(100.25.42.117) 您好!臺灣時間:2021/04/21 15:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施清文
研究生(外文):Ching-Wen Shih
論文名稱:Fluoroquinolone類藥物酵素連結免疫吸附法殘留檢驗試劑之開發及應用
論文名稱(外文):Development and Application of the Enzyme-Linked Immunosorbent Assay Residual Detection Kit for Fluoroquinolones
指導教授:王渭賢
指導教授(外文):Way-Shyan Wang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:121
中文關鍵詞:Fluoroquinolone酵素連結免疫吸附法殘留
外文關鍵詞:FluoroquinoloneELISAResidual
相關次數:
  • 被引用被引用:1
  • 點閱點閱:200
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於嘗試以直接競爭型酵素連結免疫吸附法開發出一套簡單、快速、精確檢測禽畜產品中fluoroquinolone類抗菌劑(enrofloxacin、ofloxacin、danofloxacin及orbifloxacin)的試劑。
實驗結果顯示利用N-hydroxysuccinimide ester法可成功製備Eerofloxacin- BSA、Ofloxacin-BSA、Danofloxacin-BSA及Orbifloxacin- BSA藥物蛋白質衍生物結合體,並以相同的方法製備藥物-HAS及藥物-HRP結合體。並成功地利用HPLC搭配紫外光及螢光檢測器可以有效分析藥物-BSA結合體。試驗結果顯示,在抗體製備方面,經皮下免疫較脾內免疫更可有效誘發抗體力價的上升,經皮下免疫紐西蘭白兔3-4次後即可有效誘導抗體力價達32,768倍以上。
將收集的抗體製成直接競爭型ELISA盤後,在磷酸緩衝液(PBS),牛肉,牛奶,豬肉及魚肉中以danofloxacin檢測盤的檢測極限最低,分別為0.14, 0.6, 0.16, 0.61及0.62 ng/mL。在雞肉中則以orbifloxacin檢測盤的檢測極限最低,為1.33 ng/mL。在胎牛血清(FBS)中則以ofloxacin檢測盤的檢測極限最低,為0.27 ng/mL。danofloxacin、ofloxacin、orbifloxacin及enrofloxacin檢測盤在PBS檢測極限分別為0.14 , 1.18, 0.41, 2.38 ng/mL;在牛肉為0.60, 3.41, 0.64, 3.77 ng/mL;在雞肉為1.49, 1.33, 0.7, 3.61 ng/mL;在牛奶為0.16, 0.22, 0.21, 3.54 ng/mL;豬肉為0.61, 3.49, 0.66, 4.11 ng/mL;魚肉為0.62, 1.65, 0.78, 3.59 ng/mL;在FBS為1.18, 0.27, 0.3, 4.59 ng/mL。故所開發試劑的敏感度相當地高,未來可應用於臨床殘留之檢測。
由本研究結果顯示danofloxacin檢測盤之特異性最高,orbifloxacin檢測盤次之,ofloxacin檢測盤則再次之,以enrofloxacin檢測盤最低。在danofloxacin檢測盤中,其與enrofloxacin、norfloxacin、ofloxacin、orbifloxacin、oxolinic acid及sarafloxacin的交叉反應率均小於0.01%,在orbifloxacin檢測盤中,其與norfloxacin的交叉反應率為0.01%,而與danofloxacin、enrofloxacin、ofloxacin、oxolinic acid及sarafloxacin的交叉反應率均小於0.01%。在ofloxacin檢測盤中,其與enrofloxacin的交叉反應率為0.14%,而與danofloxacin、norfloxacin、orbifloxacin、oxolinic acid及sarafloxacin的交叉反應率均小於0.01%。在enrofloxacin檢測盤中,其與danofloxacin、norfloxacin、ofloxacin、orbifloxacin、oxolinic acid及sarafloxacin的交叉反應率分別為0.13%、0.18%、<0.01%、0.04%、<0.01%、0.02%。由以上結果可見藥物彼此間交叉反應率相當低,故本研究之檢測盤特異性很高。
在精確度方面,以danofloxacin檢測盤之精確度最高,ofloxacin檢測盤次之,enrofloxacin檢測盤則再次之,以orbifloxacin檢測盤最低。在danofloxacin、ofloxacin、enrofloxacin及orbifloxacin檢測盤中其組內與組間檢測變異值分別為3.35%,3.51%;2.93%,4.35%;8.16%,10.1%;及7.15%,9.28%。所以本研究之檢測盤精確度很高。
根據上述所有結果顯示,本研究所開發之檢測試劑具有簡單、快速及精確之特性,可應用於現場針對禽畜水產品fluoroquinolone類抗菌劑之殘留檢驗。

The aim of this study is to develop a simple, rapid, and reliable enzyme-linked immunosorbent assay (ELISA) method for detecting the residues of the fluoroquinolones (enrofloxacin, ofloxacin, danofloxacin, and orbifloxacin) in the meats of fish, pork, beef, chicken, and milk.
By the N-hydroxysuccinimide ester method, the four tested chemical agents conjugated with BSA, HAS, and HRP had been done, respectively. Successfully, the tested conjugations were able to be detected by the HPLC with UV and fluoresce detector. Moreover, our results shown that the antibody titers by the subcutance immunization way was significantly higher than that intraspleen way in rabbit. Consequently, the titer of the subcuatance immunization was more than 32,768-fold after the fourth booster at four-weeks intervals.
