(3.238.174.50) 您好!臺灣時間:2021/04/11 11:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅偵源
論文名稱:東亞島嶼淡水蟹的分子親緣地理關係
論文名稱(外文):Molecular phylogeography relationships of freshwater crabs in East Asian islands
指導教授:黃紹毅黃紹毅引用關係施習德施習德引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學院碩士在職專班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:59
中文關鍵詞:親緣地理關係淡水蟹東亞島嶼
相關次數:
  • 被引用被引用:4
  • 點閱點閱:210
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
東亞島嶼(台灣、琉球和日本)所產的淡水蟹,有2科5屬,種類約有50種。其中澤蟹屬與清溪蟹屬為東亞島嶼淡水蟹的優勢屬,不產於亞洲大陸地區。利用16S rRNA的基因片段,比較東亞產淡水蟹之親緣關係,期能了解東亞優勢淡水蟹的起源。結果顯示,東亞的清溪蟹類群中,台灣的Candidiopotamon rathbunae與琉球的C. okinawense 和C. kumejimense有較近的親緣關係,與琉球的相近屬-琉球蟹屬的親緣關係則較遠。台灣的C. rathbunae,可見以中央山脈為中心,將其分為東、西兩大族群,分離年代為4.8 ± 0.8 mya,此年代接近台灣島露出海面的年代。西半群可再分成西北部、西部、西南部三群;東半群也可再分成南部、東南部、東部三群。東亞澤蟹屬可分為4大群,首先分離出日本本島群,其次分離出中琉球群,再分離出南琉球-北台灣群,最後是台灣澤蟹群。從類群分離的時間先後之親緣關係樹來看,東亞澤蟹屬的祖先,在Miocene之前就在日本本島繁衍,然後逐漸往南遷移。台灣產澤蟹屬的分群,部分分群的可信度雖未達50%,但若參照C. rathbunae的分群,亦可看出以中央山脈為界的兩大群,分離年代為3.2 ± 0.5 mya,此為中央山脈急速隆起的年代。中央山脈以西可分成南琉球-北台灣群、西部群、北部群與西南群;中央山脈以東又可分成南部群與東部群,但每群仍有部分種類延伸至其他地理區。從東亞島嶼淡水蟹的親緣關係樹,可發現澤蟹屬與清溪蟹類群各自成一單系群,兩者分化的年代,約為9.0 ± 1 mya,與亞洲大陸的淡水蟹在一千萬年前即分離,分離的原因可能是,沖繩海槽的陷落,此時台灣島尚未露出海面,因此,這些淡水蟹應該集中於日本本島區域,然後逐漸南下散佈。此結果支持在Miocene時,東亞島嶼與亞洲大陸連接在一起的假說 。
Freshwater crabs in the East Asian islands have about fifty species, belonging to five genera. Among them, genera Geothelphusa and Candidiopotamon are dominant, couldn’t find in the Asian continent. The phylogenetic relationship among freshwater crabs in the East Asian islands were studied using partial sequence data from mitochondrial large subunit 16S rRNA gene. Phylogenetic analysis based on sequence data of East Asian Candidiopotamon group revealed that C. rathbunae in Taiwan have closest relatives with C. okinawense and C. kumejimense in central Ryukyus. In Taiwan, C. rathbunae can be divided into two geographic groups by the Central Range. The divergence time between eastern and western groups can be estimated about 4.8 ± 0.8 mya, which can be correlated with the emergence time of Taiwan island when the Philippine Sea plate collided with continental Asian tectonic plate. Western groups can be subdivided into three subgroups (northwestern, western and southwestern groups), and Eastern groups also can be subdivided into three subgroups (southern, south eastern and eastern groups). East Asian Geothelphusa can be subdivided into 4 groups. The group of the main-islands of Japan was diverged firstly, the central Ryukyus group was diverged secondly, then the southern Ryukyus — northern Taiwanese group was diverged, the last was Taiwanese Geothelphusa. From the divergence time of every groups indicate that the ancestors of East Asian Geothelphusa have distributed all over main-islands of Japan since Miocene, then dispersed southward. Taiwanese Geothelphusa are similar to the distribution of C. rathbunae, also can be divided into two groups and the Central Range could isolate eastern and western groups. The divergence time is 3.2 ± 0.5 mya and it matches the rapid uplift of the Central Range. Based on the phylogenetic tree of the East Asian freshwater crabs, it is clear that both Geothelphusa and Candidiopotamon groups are monophyletic. The two groups were diverged in 9.0 ± 1 mya and the dating could be 10 mya compared with the Chinese freshwater crabs. Caused by the sinking of Okinawa Trough, the islands were separated from the continent. Meanwhile, Taiwan was still under the sea level. Freshwater crabs should be distributed all over main-islands of Japan, then dispersed southward. The results support the hypothesis that the East Asian islands was linked together with the Asian continent in Miocene.
