跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡伊婷
研究生(外文):Yi-Ting Tsai
論文名稱:利用超音波參數評估骨質疏鬆症
論文名稱(外文):Estimation of Ultrasonic Parameters for Osteoporosis Assessment
指導教授:陳天送陳天送引用關係
指導教授(外文):TainSong Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:96
中文關鍵詞:超音波參數參數影像改良式輪廓變形模型
外文關鍵詞:ultrasonic parametersparametric imagemodified contour deformable mobel
相關次數:
  • 被引用被引用:9
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
骨質疏鬆症為人體之系統性疾病,除了骨質異常減少外,骨內微小結構亦異常惡化,病人不論有無明顯的外傷,骨折的發生率明顯提高,因此如何早期預防以及治療就顯得相當重要。一般診斷骨質疏鬆症的方法主要是測量骨中礦物質密度(BMD),雖然雙能量X射線吸收測量(DEXA)為方便且精確的量測方式,但是往往伴隨著游離輻射的危險。
超音波具有無游離輻射、價錢便宜、容易攜帶及移動等優點。此方法應用於骨質評估上主要量測波衰減(BUA)、波速(SOS)和堅硬度(stiffness)等參數。目前超音波儀器往往會因為量測的位置受到限制,其評估的參數一般為單點的量測值,且無法確定實際量測的部位是否位於腳跟骨。利用超音波量化參數影像可以進一步分出不同區域,選出同質區的選取區作為不同人的選取量測的標準。
本實驗分為兩部分:假體驗證和人體量測。在假體驗證的部分,可以發現利用改良式輪廓變形模型所偵測的邊界與實際假體邊界相差在1個像素以內;將假體依四種不同選取區的結果做比較,可以發現利用輪廓選取與骨礦物質密度相關性可高達0.99。在人體量測的部分,探討在不同選取直徑(12-18mm)和不同方式(固定選取(ROIfix)、自動圓形選取(ROIcir)和跟骨輪廓選取(ROIanat))的定位誤差及精確度誤差。當選取直徑越大,尤其在固定選取區時定位誤差的比例越高(10-45%),而利用改良式輪廓變形模型選取跟骨輪廓的定位誤差發生比例較低(3%)。腳跟骨輪廓的精確度誤差(BUA為1.02,SOS為0.07,STI為0.46)優於利用固定選取區的精確度誤差(BUA為3.75-4.23,SOS為0.42-0.54,STI為1.79-2.71)和利用自動圓形選取區的精確度誤差(BUA為1.78-2.85,SOS為0.19-0.36,STI為1.60-1.91)。所以我們可以利用腳跟骨輪廓選取區做為選取的依據,做為提供臨床上診斷的新標準。
Osteoporosis is a systemic skeletal disease characterized by low bone mass and micro-architectural deterioration of bone tissue leading to bone fragility. Therefore, early diagnosis and prevention of the osteoporosis are very important. Commonly used methods of diagnosing osteoporosis, such as dual-energy X-ray absoroptiometry (DEXA), measure the quantitative aspect of bone mineral density (BMD). Although DEXA is a convenient and precise method, which, however, is associated with ionizing radiation and is endangered the patient with more X-ray exposure.
Ultrasound is a technique that has many advantages, including no exposure to ionizing radiation, low cost and portability. It has been applied for the measurement of ultrasonic parameters including broadband ultrasound attenuation (BUA, dB/MHz), speed of sound (SOS, m/s), and stiffness that is the linear combination of the previous two parameters. To date, the ultrasonic devices measure a value of the ultrasonic parameters at a single location without accurate control of transducer’s position with respect to subject’s heel anatomy. To overcome the above problem, we proposed a method that scans the heel and generates parametric images. It was shown that the images could enhance the performance of the technique by assessing the heterogeneity of the bone and by allowing the selection of similar measurement site (or region of interest (ROI)) for each subject.
