跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃富美
研究生(外文):Fu-Mei Huang
論文名稱:表現假性狂犬病毒醣蛋白H細胞株之構築與分析
論文名稱(外文):Construction and Analysis of the Cells Expressing the Glycoprotein H of Pseudorabies Virus
指導教授:黃千衿楊 繼
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:中文
論文頁數:75
中文關鍵詞:假性狂犬病毒醣蛋白H長期表現細胞株
外文關鍵詞:Pseudorabies VirusGlycoprotein Hstable expressing cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
假性狂犬病毒(Pseudorabies virus, PrV)被歸類為阿爾法疱疹病毒亞科(alphaherpesvirinae)中的Varicellovirus屬,為Aujeszky’s disease (AD)之病原。至今假性狂犬病毒已被證實在封套上具有10種醣蛋白,且皆與病毒的侵入及在細胞間的散佈有關。假性狂犬病毒若缺損醣蛋白B、D、H與L其中的一種,就喪失其感染能力,所以這四種醣蛋白被認為是參與膜融合的必要因子。為了進一步研究醣蛋白H(glycoprotein H, gH)的功能及其在病毒感染時所扮演的角色,我們首先將假性狂犬病毒的gH基因以PCR及限制酵素切割等步驟選殖到原核表現載體-pET32a (+),命名為pETgH。再將所構築的重組原核表現質體pETgH利用大腸桿菌(E. coli)BL21(DE3)之表現系統進行大量表現。於IPTG誘導後,經由SDS-PAGE及Western blotting的分析結果顯示有一分子量約為93 kDa的蛋白質被表現且分子量大小與預期相符。進一步將此表現蛋白純化後免疫小白鼠,所收集之免疫血清在immunoperoxidase staining試驗中可特異性辨識假性狂犬病毒所感染LM細胞,證實此表現蛋白具有正確之抗原性。接著利用短暫轉染分析配合CAT報導質體,以評估適用於LM細胞內有效活化gH基因表現之啟動子,由CAT assay的結果決定選擇含有可被dexamethasone激活的MMTV-LTR啟動子之真核表現載體-pMAMneo在LM細胞內進行表現gH蛋白。將含有gH基因之真核表現質體pMAMgH轉染到LM細胞中,利用G418篩選出單株化的細胞後,再分別以PCR、Southern blot analysis、RT-PCR、Northern blot analysis、immunoperoxidase staining及immunoprecipitation等試驗進一步進行篩選與驗證,最後所得LMgH7細胞株其染色體內確實嵌有假性狂犬病毒gH基因且具有表現gH mRNA及gH蛋白的能力。此外,若將gH-PrV缺陷病毒株分別感染LM及LMgH7細胞後發現唯有在LMgH7細胞內此缺陷病毒才具有散佈到鄰近細胞的能力。此外,將此可受dexamethasone刺激而持續穩定表現假性狂犬病毒gH蛋白之LMgH7細胞,經由MTT assay與細胞生長速率分析證實細胞表現此外源性蛋白並不會影響LM細胞的生長速率,且藉由偵測LMgH7與LM細胞對假性狂犬病毒的感染病毒力價試驗所得之結果亦顯示可表現病毒gH蛋白的LMgH7細胞並不會影響PrV的複製能力。綜合以上結果可知此穩定表現gH之細胞株確實能產生具有功能性的醣蛋白H以提供gH缺陷病毒在感染細胞時所需之醣蛋白H。
Pseudorabies virus (PrV), a double-stranded DNA virus, belongs to the subfamily Alphaherpesvirinae of neurotropic herpesviruses and is the causative agent of Aujeszky’s disease in swine. PrV encodes information for at least 11 glycoproteins, 10 of which are found in the virion envelope as well as on the surfaces of infected mammalian cells. Glycoprotein H (gH), gL, gB and gD of PrV are not only essential for virus entry at a post-binding stage, but are also sufficient for cell-to-cell spread via fusion with the cellular membranes. Virions that lack glycoprotein H, L, B or D fail to infect cells, thus the PrV glycoprotein H plays an essential role in the fusion of virus envelopes with cellular membranes and in the fusion of an infected cell membranes with the uninfected neighbours. For a detailed analysis of the function of gH, this gene was cloned into prokaryotic and eukaryotic expression systems in this study. The recombinant expression plasmid pETgH was constructed by cloning the gH gene located in the BamH I fragments 11 and 17 of PrV genomic DNA into pET32a(+) vector. The gH protein expressed in E. coli was 76 kDa in size, and the purified product was used as an antigen to immunize mice for generating specific antibodies against viral gH protein. The specificity of immunoserum was identified by recognizing the gH protein in the PrV infected cells in immunoperoxidase staining. Using a transient transfection assay, we have chosen the MMTV-LTR promoter to induce the expression of viral gH gene in mouse-L (LM) cells from several viral promoters, including the CMV and SV40 