The lowest detection limit (LDL) of the four fluoroquinolones (danofloxacin, ofloxacin, orbifloxacin, and enrofloxacin) in PBS, beef, chicken, milk, pork, fish, and FBS were (0.14, 0.60, 1.49, 0.16, 0.61, 0.62, 1.18 ng/mL), (1.18, 3.41, 1.33, 0.22, 3.49, 1.65, 0.27 ng/mL), (0.41, 0.64, 0.70, 0.21, 0.66, 0.78, 0.3 ng/mL), and (2.38, 3.77, 3.61, 3.54, 4.11, 3.59, 4.59 ng/mL) by the ELISA method, respectively. Therefore, the danofloxacin ELISA kit was the most sensitivity in our developed kits. However, it is sufficient sensitivity for the tested fluoroquinolones residues in biological matrices with these kits.
The rates of the cross-reaction of the developed danofloxacin, orbifloxacin, ofloxacin, and enrofloxacin ELISA kits to danofloxacin, enrofloxacin, norfloxacin, ofloxacin, orbifloxacin, oxolinic acid, and sarafloxacin were (100%, <0.01%, <0.01%, <0.01%, <0.01%, <0.01%, <0.01%), (<0.01%, <0.01%, 0.01%, <0.01%, 100%, <0.01%, <0.01%), (<0.01%, 0.14%, <0.01%, 100%, <0.01%, <0.01%, <0.01%), and (0.13%, 100%, 0.18%, <0.01%, 0.04%, <0.01%, 0.02%), respectively. Therefore, the above results shown that the best specificity of our developed kit was danofloxacin, then orbifloxacin, ofloxacin, and enrofloxacin. Especially, the antibody of danofloxacin did not have cross-reactivity for the other fluoroquinolones (enrofloxacin, norfloxacin, ofloxacin, orbifloxacin, and sarafloxacin). However, the other antibodies (enrofloxacin, ofloxacin, and orbifloxacin) had low cross-reaction with each other quionlones.
To elucidate the variability of standard curves for different assays, standard solutions were prepaerd independently with PBS and analyzed by the ELISA methods. The intra-assay and inter-assay coefficients of variation of danofloxacin, ofloxacin, enrofloxacin, and orbifloxacin ELISA kit were (3.35%, 3.51%), (2.93%, 4.35%), (8.16%, 10.1%), and (7.15%, 9.28%), respectively. Therefore, the best precision of our developed kit was danofloxacin, then ofloxacin, enrofloxacin, and orbifloxacin. From above assay results, our developed ELISA kits shown a simple, rapid, and reproducible method to detect the residues of the tested fluoroquinolones in the meats.

中文摘要 ………………………………………………Ⅰ
英文摘要 ………………………………………………Ⅳ
表次 ……………………………………………………Ⅵ
圖次 ……………………………………………………Ⅶ
壹、緒言 …………………………………………………1
貳、文獻探討 ……………………………………………3
參、材料與方法 …………………………………………32
肆、結果 …………………………………………………49
伍、討論 …………………………………………………86
參考文獻 ………………………………………………101

王渭賢、鄧晶瑩、劉正義。1993。Quinolone類藥物在魚類細菌性疾病治療之應用探討。台灣畜牧獸醫學會會報。62:37-46。
王渭賢、鄧晶瑩、何素鵬、簡茂盛、劉正義。1995。鈣、鎂離子濃度對4-quinolone類藥物之抗菌效力研究。中華民國獸醫學會雜誌。21:140-145。
王渭賢、鄭清福、何素鵬、謝在萬。1996。高效液相層析法同步檢測鰻魚肌肉中之五種Quinolone類抗菌劑。臺灣畜牧獸醫學會會報。66:133-141。
何素鵬、龔培森、王渭賢。1999。高效液相層析法對雞肉與豬肉中殘留Quinolone類抗菌劑之檢測。臺灣畜牧獸醫學會會報。69: 75-85。
Adams, T. H., and G. B. Wisdom. 1979. Peroxidase labelling of antibodies for use in enzyme immunoassay. Biochem. Soc. Trans. 7(1): 55-57.
Akahane, K., M. Sekiguchi, T. Une, and Y. Osada. 1989.Structure-epileptogenicity relationship of quinolones with special reference to their interaction with gamma-aminobutyric acid receptor sites. Antimicrob. Agents. Chemother. 33(10): 1704-1708.
Albrecht, R. 1977. Development of antibacterial agents of the nalidixic acid type. Prog. Drug. Res. 21: 9-104.
Ambrose P. G., R. C. Owens, R. Quintiliani, and C.H. Nightingale. 1997. New generations of quinolones: with particular attention to levofloxacin. Conn. Med. 61(5): 269-272.
Anadon, A., M. R. Martinez-Larranaga, M. J. Diaz, P. Bringas, M. A. Martinez, M. L. Fernandez-Cruz, M. C. Fernandez, and R. Fernandez. 1995. Phamnacokinetics and residues of enrofloxacin in chickens. Am. J. Vet. Res. 56: 501-506.
Avrameas, S. 1969. Coupling of enzymes to proteins with glutaraldehyde. Immunochemistry. 6: 43-45.
Avrameas, S., and T. Ternynck. 1971. Peroxidase labelled antibody and Fab conjugates with enhanced intracellular penetration. Immunochemistry. 8(12): 1175-1179.
