。
Pseudorabies virus (PRV) is an alphaherpesvirus, and its gene organization and regulation are similar to the well characterized human simplex virus (HSV). The PRV UL54 gene is an early gene with 41% homology to the essential immediate-early protein ICP27 of HSV. The purpose of this study is to obtain the PRV UL54 gene for further characterizing the gene structure and function. The complete coding region of TNL strain UL54 gene was cloned by PCR cloning strategy, and sequence analysis of this gene revealed that the UL54 consisted of 1092 nucleotides encoding a 40 kDa protein of 363 amino acids. The DNA sequence was submitted to the GenBank data library with the accession number AY101596. The UL54 gene fragment was recovered and subcloned onto the expression vector of the pET28b for producing large scale of UL54 protein in E. coli. system. The expressed UL54 fusion protein was 45 kDa in size which could be recognized by anti-His antibody in Western blotting assay. The expression product was purified and then used as antigen to immunize mice for preparing specific antibodies against UL54 protein. The specificity of the mouse immune serum was confirmed by its ability to react with a 40 kDa viral protein present in the PRV infected cells in Western blotting assay, detected as early as 4 hours after infection. In addition, immunoperoxidase staining of PRV infected cells undertaken with this antibody demonstrated mainly nuclear staining pattern. Furthermore, a series of C-terminal truncated mutants expressing N terminal 33, 81, 150, 261 amino acid residues respectively were constructed for mapping the functional domain of RNA binding. The result of Northwestern blotting was shown that the UL54 protein could bind efficiently to RNA polyG and the N-terminal amino acid residues 34-81 were necessary for its RNA binding activity.
中文摘要……………………………………………………………………………… I
英文摘要………………………………………………………………………………II
目次…………………………………………………………………………………...III
圖次…………………………………………………………………………………...V
第一章 前言………………………………………………………………………….1
第二章 文獻探討……………………………………………………………………..3
一、假性狂犬病之歷史背景…………………………………………………..3
二、假性狂犬病的防治………………………………………………………..3
三、假性狂犬病毒之分類命名及形態………………………………………..4
四、假性狂犬病毒基因體的結構……………………………………………..4
五、假性狂犬病毒的複製週期………………………………………………..5
六、假性狂犬病毒基因表現…………………………………………………..6
七、Herpesvirus立即早期基因………………………………………………7
八、HSV-1 立即早期蛋白ICP27與PRV早期蛋白UL54…………….…..8
九、HSV-1立即早期蛋白ICP27之研究……………………………….…...9
第三章 材枓與方法………………………………………………………………...14
一、病毒核酸之萃取…….……………………………………….………….14
二、聚合酶連鎖反應與基因片段之選殖…………………………...………15
三、假性狂犬病毒感染細胞後UL54 mRNA表現之分析……….………..16
四、DNA電泳分析與DNA片段純化………………………………………16
五、勝任細胞(competent cell)之製備………………….…………………..17
六、小量質體DNA之萃取…………………….……………………………17
七、重組表現質體之構築……………………………………………………18
八、UL 54蛋白C端缺損選殖株之構築……………….…………………...19
九、重組蛋白之表現……………………………………………….………....19
十、重組蛋白之純化………………………………………………………….19
十一、蛋白質電泳膠片分析……………………………………………...…..20
十二、西方轉漬(Western blotting)分析………………………………….….21
十三、小白鼠之免疫………………………………………….……………….22
十四、細胞培養………………………………………………………………..22
十五、免疫過氧化氫酶染色(Immunoperoxidase staining)………..………23
十六、病毒感染細胞之細胞質與細胞核萃取液的製備……………………..23
十七、Dig標幟RNA probe之製備……………………… …………………24
十八、Northwestern blotting…………………………………………………24
第四章 結果…………………………………………………………….………….…25
一、UL54基因之選殖與定序…………………………………….…….…….25
二、假性狂犬病毒感染細胞後UL54 mRNA表現之分析………………….25
三、UL54基因表現質體之構築……………………………………………...26
四、假性狂犬病毒UL54重組蛋白於大腸桿菌之表現…………….……….26
五、UL54特異性免疫血清之測試………………….………………………..27
六、假性狂犬病毒感染細胞中UL54蛋白之偵測…………………………..27
七、UL54基因C端缺損選殖株之構築及重組蛋白之表現………………..27
八、UL54表現蛋白與RNA結合之測定…………………………………….28
第五章 討論…………………………………………………………….……....…….42
參考文獻………………………………………………………………………………..47
附錄……………………………………………………………………………………..60
林孫權、董明澄、劉正義、張照夫、黃萬居、鄭清木。1972。假性狂犬病之發生報告。中華民國微生物學會雜誌 5: 56-68。
林盈秀。1996。假性狂犬病毒(TNL株)立即早期基因之選殖與表現。中興大學獸醫微生物學研究所碩士論文。
張菁雯。1997。假性狂犬病毒立即早期蛋白於真核細胞之表現及功能分析。中興大學獸醫微生物學研究所碩士論文。
張碧真。2002。假性狂犬病毒立即早期基因與病毒致病機制之相關性研究。中興大學獸醫微生物學研究所碩士論文。
Aubert, M., and J. A. Blaho. 1999. The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J. Virol. 73: 2803-2813.
