(3.238.250.105) 您好!臺灣時間:2021/04/18 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂明璋
研究生(外文):Ming-Chang Lu
論文名稱:骨組織中波速與波衰減參數的量測
論文名稱(外文):Ultrasonic velocity and attenuation measurement for bone tissue
指導教授:陳天送陳天送引用關係
指導教授(外文):Tain-Song Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:61
中文關鍵詞:SOSBUASoft tissue
相關次數:
  • 被引用被引用:4
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
利用超音波在腳跟骨中的傳播速度(Speed of Sound,SOS)及不同頻率之波衰減率(Broadband Ultrasound Attenuation,BUA)來評估骨質的方法已經廣泛地應用在臨床上。然而現有已經商品化的超音波骨密度儀並沒有考慮骨組織的真正厚度與軟組織對波速的影響。本研究提出能夠消除軟組織效應及計算骨頭厚度的方法。利用兩個0.5MHz面對面擺置的聚焦型超音波換能器,分次執行Pulse echo 模式與Transmission模式量測,並利用兩個換能器的回波訊號求得骨頭的厚度。本論文亦提出速度修正公式,消除軟組織的影響。
本研究主要分成三個部分,第一部份為評估軟組織成分及骨頭厚度在SOS及BUA的影響,利用豬皮與商用骨頭假體進行測試。結果發現豬皮使SOS增加而使BUA下降。第二部分工作利用貼附豬皮的假體配合本研究所提出的雙探頭技術進行骨假體模擬測試。所量測的骨假體厚度與利用數位游標卡尺所量測的厚度之差異很小(正常骨假體5.5% ; 疏鬆骨假體 : 3.8%)。另外,修正後的SOS與未貼附軟組織的SOS之差異亦很小(正常骨假體 : 0.025% ; 疏鬆骨假體 : 0.2%)。結果顯示,雙探頭技術可以計算出骨假體的厚度並且有效地消除軟組織對波在假體中速度量測的影響。第三部份工作為活體測試,14位自願受試者除接受本系統的測試之外,並且同時進行超音波骨密度儀UBIS 5000的量測。結果顯示利用傳統置代法所計算出的SOS比修正軟組織效應後所得到的SOS高,造成此現象的原因是因為軟組織造成波在腳跟中的平均速度提高。另外,本系統利用置代法及腳跟骨假設的厚度值(27mm)所計算出的SOS與UBIS量測值的相關係數為0.88,BUA的相關係數為0.89。結果顯示本研究所得到的結果與UBIS的結果具有高度的相關性。
綜合上述之結果,人體量測實驗與假體模擬實驗的結果皆顯示出軟組織的效應會使波的平均速度變高,本論文所提出的方法可以消除軟組織的效應進而計算出波在骨組織中的正確速度。
Recently, assessment of skeletal status by the measurement of Speed of Sound (SOS) and Broadband Ultrasonic Attenuation (BUA) through the calcaneus has recently been widely used in clinic. However, real bone thickness and the effect of soft tissue on bone SOS measurement were not considered at all by currently available commercial products. The aim of this study is to propose a method to eliminate influence of soft tissue and bone thickness. The study utilizes dual 0.5MHz focused transducers placed at the opposite sides and operated in pulse-echo and transmission modes sequentially. The thickness of the bone tissue can be obtained by analyzing the reflected signals from both transducers. Furthermore, a modified velocity formula that takes soft tissue thickness and SOS in soft tissue into account was also introduced.