Bauditz, R. 1987a. Results of clinical studies with baytril in calves and pigs. Vet. Med. Rev. 2: 122-129.
Bauditz, R. 1987b. Results of clinical studies with baytril in dogs and cats. Vet. Med. Rev. 2: 137-140.
Bauminger, S. 1976. Antisera to prostaglandins-production and characterization. J. Immunol. Methods. 13: 253-259.
Bauminger, S., and M. Wilchek. 1980. The use of carbodiimides in the preparation of immunizing conjugates. Methods. Enzymol. 70: 151-159.
Beckmann, J., W. Elsasser, U. Gundert-Remy, and R. Hertrampf. 1987. Enoxacin-a potent inhibitor of theophylline metabolism. Eur. J. Clin. Pharmacol. 33(3):227-230.
Berlin, O. G., L. S. Young, and D. A. Bruckner. 1987. In-vitro activity of six fluorinated quinolones against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 19(5): 611-5.
Boorsma, D. M., and G. L. Kalsbeek. 1975. A comparative study of horseradish peroxidase conjugates prepared with a one-step and a two-step method. J. Histochem. Cytochem. 23(3): 200-207.
Boorsma, D. M., and J. G. Streefkerk. 1976. Peroxidase-conjugate chromatography isolation of conjugates prepared with glutaraldehyde or periodate using polyacrylamide-agarose gel. J. Histochem. Cytochem. 24(3): 481-486.
Bowser, P. R., and J. G. Babish. 1991. Clinical pharmacology and efficacy of fluoroquinolones in fish. Annual. Rev. Fish. Dis. 13: 63-66.
Braun, S., F. Hepp, C. R. Kentenich, W. Janni, K. Pantel, G. Riethmuller, F. Willgeroth, and H. L. Sommer. 1999. Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow. Clin. Cancer. Res. 5(12): 3999-4004.
Breines, D. M., S. Ouabdesselam, E. Y. Ng, J. Tankovic, S. Shah, C. J. Soussy, and D. C. Hooper. 1997. Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of parE gene encoding a subunit of topoisomerase IV. Antimicrob. Agents. Chemother. 41: 175-179.
Broome, R. L., and D. L. Brooks. 1991a. Efficacy of enrofloxacin in the treatment of respiratory pasteurellosis in rabbits. Lab. Anim. Sci. 41(6): 572-576.
Broome, R. L., D. L. Brooks, J. G. Babish, D. D. Copeland, and G. M. Conzelman. 1991b. Pharmacokinetic properties of enrofloxacin in rabbits. Am. J. Vet. Res. 52(11): 1835-1841.
Cabanes, A., M. Arboix, J. M. G. Anton, and F. Reig. 1992. Pharmacokinetics of enrofloxacin after intravenous and intramuscular injection in rabbits. Am. J. Vet. Res. 53(11): 2090-2093.
Chard, T. 1987. Laboratory techniques in biochemistry and molecular biology: an introduction to radioimmunoassay and related techniques. 4 th ed. Elsevier. Science. Pub. Co., New York, NY, USA.
Choi, J., A. J. Yee, D. Thompson, J. Samoluk, M. Mitchell, and W.D. Black. 1999. Determination of fluoroquinolone residues in animal tissues using Escherichia coli as indicator organism. J. AOAC. Int. 82(6): 1407-1412.
Christ, W. 1990. Central nervous system toxicity of quinolones: human and animal findings. J. Antimicrob. Chemother. 26: 219-225.
Christ, O., S. Seiter, S. Matzku, C. Burger, and M. Zoller. 2001. Efficacy of local versus systemic application of antibody-cytokine fusion proteins in tumor therapy. Clin. Cancer. Res. 7(4): 985-998.
Chu, D. T. W., and P. B. Fernandes. 1991. Recent developments in the filed of quinolone antibacterial agents. Adv. Drug. Res. 21: 139-144.
Chu, D. T. W., and L. L. Shen. 1995. Quinolone synthetic antibacterial agents. In: Hunter PA, Derby GK, Russell NJ (Eds.), Fifty years of antimicrobials: past perspectives and future trends. Society for General Microbiology, Symposium 53, CUP, p. 111-37.
Clyne, D. H., S. H. Norris, R. R. Modesto, A, J. Pesce, and V. E. Pollak. 1973. Antibody enzyme conjugates: the preparation of intermolecular conjugates of horseradish peroxidase and antibody and their use in immunohistology of renal cortex. J. Histochem. Cytochem. 21(3): 233-240.
Comoglio, S., and F. Celada. 1976. An immuno-enzymatic assay of cortisol using E. coli beta-galactosidase as label. J. Immunol. Methods. 10(2-3): 161-170.
Cooper, M. A., J. M. Andrews, J. P. Ashby, R. S. Matthews, and R. Wise. 1990. In vitro activity of sparafloxacin, a new quinolone antimicrobial agent. J. Antimicrob. Chemother. 26: 667-676.
Courvalin, P. 1990. Plasmid-mediated 4-quinolone resistance:a real or apparent absence? Antimicrob. Agent. Chemother. 34: 681-684.
Crowther, J. R. 1995. ELISA theory and practice. 1st ed. Humana Press Inc. Totowa, NJ, USA.
Das, K. C., and C. W. White. 1998. Detection of thioredoxin in human serum and biological samples using a sensitive sandwich ELISA with digoxigenin-labeled antibody. J. Immunol. Methods. 211(1-2): 9-20.