Babic N., T. C. Mettenleiter, G. Ugolini, A. Flamand, and P. Coulon. 1994. Propagation of pseudorabies virus in the Nervous system of the mouse after intranasal inoculation. Virology 204: 616-625.
Baskerville, A., J. B. McFerran, and C. Dow. 1973. Aujeszky’s disease in pigs. Vet. Bull. 43: 466-480.
Baumeister, J., B. G. Klupp, and T. C. Mettenleiter. 1995. Pseudorabies virus and equine herpesvirus 1 share an nonessential gene which is absent in other herpesviruses and Located adjacent to a highly conserved gene cluster. 69: 5560-5567.
Ben-Porat, T., M. Kervina, and A. S. Kaplan. 1975a. Early functions of the genome of herpesvirus. Virology 65: 355-362.
Ben-Porat, T., Rixon, F. J., and M. L. Blankenship. 1979b. Analysis of Blair ED, Blair CC, Wagner EK. Herpes simplex virus virion stimulatory protein mRNA leader contains sequence elements which increase both virus-induced transcription and mRNA stability. J. Virol. 61: 2499-2508.
Ben-Porat, T., and, A. S. Kaplan. 1981c. Organization and replication of pseudorabies virus DNA. In Y, Becker(ed.), Herpesvirus DNA. Martinus Nijhoff Publishers, The Hague, Boston, London.
Ben-Porat, T., and A. S. Kaplan. 1985d. Molecular biology of pseudorabies virus. P.105-173. In B. Roizman (ed.), the Herpesviruses, Vol.III, Plenum press, New York.
Booher, R. N., C. E. Alfa, J. S. Hyams, and D. H. Beach. 1989. The fission yeast cdc2/cdc3/suc1 protein kinase: regulation of catalytic activity and nuclear localization. Cell 58: 485-497.
Bratanich, A. C., and C. J. Jones. 1992. Localization of cis-acting sequences in the latency-related promoter of bovine herpesvirus 1 which are regulated by neuronal cell type factors and immediate-early genes. J. Virol. 66: 6099-6106.
Brown, C. R., M. S. Nakamura, J. D. Moscan, G. S. Hayward, S. E. Straus, and L. P. Perera. 1995. Herpes simplex virus trans-regulatory protein ICP27 stabilizes and binds to 3'' ends of labile mRNA. J. Virol. 69: 7187-7195.
Bryant, H. E., S. E. Wadd, A. I. Lamond, S. J. Silverstein, and J. B. Clements. 2001. Herpes simplex virus IE63 (ICP27) protein interacts with spliceosome-associated protein 145 and inhibits splicing prior to the first catalytic step. J. Virol. 75: 4376-4385.
Bunnell, S. M., and S. A. Rice. 2000. The conserved carboxyl-terminal half of herpes simplex virus type 1 regulatory protein ICP27 is dispensable for viral growth in the presence of compensatory mutations. J. Virol. 74: 7362-7374.
Cheung, A. K. 1989. DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus. Nucl. Acids Res. 17: 4637-4646.
Cheung, P., K. S. Ellison, R. Verity, and J. R. Smiley. 2000. Herpes simplex virus ICP27induces cytoplasmic accumulation of unspliced polyadenylated alpha-globin pre-mRNA in infected HeLa cells. J. Virol. 74: 2913-2919.
Chlan, C. A., C. Coulter, and L. T. Feldman. 1987. Binding of the pseudorabies virus immediate-early protein to single-stranded DNA. J. Virol. 61: 1855-1860.