This study was divided into two parts, including phantom validation and subject measurements. In the former, we have found that the difference between the contour detected by the modified contour deformable model and the true boundary of the phantom was less than one pixel. We also compared four different ROIs of the phantom, significant relationship was found between contour mean and BMD (r=0.99). For subject test, the influence of different ROI diameters (12-18 mm) and different technique, including fixed region (ROIfix), automatic circular region (ROIcir) and calcaneal contour region (ROIanat), was studied. Measurement with large ROI diameters, especially with fixed region, resulted in a high percentage of position errors (10-45%). In contrast, the calcaneal contour detected by modified contour deformable model resulted in a lower percentage of position errors (3%). Precision errors of the ultrasonic parameters were better at ROIanat (PE=1.02 for BUA, PE=0.07 for SOS, PE=0.46 for STI) than at ROIfix (PE=3.75-4.23 for BUA, PE=0.42-0.54 for SOS, PE=1.79-2.71 for STI) and ROIcir (PE=1.78-2.85 for BUA, PE=0.19-0.36 for SOS, PE=1.60-1.91 for STI). The results indicate that ROIanat provide more accurate measurement of the ultrasonic parameters.
中文摘要..........................................I
英文摘要.........................................Ⅱ
誌謝.............................................Ⅳ
目錄.............................................Ⅴ
表目錄...........................................Ⅷ
圖目錄...........................................Ⅸ
第一章 緒論.......................................1
第1-1節 骨骼的解剖生理........................2
第1-2節 骨質疏鬆症............................3
第1-2-1節 骨質疏鬆的成因.................3
第1-2-2節 骨質疏鬆的分類.................6
第1-3節 目前臨床上主要診斷骨質疏鬆症的儀器....6
第1-4節 文獻回顧..............................9
第1-5節 研究動機.............................11
第二章 超音波的腳跟骨量化參數影像與影像處理技術..13
第2-1節 超音波量化參數之量測.................13
第2-1-1節 雙探頭超音波參數的量測原理....13
第2-1-2節 單探頭超音波參數的量測原理....19
第2-1-3節 堅硬度(STI, Stiffness Index)..21
第2-2節 超音波量化參數影像...................21
第2-2-1節 二維超音波....................22
第2-2-2節 超音波骨密度儀的量化參數影像..23
第2-3節 影像處理技術.........................24
第2-3-1節 傳統的主動輪廓模型............24
第2-3-2節 離散動態輪廓模型..............25
第2-3-3節 腳跟骨的內在能量..............30
第2-3-4節 改良式輪廓變形模型............32
第三章 實驗材料與方法............................45
第3-1節 實驗架構.............................45
第3-2節 待測物之選擇.........................46
第3-2-1節 假體之選擇....................46
第3-2-2節 人體實驗的受測者...................46
第3-3節 超音波骨密度儀(UBIS 5000)的量測......47
第3-3-1節 UBIS 5000的量測流程...........47
第3-3-2節 UBIS 5000量化參數影像的轉換...51
第3-4節 UBIS 5000影像選取之處理流程..........54
第3-4-1節 假體之影像選取處理流程........54
第3-4-2節 人體實驗之影像選取處理流程....54
第3-5節 人體實驗結果的分析比較...............58
第四章 結果與討論................................60
第4-1節 超音波量化參數的轉換.................60
第4-2節 假體實驗.............................61
第4-2-1節 假體之訓練模型................61
第4-2-2節 假體之量測結果................62
第4-2-3節 假體輪廓之比較................65
第4-3節 人體實驗.............................67
第4-3-1節 人體腳跟骨之訓練模型..........67
第4-3-2節 超音波量化參數影像的外部能量..68
第4-4節 人體實驗的結果比較...................70
第4-4-1節 人體腳跟骨實驗量測結果........70
第4-4-2節 不同選取區的定位誤差..........79
第4-4-3節 不同選取區的精確度比較結果.........81
第五章 結論與未來展望............................83
第5-1節 結論.................................83
第5-2節 未來展望.............................84
參考文獻.........................................85
附錄一 Canny濾波器...............................90
附錄二 三次方樣條函數............................92
[1] 林興中: 骨質疏鬆症之最近進展.台灣醫界 1994;37卷第三期:209-212 [2] www.kmth.gov.tw/衛教園地/骨質疏鬆/骨質疏鬆..htm
[3] 李志緯, 陳天送, 姚維仁 “利用超音波技術評估骨頭的機械特性”, 成功大學醫學工程研究所碩士論文, 民國九十年六月.