Davis, R., A. Markham, and J. A. Balfour. 1996. Ciprofloxacin. An updated review of its pharmacology, therapeutic efficacy and tolerability. Drugs. 51(6): 1019-1074.
Deen, C., E. Claassen, K. Gerritse, N. D. Zegers, and W. J. A. Boersma. 1990. A novel carbodiimide coupling method for synthetic peptides enhanced anti-peptide antibody responses. J. Immunol. Methods. 129: 119-125.
Denes, B., M. Tenk, L. Tekes, I. Varga, I. P. Ferenczne, and L. Stipkovits. 2003. Recognition of Multiple Mycoplasma bovis Antigens by Monoclonal Antibodies. Hybrid. Hybridomics. 22(1): 11-16.
De StGroth, S. F., and D. Scheidegger. 1980. Production of monoclonal antibodies: strategy and tactics. J. Immuno. Methods. 35: 1-21.
Domagala, J. M. 1994. Structure-activity and Structure-side effect relationships for the quinolone antibacterials. J. Antimicrob. Chemother. 33: 685-706.
Dorfman, M., J. Barsanti , and S. C. Budsberg. 1995. Enrofloxacin concentrations in dogs with normal prostate and dogs with chronic bacterial prostatitis. Am. J. Vet. Res. 56: 386-390.
Drews, J. 1976. Parameters of acquired resistance and their role in the evaluation of new chemotherapeutic drugs. Infection. 4(2): 61-69.
Duan, J., and Z. Yuan. Development of an indirect competitive ELISA for ciprofloxacin residues in food animal edible tissues. J. Agic. Food. Chem. 49: 1087-1089.
Dutta, P., M. R. Saha, U. Mitra, R. Rasaily, S. K. Bhattacharya, M. K. Bhattacharya, B. Kundu, and A. Gupta. 1995. Treatment of severe Salmonella typhimurium infection with ciprofloxacin. Indian. Pediatr. 32(7): 804-7.
Duval, J. M., and S. C. Budsberg. 1995. Cortical bone concentrations of enrofloxacin in dogs. Am. J. Vet. Res. 56: 188-192.
Ednie, L. M., M. R. Jacobs, and P. C. Appelbaum. 1998. Comparative activities of clinafloxacin against gram-positive and -negative bacteria. Antimicrob. Agents. Chemother. 42(5): 1269-1273.
Eliopoulos, G. M. 1995. In vitro activity of fluoroquinolones against gram-positive bacteria. Drugs. 49(Suppl. 2): 48-57.
Endtz, H. P., G. J. Ruijs, B. van Klingeren, W. H. Jansen, T. van der Reyden, and R. P. Mouton. 1991. Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. Antimicrob. Chemother. 27: 199-208.
Erlanger, B. F. 1973. Principles and methods for the preparation of drug protein conjugates for immunological studies. Pharmacol. Rev. 25(2):271-280.
Erlanger, B.F. 1980. The preparation of antigenic hapten-carrier conjugates. Meth. Enzymol. 70: 85-105.
Ferrero, L., B. Cameron, B. Manse, D. Lagneaux, J. Crouzet, A. Famechon, and F. Blanche. 1994. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones. Mol. Microbiol. 13: 641-653.
Fleeker, J. R., and L. J. Lovett. 1985. Enzyme immunoassay for screening sulfamethazine residues in swine blood. J. Assoc. Off. Anal. Chem. 68: 172-174.
Flammer, K., D. P. Aucoin, and D. A. Whitt. 1991. Intramuscular and oral disposition of enrofloxacin in African grey parrots following single and multiple dose. J. Vet. Pharmacol. Therap. 14: 359-366.
Friis, C. 1993. Penetration of danofloxacin into the respiratory tract tissues and secretions in calves. Am. J. Vet. Res. 54(7): 1122-1127.
Gendloff, E. H., W. L. Casale, B. P. Ram, J. H. Tai, J. J. Pestka, and L. P. Hart. 1986. Hapten-protein conjugates prepared by the mix anhydride method. J. Immunol. Method. 92: 15-20.
Giles, C. J., R. A. Magonigle, W. T. R Grimshaw, A. C. Tanner, J. E. Risk, M. J. Lynch, and J. R. Rice. 1991. Clinical pharmacokinetics of parenterally administered danofloxacin in cattle. J. Vet. Pharmacol. Therap. 14: 440-410.
Halliwell, R. F., P. G. Davey, and J. J. Lambert. 1991. The effects of quinolones and NSAIDs upon GABA-evoked currents recorded from rat dorsal root ganglion neurons. J. Antimicrob. Chemother. 27: 209-218.
Hane, M. W., and T. H. Wood. 1969. Escherichia coli K-12 mutantsresistant to nalidixic acid: genetic mapping and dominance studies. J. Bacteriol. 99: 238-241.
Harlow, E., and D. Lane. 1988. Monoclonal antibodies. In: Antibodies A Laboratory Manual. 1st ed., Cold. Spring. Harbor. Lab., New York, NY, USA. 139-244,
Heinen, E. 2002. Comparative serum pharmacokinetics of the fluoroquinolones enrofloxacin, difloxacin, marbofloxacin, and orbifloxacin in dogs after single oral administration. J. Vet. Pharmacol. Ther. 25(1): 1-5.