promoters using chloramphenicol acetyltransferase (CAT) reporter gene assay. In addition, the recombinant eukaryotic expression plasmid pMAMgH that contains the intact gH gene under the control of MMTV-LTR promoter and a neomycin-resistant gene was transfected into LM cells to establish the stable gH-expressing LMgH7 cells. The LMgH7 cells were demonstrated to contain gH gene and stably express gH protein by several analytical methods including PCR, Southern blotting, RT-PCR, Northern blotting and immunoprecipitation. The LMgH7 cells were found to grow at a similar rate as the parental and pMAMneo vector-transfected LM cells. Furthermore, a gH-deletion PrV (gH-PrV) was shown to be capable of penetrating and infecting adjacent LMgH7 cells in contrast to LM cells. These results clearly indicate that gH expressing in cells can provide the gH-PrV as viral glycoprotein H. Thus, the gH protein produced from LMgH7 cells are functional that could displace viral gH protein during infection.
中文摘要………………………………………………………………………………I英文摘要……………………………………………………………..…………........III
第一章 前言……………………………………………………………….…...…...1
第二章 文獻探討…………………………………...……………………...……….2
第三章 材料與方法.………...………………………………………………….…10
第四章 結果…...…………………………………………………………………..30
第五章 討論……...………………………………………………………………..63
參考文獻…………………………………………………………………………..…69
Aujeszky, A. 1902. Uber eine nene infektionskrauheit bei Haustieren. Zentrabl. Bakt. Abt. 32: 353- 373.
Babic, N., B. G. Klupp, B. Makoschey, A. Karger, A. Flamand, and T. C. Mettenleiter. 1996. Glycoprotein gH of pseudorabies virus is essential for penetration and propagation in cell culture and in the nervous system of mice. J. Gen. Virol. 77: 2277- 2285.
Baskerville, A., J. B. McFerran, and C. Dow. 1973. Aujeszky's disease in pigs. Vet. Bull. 43: 466- 480.
Ben-Porat, T. 1981. Replication of herpesvirus DNA. Curr. Top. Microbiol. Immunol. 91: 81- 107.
Ben-Porat, T., and A. S. Kaplan. 1970. Synthesis of proteins in cells infected with herpesvirus viral glycoproteins. Virology 41: 265- 273.
Ben-Porat, T., F. J. Rixon, and M. L. Blankenship. 1979. Analysis of the structure of the genome of pseudorabies virus. Virology 95: 285-294.
Beran, G. W., E. B. Davies, P. V. Arambulo, C. A. Will, H. T. Hill, and D. L. Rock. 1980. Persistence of pseudorabies virus in infected swine. J. Am. Vet. Med. Assoc. 176: 998- 1000.
Berthomme, H., S. J. Monahan, D. S. Parris, B. Jacquemont, and A. L. Epstein. 1995. Cloning, sequencing, and functional characterization of the two subunits of the pseudorabies virus DNA polymerase holoenzyme: evidence for specificity of interaction. J. Virol. 69: 2811- 2818.
Brack, A. R., J. M. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter. 1999. Inhibition of virion maturation by simultaneous deletion of glycoproteins E, I, and M of pseudorabies virus. J. Virol. 73: 5364- 5372.
Browne, H., Bruun, B., and Minson, T. 2001. Plasma membrane requirements for cell fusion induced by herpes simplex virus type 1 glycoproteins gB, gD, gH and gL. J. Gen. Virol. 82: 1419- 1422.
Campbell, M. E., and C. M. Preston. 1987. DNA sequences which regulate the expression of the pseudorabies virus major immediate early gene. Virology 157: 307- 316.