中文摘要………………………………………………………………… Ⅰ
英文摘要………………………………………………………………… Ⅱ
誌謝……………………………………………………………………… Ⅲ
目錄……………………………………………………………………… Ⅳ
表目錄..…………………………………………………………………. Ⅴ
圖目錄..…………………………………………………………………. Ⅵ

壹、前言………………………………………………………………… 1
貳、材料與方法………………………………………………………… 9
一、標本的採集……………………………………………………… 9
二、分子生物學方法………………………………………………… 9
2.1萃取分離genomic DNA ……………………………………… 9
2.2 PCR ( Polymerase chain reaction )與DNA定序……………… 11
三、分子時鐘………………………………………………………… 12
四、數據分析………………………………………………………… 13
參、結果………………………………………………………………… 14
一、東亞島嶼清溪蟹類群之親緣關係……………………………… 14
二、東亞島嶼澤蟹屬之親緣關係…………………………………… 15
三、東亞島嶼淡水蟹之親緣關係…………………………………… 17
肆、討論………………………………………………………………… 19
一、東亞島嶼清溪蟹類群之親緣關係…………………………….. 19
二、東亞島嶼澤蟹屬之親緣關係…………………………………… 20
三、東亞島嶼淡水蟹之親緣關係…………………………………… 21
伍、結論………………………………………………………………… 25
陸、參考文獻…………………………………………………………… 27
沈中桴。 1997。台灣的生物地理: 2. 一些初步思考與研究。台灣省立博物館年刊 40:361-450。
施志昀。 1994。台灣淡水蝦、蟹類之分類、分布及幼苗變態研究。 國立台灣海洋大學博士論文,基隆。
施志昀及游祥平。 1999。 台灣的淡水蟹。 國立海洋生物博物館,屏東。
施習德。 2002。 甲殼類的分子生態學。 科學月刊 33:307-314。
黃原。 1998。 分子系統學─原理、方法及應用。 中國農業出版社,北京。
戴愛雲。 1999。 中國動物誌。節肢動物門:甲殼動物亞門:軟甲綱:十足目:束腹蟹科,溪蟹科。 科學出版社,北京。
Avise, J. C., 2000. Phylogeography: the History and Formation of Species. Harvard University Press, London.
Batuecas, B., R.Garesse, M. Calleja, J.R. Valaerde & R. Marco, 1988. Genome organization of Artemia mitochondrial DNA. Nucleic Acids Res. 16: 6516-6529.
Chen, W. R., J. H. Jeng, & J. Y. Shy. 1998. A new species of freshwater crab, Geothelphusa neipu (Decapoda: Brachyura: Potamidae) from southern Taiwan. P. 154. In: Abstracts of the Meeting of the Taiwan Fisheries Society. Taiwan Fisheries Society, Taipei.
Cradall, K. A. & J. F. J. Fitzpatrick, 1996. Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Syst. Biol. 45: 1-26.
Cunningham, C.W., N.W. Blackstone & L.W. Buss, 1992. Evolution of king crabs from hermit crab ancestors. Nature 355: 539-542.
Fitch, W. M., 1971.Toward defining the couse of evolution: Minimum change for a specific tree topology. Syst. Zool. 20: 406-416.
Hikida, T. & H. Ota, 1997. Biogeography of reptiles in the subtropical East Asian islands. Pp. 11-28. In: K. Y. Lue & T. H. Chen eds. The Symposium on the Phylogeny, Biogeography and Conservation of Fauna and Flora of East Asian Region. National Council Science, R.O.C., Taipei, Taiwan.
Kimura, M., 1987. Molecular evolutionary clock and the neutral theory. J. Mol. Evol. 26: 24-33.
Kimura, M., 2002. Paleogeography of the Ryukyu Islands. Pp. 19-54. In: M. Kimura eds. The Formation of the Ryukyu Arc and Migration of Biota to the Arc. Okinawa Times Inc., Okinawa, Japan.
Kizaki, K. & I. Oshiro, 1977. Paleogeography of the Ryukyu Islands. Mar. Sci. Mon. 9: 542-549 (in Japanese).
Kumar, S., K. Tamura, I. B. Jakobsen & M. Nei, 2001. MEGA 2.1: Molecular evolutionary genetics analysis. The Pennysylvania State University, University Park, Pennysylvania.
Lin, S. M., C. A. Chen & K. Y. Lue, 2002. Molecular phylogeny and biogeography of the grass lizards genus Takydromus (Reptilia: Lacertidae) of East Asia. Mol. Phylogenet. Evol. 22: 276-288.
Liu, T. K., 1982. Tectonic implication of fission track ages from the Central Range, Taiwan. Proc. Geol. Soc. China 25: 22?37.