Helfman, D. M., J. R. Feramisco, F. C. Fiddes, G. Thomas, and S. H. Hughes. 1983. Identification of clonales that encode chicken tropomysin by direct immulogical screening of a cDNA expression lobrry. Proc. Natl. Acad. Sci. 80: 31-51.
Hong, T. H., S. T. Chen, T. K. Tang, S. C. Wang, and T. H. Chang. 1989. The production of polyclonal and monoclonal antibodies in mice using novel immunization methods. J. Immunol. Methods. 120(2): 151-157.
Hooper, D. C., J. S. Wolfson, K. S. Souza, C. Tung, G. L. McHugh, and M.N. Swartz. 1986. Genetic and biochemical characterization of norfloxacin resistance in Escherichia coli. Antimicrob. Chemother. 29: 639-644.
Hooper, D. C., and J. S. Wolfson. 1987. Mechanisms of action of and resistance to ciprofloxacin. Am. J. Med. 79(Suppl 4A): 12-20.
Hooper, D. C., and J. S. Wolfson. 1988. Mode of action of the quinolone antimicrobial agents. Rev. Infect. Dis. 10: 14-21.
Hooper, D. C., and J. S. Wolfson. 1991. Fluoroquinolone antimicrobial agents. New. Eng. J. Med. 324: 384-393.
Hooper, D. C. 1999a. Mode of action of fluoroquinolones. Drugs. 58(suppl 2): 6-10,
Hooper, D. C. 1999b. Mechanisms of fluoroquinolone resistance. Drug. Resist. Updat. 2(1): 38-55.
Howard, M. T., S. H. Neece, S. W. Matson, and K. N. Kreuzer. 1994. Disruption of a topoisomerase-DNA cleavage complex by a DNA helocase. Proc. Natl. Acad. Sci. U.S.A. 91: 12031-12035.
Ichihara, N., H. Tachizawa, M. Tsumura, T. Une, and K. Sato. 1984. Phase I study on DL-8280. Chemotherapy. (Tokyo) 32(S-1): 118-149.
Ito, A., K. Hirai, M. Inoue, H. Koga, S. Suzue, T. Irikura, and S. Mitsuhashi. 1980. In vitro antibacterial activity of AM-715, a new nalidixic acid analog. Antimicrob. Agents. Chemother. 17(2): 103-108.
Jacobs, M. R. 1995. Activity of quinolones against mycobacteria. Drugs. 49(Suppl 2): 67-75.
Jaillon, P., J. Morganroth, I. Brumpt, and G. Talbot. 1996. Overview of electrocardiographic and cardiovascular safety data for sparfloxacin. J. Antimicrob. Chemother. 37(suppl A): 161-167.
Janknegt, R. 1990. Drug interactions with quinolones. J. Antimicrob. Chemother. 26(Suppl. D): 7-29.
Jordan, F. T. W., B. K. Horrocks, and R. Froyman. 1992. A model for testing the efficacy of enrofloxacin (Baytril) administered to turkey hens in the control of mycoplasma iowae infection in eggs and embryos. Avian. Dis. 37: 1057-1061.
Joyce, B. G., G. F. Read, and D. R. Fahmy. 1977. A specific enzymeimmunoassay for progesterone in human plasma. Steroids. 29(6): 761-770.
Kamps-Holtzapple, C., R. J. Carlin, C. Sheffield, L. Kubena, L. Stanker, J. R. DeLoach. 1993. Analysis of hapten-carrier protein conjugates by nondenaturing gel electrophoresis. J. Immunol. Methods. 164(2): 245-253.
Kamps-Holtzapple, L. H. Stanker, and J. R. DeLoach. 1994. Development of a monoclonal antibody-based ELISA for the anthelmintic hygromycin B. J. Agric. Food. Chem. 42: 882-827.
Karsten, U., P. Stolley, I. Walther, G. Papsdorf, S. Weber, K. Conrad, L. Pasternak, and J. Kopp. 1988. Direct comparison of electric field-mediated and PEG-mediated cell fusion for the generation of antibody producing hybridomas. Hybridoma. 7: 627-633.
Kempf, I., F. Gesbert, M. Guittet, R. Froyman, J. Delaporte, G. Bennejean. 1995. Dose titration study of enrofloxacin against respiratory colibacillosis in muscovy ducks. Avian. Dis. 39: 480-488.
Khodursky, A. B., E. L. Zechiedrich, and N. R. Cozzarelli. 1995. Topoisomerase IV is a target of quinolones in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 92: 11801-11805.
Kohler, G., and C. Milstein. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256: 495-497.
Korn, A. H., S. H. Feairheller, and E. M. Filachione. 1972. Glutaraldehyde: nature of the reagent. J. Mol. Biol. 65(3): 525-529.
Kusajima, H., N. Ishikawa, M. Machida, H. Uchida, and T. Irikura. 1986. Pharmacokinetics of a new quinolone, AM-833, in mice, rats, rabbits, dogs and monkeys. Antimicrob. Agents. Chemother. 30: 304-309.
Lachmann, P. J., L. Strangeways, A. Vyakarnam, and G. Evan. 1986. Rasing antibodies by coupling peptides to PPD and immunizing BCG-sensitized animals. CIBA. Foundat. Symp. 119, 25-57.