Card, J. P., L. Rinaman, R. B. Lynn, B-H. Lee, R. P. Meade, R. R. Miselis, and L. W. Enquist. 1993. Pseudorabies virus infection of the rat nervous system: ultrastructural characterization of viral replication, transport, and pathogenesis. J. Neurosci. 13: 2515- 2539.
Cheung, A. K. 1989. DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus. Nucleic Acids Res. 17: 4673- 4646.
Content, J., and J. Cogniaux-Leclerc. 1968. Comparison of the in vitro action of ethidium chloride on animal viruses with that of other photodyes. J. Gen. Virol. 3: 63- 75.
Darlington, R. W., and L. H. Moss, III. 1968. Herpesvirus envelopment. J. Virol. 2: 48- 55.
Dean, H. J., and A. K. Cheung. 1995. A deletion at the UL/UR junction reduces pseudorabies virus neurovirulence. J. Virol. 69: 1334- 1338.
Dijkstra J. M., N. Visser, T. C. Mettenleiter, and B. G. Klupp. 1996. Identification and characterization of pseudorabies virus glycoprotein gM as a nonessential virion component. J. Virol. 70: 5684- 5688.
Dijkstra, J. M., W. Fuchs, T. C. Mettenleiter, and B. G. Klupp. 1997. Identification and transcriptional analysis of pseudorabies virus UL6 to UL12 genes. Arch. Virol. 142: 17- 35.
Demmin, G. L., A. C. Clase, J. A. Randall, L. W. Enquist, and B. W. Banfield. 2001. Insertions in the gG gene of pseudorabies virus reduce expression of the upstream Us3 protein and inhibit cell-to-cell spread of virus infection. J. Virol. 75: 10856- 10869.
Elbers, A. R., J. Braamskamp, L. J. Dekkers, R. Voets, T. Duinhof, W. A. Hunneman, and J. A. Stegeman. 2000. Aujeszky's disease virus eradication campaign successfully heading for last stage in The Netherlands. Vet. Q. 22: 103- 107.
Eloit, M., D. Fargeaud, R. L’Haridon, and B. Toma. 1988. Indentification of the pseudorabies virus glycoprotein gp50 as a major target of neutralizing antibodies. Arch. Virol. 99: 45- 56.
Enquist, L. W., P. J. Husak, B. W. Banfield, and G. A. Smith. 1998. Infection and spread of alphaherpesviruses in the nervous system. Adv. Virus Res. 51: 237- 247.
Feldman, L.T., F.J. Rixon, J.H. Jean, T. Ben-Port, and A.S. Kaplan. 1979. Transcription of the genome of pseudorabies virus (a herpesvirus) is strictly controlled. Virology 97: 316- 327.
Fenner, F. J., E. P. J. Gibbs, F. A. Murphy, R. Rott, M. J. Studdert, and D. O. White. 1993. " Herpesviridae. " Veterinary Virology 2nd ed. pp. 337-368. Academic press, Inc. San Diego.
Gerdts, V., A. Jons, and T. C. Mettenleiter. 1999. Potency of an experimental DNA vaccine against Aujeszky's disease in pigs. Vet. Microbiol. 66: 1- 13.
Gerspach, R., and B. Matz. 1989. Herpes simplex virus-induced "rolling circle" amplification of SV40 DNA sequences in a transformed hamster cell line correlates with tandem integration of the SV40 genome. Virology 173: 723- 727.
Gibson, W. 1996. Structure and assembly of the virion. Intervirology 39: 389- 400.
Granzow, H., B. G. Klupp, W. Fuchs, J. Veits, N. Osterrieder, and T. C. Mettenleiter. 2001. Egress of alphaherpesviruses: comparative ultrastructural study. J. Virol. 75: 3675- 3684.
Granzow, H., F. Weiland, A. Jöns, B. G. Klupp, A. Karger, and T. C. Mettenleiter. 1997. Ultrastructural analysis of the replication cycle of pseudorabies virus in cell culture: a reassessment. J. Virol. 71: 2072- 2082.
Gustafson, D. P. 1975. Pseudorabies. In Dunne, H. W., and A. D. Leman (Eds.) Diseases of Swine. Iowa State Univ. Press. pp. 391- 410.