Liu, T. K., Y. G. Chen, W. S. Chen & S. H. Jang, 2000. Rates of cooling and denudation of the Early Penglai Orogeny, Taiwan, as assessed by fission-track constraints. Tectonophysics 320: 69-82.
Lue, K. Y. & T. H. Chen (eds.), 1997. The Symposium on the Phylogeny, Biogeography and Conservation of Fauna and Flora of East Asian Region. National Council Science, R.O.C., Taipei, Taiwan.
Nei, M. & S. Kumar, 2000. Molecular Evolution and Phylogenetics. Oxford Univ. Press, New York.
Ota, H., 1998. Geographic patterns of endemism and speciation in amphibians and reptiles of Ryukyu archipelago, Japan, with special reference to their paleogeographical implications. Res. Popul. Ecol. 40: 189-204.
Ota, H., 1999. Tropical Island Herpetofauna - Origin, Current Diversity, and Conservation. Elsevier, Amsterdam.
Schubart, C. D., R. Diesel & S. B. Hedges, 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature 393: 363-365.
Schubart, C. D., J. E. Neigel & D. L. Felder, 2000. Use of mitochondrial 16S rRNA gene for phylogenetic and population studies of Crustacea. Crust. Issues 12: 817-830.
Segawa, R., 2000. Molecular phylogeny of the genus Geothelphusa of Ryukyus Islands. Kaiyo Mon. 32: 241-245(in Japanese).
Shen, C. F., 1994. Introduction to the flora of Taiwan, 2: geotectonic evolution, paleogeography, and the origin of the flora. Pp. 3-7 In: T. C. Huang et al. (eds.) Flora of Taiwan, second edition, Volume 1. Editorial Committee of the Flora of Taiwan, Second Edition, Taipei, Taiwan.
Shokita, S., 1996. The origin of land-locked freshwater shrimps and potamoids from Ryukyu Islands, southern Japan. J. Geogr. 105: 343-353 (in Japanese).
Shy, J. Y., P. K. L. Ng & H.P. Yu, 1994. Crab of the genus Geothelphusa Stimpson , 1858 (Crustacea: Decapoda: Brachyura: Potamidae) from Taiwan, with description of 25 new species. Raffles Bull. Zool. 42: 781-846.
Shy, J. Y. & P. K. L. Ng, 1998. On two new species of Geothelphusa Stimpson , 1858 (Crustacea: Decapoda: Brachyura: Potamidae) from the Ryukyu Islands, Japan. Crustaceana 71: 778-784.
Suzuki, H. & E. Tsuda, 1994. A new freshwater crab of the genus Geothelphusa (Crustacea: Decapoda: Brachyura: Potamidae) from Kagoshima Prefecture, southern Kyushu, Japan. Proc. Biol. Soc. Wash. 107: 318-324.
Suzuki, H. & T. Okano, 2000. A new freshwater crab of the genus Geothelphusa Stimpson,1858 (Crustacea: Decapoda: Brachyura: Potamidae) from Yakushima Island, southern Kyushu, Japan. Proc. Biol. Soc. Wash. 113: 30-38.
Swofford, D. L. 2002. PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), version 4.0b10 Sinauer Associates, Sunderland, Massachusetts.
Teng, L. S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183: 57-76.
Tan, S. H. & H. C. Liu, 1998. Two new species of Geothelphusa (Decapoda: Brachyura: Potamidae) from Taiwan. Zool. Stud. 37: 286-290.
Thompson, J. D., D. G. Higgins, T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
Ujiié, H. 1990. Geological history of the Ryukyu Island Arc. Pp. 251-255. In H. Ujiie(ed.) Nature of Okinawa: Geomorphology and Geology. Hirugisha, Naha (in Japanese)(cited by Ota, 1998).
Ujiié, H., Y. Tanaka & T. Ono, 1991. Late Quaternary paleoceanographic record from the middle Ryukyu Trench slope, northwest Pacific. Mar. Micropaleontol. 18: 115-128 (cited by Ota, 1998).
Ujiié, H. & T. Nakamura, 1996. Temporary change of flowing route of the Kuroshio Current into the Ryukyu Trough since the latest glacier period. Chikyu Mon. 18: 524-530 ( in Japanese) (cited by Ota, 1998).
Valverde, J.R., B. Batuecas, C. Moratilla, R. Marco & R. Garesse, 1994. The complete mitochondrial DNA sequence of the crustacean Artemia franciscana. J. Mol. Evol. 39: 400-408.
Zuckerkandl, E. & L. Pauling, 1965. Evolutionary divergence and convergence in proteins. Pp.97-166. In: V. Bryson & H.J. Vogel eds. Evolving Genes and Proteins. Academic Press, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