Lambert, H. P., F. W. Ogrady. 1992. Quinolones, infective endocarditis, septicaemia, infections of the respiratory tract; meningitis; infections of the alimentary tract. In: Antibiotic and Chemotherapy. H.P. Lambert and F.W. Ogrady.(Eds). Churchill Livingstone, New York, NY, USA. pp. 245-262 and 366-386.
Lamp, K. C., E. M. Bailey, and M. J. Rybak. 1992. Ofloxacin clinical pharmacokinetics. Clin. Pharmacokinet. 22(1):32-46.
Lauderdale, T. L., L. C. McDonald, Y. R. Shiau, P. C. Chen, H. Y. Wang, J. F. Lai, and M. Ho. 2002. Vancomycin-resistant enterococci from humans and retail chickens in Taiwan with unique VanB phenotype-vanA genotype incongruence. Antimicrob. Agents. Chemother. 46(2): 525-527.
Lekeux, P., and T. Art. 1988. Effect of enrofloxacin therapy on shipping fever pneumonia in feedlot cattle. Vet. Rec. 123: 205-207.
Lesher, G. Y., E. D. Forelich, M. D. Gruet, J. H. Bailey, R. P. Brumdage. 1962. 1,8-Naphthyridine dervatines. A new class of chemotherapeutic agents. J. Med. Pharm. Chem. 5: 1063-1068.
Lin, J. A., C. L. Shyu, and T. S. Lee. 1994. Establishment of Mycoplasma spp. Cleaning program in a breeder farm combined with Ofloxacin. Taiwan. J. Vet. Med. Ani. Husb. 64: 67-76.
Lin, P. C., and Y. H. Kao. 1997. The Therapeutic Role of Fluoroquinolones in Tuberculosis and Osteomyelitis. Formosan. J. Med. 1: 648-652.
Lublin, A., S. Mechani, M. Malkinson, and Y. Wisman. 1993. Efficacy of norfloxacin nicotinate treatment of broiler breeder against Haemophilus paragallinarum. Avian. Dis. 31: 673-679.
Mann, D. D., and G. M. Frame. 1992. Pharmacokinetic study of danofloxacin in cattle and swine. Am. J. Vet. Res. 53: 1022-1026.
Mark, A. S., J. M. Brent, L. B. Terry, and A. D. Fred. 1996. Derivation of Pasteurella multocida-free rabbit litters by enrofloxacin treatment Vet. Microbiol. 51: 161-168.
Marshall, A. J. H., and L. J. V. Piddock. 1994. Interaction of divalent cations and bacteria. J. Antimicrob. Chemother. 34: 465-483.
Martinsen, B., and T. E. Horsberg. 1995. Comparative single-dose pharmacokinetics of four quinolones, oxolonic acid, flumequine, sarafloxacin, and enrofloxacin in Atlantic salmon(Salmo salar) held in seawater at 10℃. Antimicrob. Agents. Chemother. 39: 1059-1064.
Matsumoto, S., M. Takahashi, M. Yoshida, T. Komatsu, N. Kitadai, Y. Horii, and H. Katae. 1997. Absorption, distribution and excretion of orbifloxacin in dogs and cats. J. Jap. Vet. Med. Assoc. 50: 470-474.
Matsumoto, S., M. Nakai, M. Yoshida, and H. Katae. 1998a. Absorption, distribution and excretion of orbifloxacin in swine and clves. J. Jap. Vet. Med. Assoc. 51: 13-18.
Matsumoto, S., M. Takahashi, N. Kitadai, and H. Katae. 1998b. A study of metabolites isolated from the urine samples of cats and dogs administered orbifloxacin. J. Vet. Med. Sci. 60(11): 1259-1261.
Matsumoto, S., M. Nakai, M. Yoshida, and H. Katae. 1999. A study of metabolites isolated from urine samples of pigs and calves administered orbifloxacin. J. Vet. Pharmacol. Ther. 22(4): 286-289.
McConway, M. G., R. S. Chapman, G. H. Beastall, E. Brown, J. Tillman, J. A. Bonar, A. Hutchison, T. Allison, J. Finlayson, and R. Weston. 1989. How sensitive are immunometric assays for thyrotropin? Clin. Chem. 35(2): 289-291.
McCaughey, W. J., C. T. Elliott, and S. R. Crooks. 1990. Determination of sulphadimidine in animal feedstuffs by an enzyme-linked immunoassay. Food. Addit. Contam. 7(2): 259-264.
Mclellan, R. A., R. K. Drobitch, M. Monshouwer, and K. W. Renton. 1996. Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metabolism in rat and human. Drug. Metab. Dispos. 24: 1134-1138.
Melchers, F. 1986. Factors controlling the B-cell cycle. Ann. Rev. Immunol. 4: 13-16.
Mizuki, Y., I. Fujiwara, and T. Yamaguchi. 1996. Pharmacokinetic interactions related to the chemical structures of fluoroquinolones. J. Antimicrob. Chemother. 37(Suppl A): 41-55.
Morris, R. E., and C. B. Saelinger. 1982. A simple reliable method for producing electron dense markers of uniform size for use in immunoelectron microscopy. J. Immunol. Methods. 49(3): 237-246.
Nakamura, S. 1995. Veterinary use of new quinolones in Japan. Drugs. 49 (Suppl 2): 152-8.
Nambara, T., M. Takahashi, Y. Tsuchida, and M. Numazawa. 1974. Specificity of antiserta raised against estradiol using hew hapten-carrier conjugates. Chem. Pharm. Bull. 22(9): 2176-2180.