The study was divided into three parts. The first part evaluated the influence of soft tissue composition on SOS and BUA measurements, which was determined by testing the porcine skin and the phantoms. The result shows that porcine skin increases SOS increase but decreases BUA. The second part of this work was to apply the dual-transducer technique described above to testing the bone phantom covered with porcine skins. The difference between bone phantom thickness measured by ultrasonic technique and the one by digital caliper is very small (normal bone phantom:5.5% ; osteoporotic bone phantom:3.8%). The measured SOS difference between value calculated with modified formula and the one obtained using bone phantom without porcine skins is also small (normal bone phantom:0.025% ; osteoporotic bone phantom:0.2%). With the proposed technique, the thickness of bone phantom can be obtained, and it is possible to eliminate the influence of soft tissue on phantom SOS measurement. The final part concerned in vivo test. Fourteen healthy volunteers were tested in this study, whose SOS and BUA values were also measured by commercial product (UBIS 5000). The bone SOS calculated by traditional substitution method is higher than the value obtained by the modified method, which was caused by the soft tissue that increases the mean velocity of the calcaneus. The correlation between bone velocity calculated according to substitution method by assuming a constant bone thickness (27mm) and UBIS velocity is 0.88, whereas the correlation between measured BUA and UBIS BUA was 0.89. The high correlation between the values measured by the methods proposed by this study and by UBIS 5000 confirms the performance of our method.
It was shown that the same trends of SOS variation could be found in phantom simulation and in vivo measurement. In conclusion, the soft tissue increases bone SOS, and it is possible to eliminate the effect of soft tissue on precise measurement of bone SOS by using the proposed dual transducers technique.
第一章 緒論
第1-1節 研究動機…………………………………………………1
第1-2節 文獻回顧…………………………………………………2
第1-3節 骨質疏鬆症的簡介………………………………………4
第1-4節 臨床上主要診斷骨質疏鬆症的技術……………………7
第二章 利用超音波技術量測骨質的原理……………………15
第2-1節 骨骼在聲波中的特性……………………………………15
第2-2節 臨床雙換能器量測法……………………………………15
第2-2-1節 雙換能器脈波傳輸法…………………………………16
第2-2-2節 聲波的計算方法………………………………………18
第2-2-3節 波衰減參數的量測……………………………………20
第2-3節 本系統的量測原理………………………………………22
第三章 量測系統的建立與實驗流程…………………………25
第3-1節 系統軟硬體架構的建立…………………………………25
第3-2節 系統準確度測試與效能測試……………………………28
第3-3節 方法與流程………………………………………………31
第3-4節 自動量測系統的建立……………………………………34
第四章 實驗結果與討論………………………………………39
第4-1節 軟組織對SOS及BUA的影響………………………………39
第4-1-1 節待測物的準備…………………………………………39
第4-1-2 軟組織對SOS 的影響……………………………………40
第4-1-3軟組織對BUA的影響………………………………………42
第4-2節 腳跟骨厚度之量測………………………………………43
第4-2-1 腳跟骨厚度對SOS 的影響之模擬………………………43
第4-2-2 SOS 的修正………………………………………………45
第4-3節 人體腳跟骨之量測………… …………………… ……48
第五章 結論與未來展望………………………………………57
參考文獻 …………………………………………………………58
1.ultrasonic attenuation in the calcaneus in pre and postmenopausal women,” Osteoporosis Int., Vol.2, pp. 247-251, 1992.
2.A. M. Schott and D. Hans, “Ultrasound measurements on os calcis: pre- cision and age related changes in a normal female population,” Osteoporosis Int., Vol.3, pp. 249-254, 1993.
3.R. J. M. Herd and G. M. Blake, “Measurements of postmenopausal bone loss with a new contact ultrasound system,” Calcif. Tissue Int., Vol. 53, pp. 153-157, 1993.
4.C. C. Gluer, C. Y. Wu, and H. K. Genant, “Broadband ultrasonic attenuation signals depend on trabecular orientation: an in-vitro study,” Osteoporosis Int., Vol.3, pp. 185-191, 1993.
5.C. M. Langton and G. P. Evans, “Dependence of ultrasonic velocity and attenuation on the material properties of cancellous bone,” Osteoporosis Int., Vol.1, pp. 194, 1991.
6.C. M. Langton, S. B. Palmer, and R. W. Porter, “The measurement of broadband ultrasonic attenuation in cancellous bone,” Eng Med., Vol.13, pp. 89-91, 1984.
7.E. V. McCloskey, S. A. Murray, and D. Charlesworth, “Assessment broad- band ultrasound attenuation in the os calcis in vitro,” Clin Sci., Vol. 78, pp. 221-227, 1990.