Ciacci-Zanella, J., M. Stone, G. Henderson, and C. Jones. 1999. The latency-related gene of bovine herpesvirus 1 inhibits programmed cell death. J. Virol. 73: 9734-9740.
Cochrane, A. W., A. Perkins and C. A. Rosen. 1990. Indentification of sequences important in the nucleolar localization of human immunodeficiency virus rev:relevance of uncleolar localization to function. J. Virol. 64: 881-885.
Cromlish, W. A., S. M. Abmayr, J. L. Workman, M. Horikoshi, and R. G. Roeder. 1989. Transcriptionally active immediate-early protein of pseudo-rabies virus binds to specific sites on class II gene promoters. J. Virol. 63: 1869-1876.
Dang, C. V., and W. M. F. Lee. 1989. Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p54, HSP70, and HIV tat proteins. J. Biol. Chem. 264: 19-23.
Davison, A. J., and N.M. Wilkie. 1983. Location and orientation of homologous sequences in the genomes of five herpesviruses. J. Gen. Virol. 64: 1927-1942.
Dijkstra, J. M., N. Visser., T. C. Mettenleiter., and B. G. Klupp. 1996a. Identification and characterization of pseudorabies virus glycoprotein gM as a nonessential virion component. J. Virol. 70: 5684-5688.
Dijkstra, J. M., A. Brack., A. Jons., B. G. Klupp., and T. C. Mettenleiter. 1998b. Different point mutations within the conserved N-glycosylation motif of pseudorabies virus glycoprotein M result in expression of a nonglycosylated from of the protein. J. Gen. Virol. 79: 851-854.
Estridge JK, Kemp LM, La Thangue NB, Mann BS, Tyms AS, Latchman DS. 1989. The herpes simplex virus type 1 immediate-early protein ICP27 is obligately required for the accumulation of a cellular protein during viral infection. Virology 97: 316-327.
Feldman, L., F. J. Rixon, J. Jean, T. Ben-Porat, and A. S. Kaplan. 1979. Transcription of the genome of pseudorabies virus (a herpesvirus) is strictly controlled. Virology 97: 316-327.
Fenner, F. J., E. P. J. Gibbs, F. A. Murphy, R. Rott, M. J. Studdert, and D. O. White. 1993. " Herpesviridae. " Veterinary Virology 2nd ed. pp.337-368. Academic Press, Inc. San Diego.
Fenwick, M. L., and J. Clark. 1983. The effect of cycloheximide on the accumulation and stability of functional α-mRNA in cells infected with herpes simplex virus. J. Gen. Virol. 64: 1955-1963.
Francis, A. L., L. Grandoville, and G. Miller. 1997. Alteration of a single serine in the basic domain of the Epstein-Barr virus ZEBRA protein separates its functions of transcriptional activation and disruption of latency. J. Virol. 71: 3054-3061.
Grazow, H., F. Weiland, A. Jons, B. G. Klup, A. Karger, and T. C. Mettenleiter. 1997. Ultrastructural analysis of the replication cycle of pseudorabies virus in cell culture: a reassessment. J. Virol. 71: 2072-2082.
Gustafson, D. P. 1986. Pseudorabies. In diseases of swine. 6th ed., A. D. Leman(ed.), Iowa State University Press, Ames, Iowa, USA, pp.274-289.
Hampl, H., T. Ben-Porat., L. Ehrlicher., K. O. Habermehl., and A. S. Kaplan. 1984. Characterization of the envelope proteins of pseudorabies virus. J. Virol. 52(2): 583-590.
Hann, L. E., Cook, W. J., Uprichard, S. L., Knipe, D. M., and D. M. Coen. 1998. The role of herpes simplex virus ICP27 in the regulation of UL24 gene expression by differential polyadenylation. J. Virol. 72: 7709-7714.
Hardwicke, M. A., P. J. Vaughan, R. E. Sekulovich, R. O’Conner, and R. M. Sandri-Goldin. 1989. The regions important for the activator and repressor functions of the herpes simplex virus type 1 α protein ICP27 to the C-terminal half of the molecule. J. Virol. 63: 4590-4602.
Hardy, W. R., and R. M. Sandri-Goldin. 1994. Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J. Virol. 68: 7790-7799.