Ng, E. Y., M. Trucksis, and D. C. Hooper. 1996. Quinolone resistance mutations in topoisomerase IV: relationship of flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob. Agents. Chemother. 40: 1881-1888.
Nielsen, P., and N. Gyrd-Hansen. 1997. Bioavailability of enrofloxacin after oral administration to fed and fasted Pigs. Pharmacol. Toxicol. 80: 246-250.
Niewola, Z., B. Hayward, B. A. Symington, and R. T. Robson. 1985. Quantitative estimation of paraquat by enzyme linked immunosorbent assay using a monoclonal antibody. Clin. Chem. Acta. 148: 149-156.
Ohkohchi, N., H. Itagaki, H. Doi, Y. Taguchi, S. Satomi, and S. Satoh. 2000. New technique for producing hybridoma by laser radiation. Lasers. Surg. Med. 27: 262-268.
Oliphant, C. M., and D. Pharm. 2002. Quinolones: A comprehensive review. Am. Fam. Physician. 65(3): 455-464.
Omura, K., K. Hirose, M. Itoh, T. Akizawa, and M. Yoshioka. 1997. Development of enzyme immunoassay of 2'-deoxycytidine. J. Pharm. Biomed. Anal. 15(9-10): 1249-1256.
Pauillac, S., J. Naar, P. Branaa, and M. Chinain. 1998. An improved method for the production of antibodies to lipophilic carboxylic hapten using small amount of hapten-carrier conjugate. J. Immunol. Methods. 220(1-2): 105-114.
Perkins, S., U. Zimmermann, and S. K. Foung. 1991. Parameters to enhance human hybridoma formation with hypoosmolar electrofusion. Hum. Antibodies. Hybridomas. 2: 155-159.
Pestova, E., R. Beyer, N. P. Cianciotto, G. A. Noskin, L. R. Petersen. 1999. Contribution of topoisomerase IV and DNA gyrase mutations in Streptococcus pneumoniae to resistance to novel fluoroquinolones. Antimicrob. Agents. Chemother. 43: 2000-2004.
Ralf, S. 2002. Clinical toxicological aspects of fluoroquinolones. Toxicol. Lett. 127: 269-277.
Rantala, M., L. Kaartinen, E. Valimaki, M. Stryrman, M. Hiekkaranta, A. Niemi, L. Saari, and S. Pyorala. 2002. Efficacy and pharmacokinetics of enrofloxacin and flunixin meglumine for treatment of cows with experimentally induced Escherichia coli mastitis. J. Vet. Pharmacol. Ther. 25(4): 251-258.
Reichlin, M. 1980. Use of glutaraldehyde as a coupling agent for proteins and peptides. J. Immunol. Method. 70: 159-165.
Riordan, J. F., and B. L. Vallee. 1972. Diazonium salts as specific reagents and probes of protein conformation. Methods. Enzymol. 25:521-525.
Rollof, J., and E. Vinge. 1993. Neurologic adverse effects during concomitant treatment with ciprofloxacin, NSAIDS, and chloroquine: possible drug interaction. Ann. Pharmacother. 27(9): 1058-1059.
Rowley, G. L., K. E. Rubenstein, J. Huisjen, and E. F. Ullman. 1975. Mechanism by which antibodies inhibit hapten-malate dehydrogenase conjugates. An enzyme immunoassay for morphine. J. Biol. Chem. 250(10): 3759-3766.
Sanvicens, N., V. Pichon, M. C. Hennion, and M. P. Marco. 2003. Preparation of antibodies and development of an enzyme-linked immunosorbent assay for determination of dealkylated hydroxytriazines. J. Agric. Food. Chem. 51(1): 156-164.
Shah, P. M. 1998. Ciprofloxacin prophylaxis and therapy of Yersinia pestis infection. J. Antimicrob. Chemother. 42(3): 399.
Sheehan, J. C., and G. P. Hess. 1955. A New Method of Forming Peptide Bonds. J. Am. Chem. Soc. 77: 1067-1068.
Sheng, W. H., Y. C. Chen, J. T. Wang, S. C. Chang, K. T. Luh, and W. C. 2002. Hsieh. Emerging fluoroquinolone-resistance for common clinically important gram-negative bacteria in Taiwan. Diagn. Microbiol. Infect. Dis. 43(2): 141-147.
Shirahata, S., Y. Katakura, and K. Teruya. 1998. Cell hybridization, hybridomas, and human hybridomas. Methods. Cell. Biol. 57: 111-145.
Silva, B. S. D., K. L. Egodage, and G. S. Wilson. 1999. Purified protein derivative (PPD) as an immunogen carrier elicits high antigen specificity to haptens. Bioconjug. Chem. 10: 496-501.
Singh, P., B. P. Ram, and N. Sharkov. 1989. Enzyme immunoassay for screening of sulfamethazine in swine. J. Agric. Food. Chem. 37: 109-114.
Smith, J. T. 1986. The mode of action of 4-quinolones and possible mechanisms of resistance. J. Antimicrob. Chemother. 18(Suppl D): 21-29.
Sörgel, F., U. Jaehde, K. Naber, U. Stephan. 1989. Pharmacokinetic disposition of quinolones in human body fluids and tissues. Clin. Pharmacokinet. 16(Suppl. 1): 5-24.