Holden, V. R., R. R. Yalamanchili, R. N. Harty, and D. J. O'Callaghan. 1992. ICP22 homolog of equine herpesvirus 1: expression from early and late promoters. J. Virol. 66: 664- 673.
Huang, C., Y. S. Lin, J. W. Cheng, and T. J. Chang. 1997. Immunolocalization of the pseudorabies virus immediate-early protein IE180 by immunoperoxidase staining. J. Virol. Methods 66: 219- 226.
Ivanicova S. 1965. A simple method for concentration of pseudorabies virus. Acta. Virol. 9: 554.
Johnson, D. C., M. Webb, T. W. Wisner, and C. Brunetti. 2001. Herpes simplex virus gE/gI sorts nascent virions to epithelial cell junctions, promoting virus spread. J. Virol. 75: 821- 833.
Jones, P. C., and B. Roizman. 1979. Regulation of herpesvirus macromolecular synthesis. VIII. The transcription program consists of three phases during which both extent of transcription and accumulation of RNA in the cytoplasm are regulated. J. Virol. 31: 299- 314.
Jons, A., J. M. Dijkstra, and T. C. Mettenleiter. 1998. Glycoproteins M and N of pseudorabies virus form a disulfide-linked complex. J. Virol. 72: 550- 557.
Kaplan, A. S., and A. E. Vatter. 1959. A comparison of herpes simplex and pseudorabies viruses. Virology 7: 394- 407.
Karger, A., and T. C. Mettenleiter. 1993. Glycoproteins gIII and gp50 play dominant roles in the biphasic attachment of pseudorabies virus. Virology 194: 654- 664.
Kit, S., M. Kit, and E. C. Pirtle. 1985. Attenuated properties of thymidine kinase-negative deletion mutants of pseudorabies virus. Am. J. Vet. Res. 46: 1359- 1367.
Klupp, B. G., and T. C. Mettenleiter. 1991. Sequence and expression of the glycoprotein gH gene of pseudorabies virus. Virology 1991 182: 732- 741.
Klupp, B. G., and T. C. Mettenleiter. 1999. Glycoprotein L-independent infectivity of pseudorabies virus is mediated by a gD-gH fusion protein. J. Virol. 73: 3014- 3022.
Klupp, B. G., J. Baumeister, P. Dietz, H. Granzow, and T. C. Mettenleiter. 1998. Pseudorabies virus glycoprotein gK is a virion structural component involved in virus release but is not required for entry. J. Virol. 72: 1949- 1958.
Klupp, B. G., N. Visser, and T. C. Mettenleiter. 1992. Identification and characterization of pseudorabies virus glycoprotein H. J. Virol. 66: 3048- 3055.
Klupp, B. G., W. Fuchs, E. Weiland, and T. C. Mettenleite. 1997. Pseudorabies virus glycoprotein L is necessary for virus infectivity but dispensable for virion localization of glycoprotein H. J. Virol. 71: 7687- 7695.
Kritas, S. K., M. B. Pensaert, and T, C. Mettenleiter. 1994 . Role of envelope glycoproteins gI, gp63 and gIII in the invasion and spread of Aujeszky's disease virus in the olfactory nervous pathway of the pig. J.Gen. Virol. 75: 2319-2327.
Kupershmidt, S., J. M. DeMarchi, Z. Q. Lu, and T. Ben-Porat. 1991. Analysis of an origin of DNA replication located at the L terminus of the genome of pseudorabies virus. J. Virol. 65: 6283- 6291.
LaVallie, E. R., A. Rehemtulla, L. A. Racie, E. A. DiBlasio, C. Ferenz, K. L. Grant, A. Light, and J. M. McCoy. 1993. Cloning and functional expression of a cDNA encoding the catalytic subunit of bovine enterokinase. J. Biol. Chem. 268: 23311- 23317.
Lin, S. C., M. C. Tung, C. F. Chung, W. C. Huang, and C. M. Tseng. 1972. Outbreak of swine pseudorabies in Taiwan. Chin. J. Microbiol. 5: 56- 68.
Liu, J. J., M. L. Wong, T. J. Chang. 1998. The recombinant nucleocapsid protein of classical swine fever virus can act as a transcriptional regulator. Virus Res. 53: 75-80.
Marek, J. 1904. Klinische Mitteilungen. Z. Tiermed. 8: 389- 392.