8.M. Gomez, “Influence of soft tissue (fat and fat-free mass on ultrasound bone velocity,” Invest Radiol., Vol.32, pp. 609-612, 1997.
9.E. Bendavid and H. K. Genant, ”The impact of bone size on broadband ultrasound attenuation,” Bone., Vol.16, pp. 137-141, 1995.
10.Wells P N T, Biomedical Ultrasonics (Academic Press, New York), 1977.
11.R. D. Wasnich, P. D. Ross , and L. K. Heilbrun , “Selection of the optimal skeletal site for fracture risk prediction,” Clin Orthop., Vol.216, pp. 262-269, 1987.
12.D. M. Black, S. R. Cummings, and H. K. Genant , “Axial and appendicular bone density predict fractures in older women,” J Bone Miner Res., Vol.7, pp. 633-638, 1992.
13.E. M. Lochmuller, F. Eckstein, J. B. Zeller, R. Steldinger, and R. Putz, “ Comparsion of quantitative ultrasound in the human calcaneus with mechanical failure loads of the hip and spine ,” Ultrasound Obstet Gynecol., Vol.14, no.2, pp. 125-133, 1999.
14.C. F. Njeh, S. Cheng, B. Fan, X. Cheng, D. Hans, L. Wang , T. Fuerst, and Genant HK. “ Potential impact of foot length on QUS measurement: a pilot study ,” Abstract submitted by UCSF Osteoporosis and Arthritis Research Group.
15.C. L. Marise, C. M. A. Brandao, M. Yassuda, L. M. C. Martins,and J. G. H.Vieira, “Correlation of bone mineral density (BMD) and two different methods of quantitative ultrasound measurement ,” Bone., Vol.23, pp. 317, 1998.
16.R. Barkmann and C. Gluer , “Factors influencing QUS parameters of the calcaneum:suggestions for an improved measurement procedure,” J Clin Densitom,. Vol.1, pp. 93-94, 1998.
17.K. K. Shung, I. Y. Kuo, and B. Hete, “A novel method for the measurement of acoustic speed ,” J.Acoust.Soc.Amer., Vol.88, pp. 1679-1682, 1990.
18.D. K. Hsu and M. S. Hughes, “Simultaneous ultrasonic velocity and sample thickness measurement and application in composites,” J. Acoust. Soc. Amer., Vol.92, pp. 669- 675, 1992.
19.P. He and J. Zheng.“Acoustic dispersion and attenuation measurement using both transmitted and reflected pulses,” Ultrasonics., Vol. 39, pp. 27-32, 2001.
20.P. He,“Measurement of acooustic dispersion using trasmitted and reflected pulses,” J. Acoust. Soc. Amer., Vol. 107(2), pp. 801-807, 1999.
21.P. He,“Direct measurement of ultrasonicdispersion using broadband transmission technique,” Utrasonics., Vol. 37, pp. 67-70, 1999.
22.S. I. Rokhlin, D. k. Lewis, K. F. Graff, and L. Adler, “Real-time study of frequency dependence of attenuation and velocity of ultrasonic waves during the curing reaction of epoxy resin,” J. Acoust. Soc. Amer., Vol. 79, pp. 1786-1793, 1986.
23.A. Johansen and M. D. Stone, “The effect of ankle edema on bone ultrasound assessment of the heel,” Osteoporosis Int., Vol.7, pp. 44-47., 1997.
24.T. P. Sullivan, “The pig as a model for human would healing,” Wound Repair and Regeneration.,Vol. 9, pp. 66-76, 2001.
25.P. N. T. Wells, Biomedical ultrasonics. New York: Academic Press, 1977.
26.D. L. Miller, “Determining skin thickness with pulsed ultrasound,” J. Int.
Dermatology., Vol 72, pp. 17-19, 1978.
27.P. Fish, Diagnostic Medical Ultrasound. England: John Wiley, 1990.
28.林興中, “骨質疏鬆症之最近進展”, 台灣醫界,第37卷,第3期, 第209-212, 1994.
29.陳惠城與李志雄, “運動與骨質疏鬆症的關係”, 中華體育, 第32期, 第82-91頁, 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