Hibbard, M. K., and R. M. Sandri-Goldin. 1995. Arginine-rich regions succeeding the nuclear localization region of the herpes simplex virus type 1 regulatory protein ICP27 are required for efficient nuclear localization and late gene expression. J. Virol. 69: 4656-4667.
Huang, C. J., M. K. Rice, G. B. Devi-Rao, and E. K. Wanger. 1994. The activity of the pseudorabies virus latency-associated transcript promoter is dependent on its genomic location in herpes simplex virus recombinants as well as on the type of cell infected. J. Virol. 68: 1972-1976.
Ihara, S., L. Feldman, S. Watanabe, and T. Ben-Porat. 1983. Characterization of the immediated-early functions of pseudorabies virus. Virology 131: 437-454.
Ingram, A., A. Phelan, J. Dunlop, and J. B. Clements. 1996. Immediate early protein IE63 of herpes simplex virus type 1 binds RNA directly. J. Gen. Virol. 77: 1847-1851.
Jean, S., K. M. LeVan, B. Song, M. Levine, and D. M. Knipe. 2001. Herpes simplex virus 1 ICP27 is required for transcription of two viral late (gamma 2) genes in infected cells. Virology 283: 273-284.
Jons, A., J. M. Dijkstra., and T. C. Mettenleiter. 1998. Glycoproteins M and N of pseudorabies virus from a disulfide-linked complex. J. Virol. 72: 550-557.
Kaelin, K., S. Dezelee, M. J. Masse, F. Bvras and A. Flamand. 2000. The UL25 protein of pseudorabies virus associate with capsids and localizes to the nucleus and to microtubules. J. Virol. 74: 474-482.
Kalderon, D., B. L. Roberts, W. D. Richardson, and A. E. Smith. 1984a. A short amino acid sequence able to specify nuclear location. Cell 39: 499-509.
Kalderon, D., W. D. Richardson, A. F. Markham, and A. E. Smith. 1984b. Sequence requirements for nuclear localization of simian virus 40 large-T antigen. Nature (London). 311: 33-38.
Karger, A., and T. C. Mettenleiter. 1993. Glycoprotein gIII and gp50 play dominant roles in the biphasie attachment of pseudorabies virus. Virology 194: 654-664.
Kit, S., M. Kit., and E. C. Pirtle. 1985. Attenuated properties of thymidine kinase-negative deletion mutants of pseudorabies virus. Am. J. Vet. Res. 46: 1359-1369.
Klupp, B. G., J. Baumeister, A. Karger, N. Visser, and T. C. Mettenleiter. 1994a. Identification and characterization of a novel structural glycoprotein in pseudorabies virus, gL. J. Virol. 68: 3868-3878.
Klupp, B., W. Fuchs., E. Weiland., and T. C. Mettenleiter. 1997b. Pseudorabies virus glycoprotein L is necessary for virus infectivity but dispensable for virion localization of glycoprotein H. J. Virol. 71: 7687-7695.
Klupp, B., G. J. Baumeister., P. Dietz., H. Granzow., and T. C. Mettenleiter. 1998c. Pseudorabies virus glycoprotein gK is a virion structure component involved in virus release but is not required for entry. J. Virol. 72: 1949-1958.
Knipe, D. M., D. Senechek, S. A. Rice, and J. L. Smith. 1987. Stages in the nuclear association of the Herpes simplex transcriptional activator protein ICP4. J. Virol. 61: 276-284.
Kops, A. d. Bruyn, S. L. Uprichard, M. Chen and D. M. Knipe. 1998. Comparison of the intranuclear distributions of herpes simplex virus proteins involved in various viral functions. Virology 252: 162-178.
Kosz-Vnenchak, M., J. Jacobson, D. M. Coen, and D. M. Knipe. 1993. Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. J. Virol. 67: 5383-5393.
Kutinova, L., P. Hainz, V. Ludvikova, L. Maresova, and S. Nemckova. 2001. Immune response to vaccinia virus recombinants expressing glycoproteins gE, gB, gH, and gL of Varicella-Zoater virus. Virology 280: 211-220.
Laurent, A-M, J-J. Madjar, and A. Greco. 1998. Translational control of viral and host protein synthesis during the course of herpes simplex virus type 1 infection: evidence that initiation of translation is the limiting step. J. Gen. Virol. 79: 2765-2775.