Martin, K. J., J. W. Lillie, and M. R. Green. 1990. Transcrptional activation by the pseudorabies virus immediate-early protein. Genes Dev. 4: 2376- 2382.
Mason, P. W., P. C. McAda, J. M. Dalrymple, M. J. Fournier, and T. L. Mason. 1987. Expression of Japanese encephalitis virus antigens in Escherichia coli. Virology 158: 361- 372.
Mathews, R. E. F. 1982. Classification and nomenclature of viruses. Intervirology 17: 1- 200.
McFerran, J. B., and C. Dow. 1965. The distribution of the virus of Aujeszky's virus (pseudorabies virus) in experimentally infected swine. Am. J. Vet. Res. 26: 631- 635.
McGeoch, D. J., M. A. Dalrymple, A. J. Davison, A. Dolan, M. C. Frame, D. McNab, L. J. Perry, J. E. Scott, and P. Taylor. 1988. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 69: 1531- 1574.
McLean, G., F. Rixon, N. Langeland, L. Haarr, and H. Marsden. 1990. Identification and characterization of the virion protein products of herpes simlex virus type 1 gene UL47. J. Gen. Virol. 71: 2953- 2960.
Mettenleiter, T. C. 1991. Molecular biology of pseudorabies (Aujeszky’s disease) virus. Comp. Immun. Microbiol. infect. Dis. 14: 151- 163.
Mettenleiter, T. C. 1994. Initiation and spread of alphaherpesvirus infections. Trends Microbiol. 2: 2- 4.
Mettenleiter, T. C. 2000. Aujeszky's disease (pseudorabies) virus: the virus and molecular pathogenesis-state of the art, June 1999. Vet. Res. 31: 99- 115.
Mettenleiter, T. C. 2002. Herpesvirus assembly and egress. J. Virol. 76: 1537- 1547.
Mettenleiter, T. C., A. Saalmuller, and F. Weiland. 1993. Pseudorabies virus protein homologous to herpes simplex virus type 1 ICP18.5 is necessary for capsid maturation. J. Virol. 67: 1236- 1245.
Mettenleiter, T. C., B. G. Klupp, F. Weiland and N. Visser. 1994. Characterization of a quadruple glycoprotein-deleted pseudorabies virus mutant for use a biologically safe live virus vaccine. J. Gen. Virol. 75: 1723- 1733.
Mettenleiter, T. C., C. Schreurs, F. Zuckermann, and T. Ben-Porat. 1987. Role of pseudorabies virus glycoprotein gI in virus release from infected cells. J. Virol. 61: 2764- 2769.
Mettenleiter, T. C., H. Kern, I. Rauh. 1990. Isolation of a viable herpesvirus (pseudorabies virus) mutant specifically lacking all four known nonessential glycoproteins. Virology 179: 498- 503.
Miller. T. J. 1989. Biological evaluation of glycoproteins mapping to two distinct mRNAs within the BamHI fragment 7 of pseudorabies virus: expression of the coding regions by vaccinia virus. Virology 171: 365- 376.
Mosmann, T. 1983. J. Immunol. Methods 65: 55- 63.
Mulder, W., J. Pol, T. Kimman, G. Kok, J. Priem, and B. Peeters. 1996. Glycoprotein D-negative pseudorabies virus can spread transneuronally via direct neuron-to-neuron transmission in its natural host, the pig, but not after additional inactivation of gE or gI. J. Virol. 70: 2191- 2200.
Muggeridge, M. 2000. Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycoproteins gB, gD, gH, and gL in transfected cells. J. Gen. Virol. 81: 2017- 2027.
Nguyen, H. L., S. Chari, D. Gruber, C. M. Lue, S. J. Chapin, and J. C. Bulinski. 1997. Overexpression of full- or partial-length MAP4 stabilizes microtubules and alters cell growth. J. Cell Sci. 110: 281- 294.
Rea, J., J. G. Timmins, G. W. Long, and L. E. Post. 1985. Mapping and sequence of the gene for the pseudorabies glycoprotein which accumulates in the medium of infected cells. J. Virol. 54: 21- 29.