Staros, J. V., R. W. Wright, and D. M. Swingle. 1986. Enhancement by N-hydroxysuflosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem. 156: 220-222.
Steffenak, I., V. Hormazabal, and M. Yndestad. 1991. Reservoir of quinolone residues in fish. Food. Add. Cont. 8: 777-780.
Suckow, M. A., B. J. Martin, T. L. Bowersock, and F. A. Douglas. 1996. Derivation of Pasteurella multocida-free rabbit litters by enrofloxacin treatment. Vet. Microbiol. 51(1-2): 161-168.
Szurdoki, F., H. K. M. Bekheit, M. P. Marco., M. H. Goodrow, and B. D. Hammock. 1995. Important factors in hapten design and enzyme-linked immunosorbent assay development. In: New Frontiers in Agrochemical Immunoassay. Kurtz, D. A., J. H. Skerritt, and L. Stanker, Eds. AOAC. International. Arlington, VA, USA. 39-63.
Takayama, S., M. Hirohashi, M. Kato, and H. Shimada. 1995. Toxicity of quinolone antimicrobial agents. J. Toxical. Environ. Health. 45: 1-45.
Taylor, S. L., E. Bromidge, G. F. Savidge, and A. Alhaq. 2002. Evaluation of an automated screening assay for von Willebrand disease type 2N. Clin. Lab. Haematol. 24(6): 369-375.
Thompson, P. N., S. R. Van Amstel, and M. Henton. 1998. The clinical efficacy of enrofloxacin in the treatment of experimental bovine pneumonic pasteurellosis. Onderstepoort. J. Vet. Res. 65(2): 105-112.
Tizard, I. R. 1996. Veterinary immunology : an introduction. 5th ed. W.B. Saunders. Philadelphia, PA, USA.
Valdes, I., E. Garcia, M. Llorente, and E. Mendez. 2003. Innovative approach to low-level gluten determination in foods using a novel sandwich enzyme-linked immunosorbent assay protocol. Eur. J. Gastroenterol. Hepatol. 15(5): 465-474.
Vancutsem, P. M., J. G. Bssish, and W. S. Schwark. 1990. The fluoroquinolone anti microbials: structure, antimicrobial activity, pharmacokinetics, clinical use in domestic animal and toxicity. Cornell. 80: 173-186.
Von Rosenstiel, N., and D. Adam. 1994. Quinolone antibacterials:An update of their pharmacology and therapeutic use. Drugs. 47: 872-901.
Walker, R. D., G. E. Stein, J. G. Hauptman, and K. H. MacDonald. 1992. Pharmacokinetic evaluation of enrofloxacin administered orally to healthy dogs. Am. J. Vet. Res. 53(12): 2315-2319.
Wallis, S. C., B. G. Charles, L. R. Gahan, L. J. Filppich, M. G. Brwdhauer, and P. A. Duckworth. 1996. Interaction of norfloxacin with divalent and trivalent Pharmacokinetic Studies in the dog. J. Pharm. Sci. 85: 803-809.
Wang, J. C. 1991. DNA topoisomerase: Why so many? J. Biol. Chem. 266: 6659-62.
Watanabe, H., A. Satake, Y. Kido, and A. Tsuji. 1999. Production of monoclonal antibody and development of enzyme-linked immunosorbent assay for kanamycin in biological matrices. Analyst. 124(11): 1611-1615.
Watanabe, H., A. Satake, Y. Kido, and A. Tsuji. 2002. Monoclonal-based enzyme-linked immunosorbent assay and immunochromatographic assay for enrofloxacin in biological matrices. Analyst. 127(1): 98-103.
Wise, R., and M. R. Lockley. 1988. The pharmacokinetics of ofloxacin and a review of its tissue penetration. J. Antimicrob. Chemother. 22(Suppl C): 59-64.
Wojchowski, D. M., and A. J. Sytkowski. 1986. Hybridoma production by simplified avidin-mediated electrofusion. J. Immuno. Methods. 90: 173-177.
Wolfson, J. S., and D. C. Hooper. 1985. The fluoroquinolones: Structures, mechanisms of action and resistance and spectra of activity in vitro. Antimicrob. Agents. Chemother. 28: 581-586.
Wolfson, J. S., and D. C. Hooper. 1989. Fluoroquinolone antimicrobial agents. Clin. Microbiol. Rev. 2: 378-424.
Wong, S. S. 1993. Reactive groups of proteins and their modifying agents. In: Chemistry of protein conjugation and cross-linking. 1st ed. CRC Press, Inc., Boca Raton, FL, USA. 7-45,
Xilin, Z., X. Chen, D. John, and D. Karl. 1997. DNA topoisomerase target of the fluoroquinolones: A strategy for avoiding bacterial resistance. Proc. Natl. Acad. Sci. U.S.A. 94: 13991-13996.
Yamagishi, J., T. Kojima, Y. Oyamada, K. Fujimoto, H. Hattori, S. Nakamura, and M. Inoue. 1996. Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus. Antimicrob. Agents. Chemother. 40: 1157-1163.
Young, R. A., and R. W. Davis. 1983. Efficent isolation of genes by using antibody probes. Proc. Nati. Acad. Sci. 80: 1194-1198.
Zeeman, R., P. J. Dijkstra, P. B. van Wachem, M. J. van Luyn, M. Hendriks, P. T. Cahalan, and J. Feijen. 1999. Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials. 20(10): 921-31.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