Lee, G., J. Wu, P. Luu, P. Ghazal, and O. Flores. 1996. Inhibition of the association of RNA polymerase II with the preinitiation complex by a viral transcriptional repressor. Proc. Natl. Acad. Sci. USA 93: 2570-2575.
Lenhninger, A. L., D. L. Nelson, and M. M. Cox. 1993. Principles of biochemistry. 2nd ed.
Lengyel, J., C. Guy, V. Leong, S. Borge, and S. A. RiceLengyel. 2002. Mapping of functional regions in the amino-terminal portion of the herpes simplex virus ICP27 regulatory protein: importance of the leucine-rich nuclear export signal and RGG Box RNA-binding domain. J. Virol. 76: 11866-11879.
Lilley, C. E., F. Groutsi, Z. Han, J. A. Palmer, P. N. Anderson, D. S. Latchman, and R. S. Coffin. 2001. Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J. Virol. 75: 4343-4356.
Loiacono, C. M., R. Myers, and W. J. Mitchell. 2002. Neurons differentially activate the herpes simplex virus type 1 immediate-early gene ICP0 and ICP27 promoters in transgenic mice. J. Virol. 76: 2449-2459.
Lokensgard, J. R., D. G. Thawley, and T. W. Molitor. 1990. Pseudorabies virus latency: restricted transcription. Arch. Virol. 110: 129-136.
Maeda, K., S. Hayashi, Y. Tanioka, Y. Matsumoto, and H. Otsuka. 2002. Pseudorabies virus (PRV) is protected from complement attack by cellular factors and glycoprotein C (gC). Virus Res. 84: 79-87.
Martin., K. J., J. W. Lillie, and M. R. Green. 1990. Transcriptional activation by the pseudorabies virus immediate-early protein. Genes Dev. 4: 2376-2382.
McFerran, J. B., and C. Dow. 1964. The excretion of Aujeszky’s disease virus by experimentally infected pigs. Res. Vet. Sci. 5: 405-410.
McGregor F., A. Phelan, J. Dunlop, and J. B. Clements. 1996. Regulation of herpes simplex virus poly(A) site usage and the action of immediate-early protein IE63 in the early-late switch. J. Virol. 70: 1931-1940.
McMahan, L., and P. A. Schaffer. 1990. The repressing and enhancing functions of the herpes simplex virus regulatory protein ICP27 map to the C-terminal regions and are required to modulate virus gene expression very early in infection. J. Virol. 64: 3471-3485.
Mears, W. E., V. Lam, and S. A. Rice. 1995a. Identification of nuclear and nucleolar localization signals in the herpes simplex virus regulatory protein ICP27. J. Virol. 69:935-947.
Mears, W. E., and S. A. Rice. 1996b. The RGG box motif of the herpes simplex virus ICP27 protein mediates an RNA-binding activity and determines in vivo methylation. J. Virol. 70: 7445-7453.
Mears, W. E., and S. A. Rice. 1998c. The herpes simplex virus immediate-early protein ICP27 shuttles between nucleus and cytoplasm. Virology 242: 128-37.
Mettenleiter. T. C., H. Kern., and I. Rauh. 1990a. Isolation of a viable herpesvirus (pseudorabies virus) mutant specifically lacking all four know nonessential glycoproteins. Virol.179: 498-503.
Mettenleiter, T. C., L. Zsak., F. Zuckermann., N. Sugg., H. Kern., and T. Porat. 1990b. Interaction of glycoprotein gIII with a cellular heparinlike substance mediateds adsorption of pseudorabies virus. J. Virol. 64: 278-286.
Mettenleiter, T. C. 1994c. Pseudorabies (Aujeszky’s disease) virus: state of the art. Acta Vet. Hungarica 42: 153-177.
Mettenleiter, T. C. 2000d. Aujeszky’s disease(pseudorabies) virus: the virus and molecular pathogenesis-state of the art Vet. Res. 31: 99-115.
Misra, V., S. Walker, S. Hayes, and P. O’Hare. 1995. The bovine herpes-virus 1 gene trans-inducing factor activates transcription by mechanisms different from those of its herpes simplex virus type 1 counterpart VP16. J. Virol. 69: 5209-5216.
Mitchell, W.J. 1995. Neurons differentially control expression of a herpes simplex virus type 1 immediate-early promoter in transgenic mice. J. Virol. 69: 7942-7950.