Peeters, B., N. deWind, M. Hooisma, F. Wagenaar, A. Gielkens, and R. Moormann. 1992a. Pseudorabies virus envelope glycoprotein gp50 and gII are essential for virus penetration, but only gII is involved in membrane fusion. J. Virol. 66: 894- 905.
Peeters, B., N. deWind, B. Rene, G. Arno, and M. Rob. 1992b. Glycoprotein H of pseudorabies virus is essential for enter and cell-to-cell spread of the virus. J. Virol. 66: 388- 392.
Pertel, P. E., A. Fridberg, M. L. Parish, and P. G. Spear. 2001. Cell fusion induced by herpes simplex virus glycoproteins gB, gD, and gH-gL requires a gD receptor but not necessarily heparan sulfate. Virology 279: 313- 324.
Robert, J. S. 1969. Precursor product found in formaldehyde fixed lysates of BHK-21 cells infected with pseudorabies virus. J. Virol. 4: 283- 291.
Rodger, G., J. Boname, S. Bell, and T. Minson. 2001. Assembly and organization of glycoproteins B, C, D, and H in herpes simplex virus type 1 particles lacking individual glycoproteins: No evidence for the formation of a complex of these molecules. J. Virol. 75: 710- 716.
Roizman, B. 1990. Herpesviridae: a brief introduction. In: Fields, Knipe, D.M. (Eds.), Fields Virology. Raven Press, New York, pp. 1787-1793.
Roizman, B., and A. E. Sears. 1996. Herpes simplex viruses and their replication, p. 1043-1107. In B. N. Fields, D. M. Knipe, and P. M. Howley (ed.), Fundamental virology, 3rd ed. Lippincott-Raven Publishers, Philadelphia, Pa.
Schroder, C., and G. M. Keil. 1999. Bovine herpesvirus 1 requires glycoprotein H for infectivity and direct spreading and glycoproteins gH (W450) and gB for glycoprotein D-independent cell-to-cell spread. J. Gen. Virol. 80: 57- 61.
Shope, R. E. 1931. An experimental study of " Mad itch " with especial reference to its relationship to pseudorabies. J. Exp. Med. 54: 233- 248.
Spear, P. G. 1993. Entry of alphaherpesviruses into cells. Semin. Virol. 4: 167- 180.
Stevely, W. S. 1977. Inverted repetition in the chromosome of pseudorabies virus. J. Virol. 22: 232- 234.
Turner, A., B. Bruun, T. Minson, and H. Browne. 1998. Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J. Virol. 72: 873- 875.
Weller, S. K. 1990. Genetic analysis of HSV genes required for genome replication, pp. 105-135. In E. Wagner (ed.), Herpesvirus transcription and its regulation. CRC Press, Inc., Boca Raton, Fla.
Wittmann, G. 1991. Spread and control of Aujeszky’s disease (AD). Comp. Immun. Microbiol. infect. Dis. 14: 165- 173.
Wittmann, G., and H. J. Rziha. 1989. Aujeszky's disease ( pseudorabies ) in pigs. In : Herpesvirus Disease of Cattle, Horses and Pigs. Developments in Veterinary Virology." Wittmann, G. (Ed.) pp. 230- 325. Kluwer, Boston.
Wu, C., and K. W. Wilcox. 1991. The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and varicella-zoster virus ORF62 genes recognize similar sites in the corresponding promoters. J. Virol. 65: 1149- 1159.
Wu, C. A., T. Harper, and T. Ben-Porat. 1986. cis-Functions involved in replication and cleavage-encapsidation of pseudorabies virus. J. Virol. 59: 318- 327.
Yamada, S., T. Imada, W. Watanabe, Y. Honda, S. Nakajima-Iijima, Y. Shimizu, and K. Sekikawa. 1991. Nucleotide sequence and transcriptional mapping of the major capsid protein gene of pseudorabies virus. Virology 185: 56- 66.
Zsak, L., N. Sugg , T. Ben-Porat. 1992. The different interactions of a gIII mutant of pseudorabies virus with several different cell types. J. Gen. Virol. 73: 821- 827.
Zuckerman, F. A., T. C. Mettenleiter, C. Schreurs, N. Sugg, and T. Ben-Porat. 1988. Complex between glycoproteins gI and gp63 of pseudo-rabies virus: its effect on virus replication. J. Virol. 62: 4622- 4626.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top