Nakamichi, K., Y. Matsumoto, and H. Otsuka. 2002. Bovine herpesvirus 1 glycoprotein G is necessary for maintaining cell-to-cell junctional adherence among infected cell. Virology 294: 22-30.
Nigg, E. A. 1997. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386: 779-787.
Ono, E., Y. Sakoda, S. Taharaguchi, S. Watanabe, N. Tonomura, H. Kida, and Y. Shimizu. 1995a. Inhibition of pseudorabies virus replication by a chimeric trans-gene product repressing transcription of the immediate-early gene. Virology 210: 128-140.
Ono, E., T. Tasaki, T. Kobayashi, S. Taharaguchi, H. Nikami, I. Miyoshi, N. Kasai, J. Arikawa, H. Kida, and Y. Shimizu. 1999b. Resistance to pseudorabies virus infection in transgenic mice expressing the chimeric transgene that represses the immediate-early gene transcription. Virology 262: 72-78.
Pensaer, M., and R. B. Morrison. 2000. Challenges of the final stages of the ADV eradication program. Vet. Res. 31: 141-145.
Pensaert, M. B., and J. P. Kluge. 1989. "Pseudorabies virus (Aujeszky''s disease)" Virus Infections of Porcines pp39-64. Elsevier Science Publishers B. V. Amsterdam.
Perng, G., S. Slanina, A. Yukht, H. Ghiasi, A. Nesburn, and S. Wechsler. 2000. The latency-associated transcript gene enhances establishment of herpes simplex virus type 1 latency in rabbits. J. Virol. 74: 1885-1891.
Phelan, A., and J. B. Clements. 1997. Herpes simplex virus type 1 immediate early protein IE63 shuttles between nuclear compartments and the cytoplasm. J. Gen. Virol. 78: 3327-3331.
Preston, C. M., A. Rinaldi, and M, J. Nicholl. 1998a. Herpes simplex virus type 1 immediate early gene expression is stimulated by inhibition of protein synthesis. J. Gen. Virol. 79: 117-124.
Preston, C. M. 2000b. Repression of viral transcription during herpes simplex virus latency. J. Gen. Virol. 81: 1-19.
Priola, S. A., D. P. Gustafson, E. K. Wagner, and J. G. Stevens. 1990a. Major portion of the latent pseuodrabies virus genome is transcribed in tri-geminal ganglia of pigs. J. Virol. 64: 4755-4760.
Priola, S. A., and J. G. Stevens. 1991b. The 5’ and 3’ limits of transcription in the pseudorabies virus latency associated transcription unit. Virology 182: 852-856.
Rice, S. A., and D. M. Knipe. 1988a. Gene-specific transactivation by herpes simplex virus type 1 alpha protein ICP27. J. Virol. 62: 3814-3823.
Rice, S. A., L. Su, and D. M. Knipe. 1989b. Herpes simplex virus alpha protein ICP27 possesses separable positive and negative regulatory activities. J. Virol. 63: 3399-3407.
Rice, S. A., and V. Lam. 1993c. The acidic amino-terminal region of herpes simplex virus type 1 alpha protein ICP27 is required for an essential lytic function. J. Virol. 67: 1778-1787.
Rice, S. A., and V. Lam. 1994d. Amino acid substitution mutations in the herpes simplex virus ICP27 protein define an essential gene regulation function. J. Virol. 68: 823-833.
Rice, S. A., M. C. Long, V. Lam, P. A. Schaffer, and C. A. Spencer. 1995e. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program. J. Virol. 69: 5550-5559.
Roizman, B. 1996. Herpesviridae. In B. N. Fields, D. M. Knipe, P. M. Howley(eds), Virology, 3rd ed. Lippincott-Raven Publishers, Philadelphia. 2221-2230.
Rziha, H., T. C. Mettenleiter, V. Ohlinger, and G. Wittmann. 1986. Herpesvirus (pseudorabies virus) latency in swine: Occurrence and physical state of viral DNA in neural tissues. Virology 155: 600-613.
Sacks, W. R., C. C. Greene, D. P. Ashman, and P. A. Schaffer. 1985. Herpes simplex virus type 1 ICP27 is an essential regulatory protein. J. Virol. 55: 796-805.
Samaniego, L. A., A. L. Webb and N. A. Deluca. 1995. Functional interaction between herpes simplex virus immediate-early proteins during infection:gene expression as a consequence of ICP27 and different domains of ICP4. J. Virol. 69: 5705-5715.
Sandri-Goldin, R. M., and G. E. Mendoza. 1992a. A herpesvirus regulatory protein appears to act post-transcriptionally by affecting mRNA processing. Genes Dev. 6: 848-863.
Sandri-Goldin, R. M. 1998b. ICP27 mediates HSV RNA export by shuttling through a leucine-rich nuclear export signal and binding viral intronless RNAs through an RGG motif. Genes Dev. 12: 868-79.
Sekulovich, R. E., K. Leary, and R. M. Sandri-Goldin. 1988. The herpes simplex virus type 1 α protein can act as a trans-repressor or a trans-activator in combination with ICP4 and ICP0. J. Virol. 62: 4510-4522.
Sellison, K. S., S. A. Rice, R. Verity, and J. R. Smiley. 2000. Processing of alpha-globin and ICP0 mRNA in cells infected with herpes simplex virus type 1 ICP27 mutants. J. Virol. 74: 7307-7319.
Singh, M., c. F, L. J. Bello, W. C. Lawrence, and M. Schwyzer. 1996. Identification and characterization of BICP27, an early protein of bovine herpesvirus 1 which may stimulate mRNA 3'' processing. J. Gen. Virol. 77: 615-625.
Smith, M. R., and W. C. Greene. 1992. Characterization of a novel nuclear localization signal in the HTLV-1 Tax transactivator protein. Virology 187: 316-320.
Smith, I. L., M. A. Hardwicke, and R. M. Sandri-Goldin. 1992. Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 186: 74-86.
Soliman, T. M., R. M. Sandri-Goldin, and S. J. Silverstein. 1997a. Shuttling of the herpes simplex virus type 1 regulatory protein ICP27 between the nucleus and cytoplasm mediates the expression of late proteins. J. Virol. 71: 9188-9197.
Soliman, T. M., and S. J. Silverstein. 2000b. Herpesvirus mRNAs are sorted for export via Crm1-dependent and independent pathways. J. Virol. 74: 2814-2825.
Song, B., K-C. Yeh, J. Liu, and D. M. Knipe. 2001. Herpes simplex virus gene products required for viral inhibition of expression of G1-phase functions. Virology 290: 320-328.
Spector, Deborah H. 1996. Activation and regulation of human cytomegalovirus early genes. Inter virol. 39: 361-377.
Taharaguchi, S., E. Ono, S. Yamada, Y. Shimizu, and H. Kida. 1995. Mapping of a functional region conferring nuclear localization of pseudo-rabies virus immediately-early protein. Arch. Virol. 140: 1737-1746.
Uprichard, S., and D. Knipe. 1996. Herpes simplex ICP27 mutant viruses exhibit reduced expression of specific DNA replication genes. J. Virol. 70: 1969-1980.
Vaughn, P., K. Thibault, M. Hardwicke, and R. Sandri-Goldin. 1992. The herpes simplex virus immediate early protein ICP27 encodes a potential metal binding domain and binds zinc in vitro. Virology 189: 377-384.
Vlcek, C., Z. Kozmik, V. Paces, S. Schirm, and M. Schwyzer. 1990. Pseudorabies virus immediate-early gene overlaps with an oppositely oriented open reading frame: characterization of their promoter and enhancer regions. Virology 179: 365-377.
Whealy, M. E., Card, J. P., Meade, R. P., Robbins, A. K. and Enquist, L. W. 1991. Effect of brefeldin A on alphaherpesvirus membrane protein glycosylation and virus egress. J. Virol. 65: 1066-1081.
Wittmann, G. 1991. Spread and control of Aujeszky’s disease (AD). Comp. Immun. Microbiol. Infect. Dis. 14: 165-173.
Wu, C., Haper, L., and Ben-Porat, T. 1986a. Cis function involved in replication and cleavage / encapsidation of pseudorabies virus. J. Virol. 59: 318-327.
Wu, C., and K. W. Wilcox. 1991b. The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and Varicella-Zoster virus ORF62 genes recognize similar sites in the corres-ponding promoters. J. Virol. 65: 1149-1159.
Zhao, I.-J., and R. Padmanabhan. 1988. Nuclear transport of adenovirus DNA polymerase is facilitated by interaction with preterminal protein. Cell 55: 1005-1015.
Zuckermann, F. A. 2000, Aujeszky’s disease virus: opportunities and challenges. Vet. Res. 31: 121-131.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top