[4] C. Christiansen, "Osteoporosis: Diagnosis and Management Today and Tomorrow," Bone, vol. 17, pp. 513-516, 1995.
[5] A. J. Foldes, A. Rimon, D. D. Keinan, and M.M. Popovtzer, "Quantitative ultrasound of the tibia: A novel approach for assessment of bone status," Bone, vol. 17, pp. 363-367, 1995.
[6] J. A. Evans and M. B. Tavakoli, "Ultrasonic attenuation and velocity in bone," Phys. Med. Biol, vol. 35, pp. 1387-1396, 1990.
[7] L. Serpe and J. Y. Rho, "The nonlinear transition period of broadband ultrasound attenuation as bone density veries," J. Biomechanics, vol. 29, pp. 963-966, 1996.
[8] G. Brandenburger, L. Avioii, C. C. III, R. Heaney, R. Poss, G. Pratt, and R. Recker, "In-vivo measurement of osteoporostic bone fragility with apparent velocity of ultrasound," IEEE Ultrasonic Symposium, pp. 1023-1027, 1989.
[9] J. A. Zagzebski, P. J. Rossman, C. M. Richard, B. Mazess, and E. L. Madsen, "Ultrasound transmission measurements through the os calcis," Calcif Tissue Int, vol. 1991, pp. 107-111, 1991.
[10] M. J. Grimm and J. L. Williams, "Assessment of bone quantity and ''quality'' by ultrasound attenuation and velocity in the heel," Clinical Biomechanics, vol. 12, pp. 281-285, 1997.
[11] D. Hans, T. Fuerst, and F. Duboeul, "Quantitative ultrasound bone meanurement," Eur.Radiol., vol. 7, pp. 43-50, 1997.
[12] C. F. Njeh, I. Saeed, M. Grigorian, D. L. Kendler, B. Fan, J. Shepherd, M. Mcclung, W. M.Drake, and H. K. Genant, "Assessment of bone status using speed of sound at multiple anatomical sites," Ultrasound in Med. & Biol., vol. 27, pp. 1337-1345, 2001.
[13] J. Toyras, M. T. Nieminen, H. Kroger, and J. S. Jurvelin, "Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical predict mechanical properties of trabecular bone differently," Bone, vol. 31, pp. 503-507, 2002.
[14] A. M. Parfitt and H. Duncan, “Metabolic bone disease affecting the spine. In Rothman RH, Simeone FA, des ”, The spine, vol. 2, Philadelphia: WB Saunders, pp.895-905, 1982.
[15] S. Han, J. Medige, and I. Ziv, "Combined models of ultrasound velocity and attenuation for predicting trabecular bone strength and mineral density," Clinical Biomechanics, vol. 11, pp. 348-353, 1996.
[16] P. Hadji, O. Hars, C. Wuster, K. Bock, U. S. Alberts, H. G. Bohnet, G. Emons and K. D. Schulz, “Stiffness index identifies patients with osteoporotic fractures better than ultrasound velocity or attenuation alone,” Maturitas 31, pp.221-226, 1999.
[17]E. M. Lochmuller, F. Eckstein, J. B. Zeller, R. Steldinger and R. Putz, “Comparsion of quantitative ultrasound in the human calcaneus with mechanical failure loads of the hip and spine,” Ultrasound Obstet Gynecol vol. 14, no. 2, pp125-133, 1999.
[18]C. F. Njeh, S. Cheng, B. Fan, X. Cheng, D. Hans, L. Wang, T. Fuerst, and Genant HK. “ Potential impact of foot length on QUS measurement: a pilot study,” Abstract submitted by UCSF Osteoporosis and Arthritis Research Group.
[19]C. L. Marise, C. M. A. Brandao, M. Yassuda, L. M. C. Martins, J. G. H.Vieira, “Correlation of bone mineral density (BMD) and two different methods of quantitative ultrasound measurement, ” Bone vol.23 pp:317, 1998.
[20] P. Laugier, B. Fournier, and G. Berger, "Ultrasound parametric imaging of the calcaneus: In vivo results with a new device," Calcif Tissue Int., vol. 58, pp. 326-331, 1996.
[21] M. L. Frost, G. M. Blake, and I. Fogelman, "Does quantitative ultrasound imaging enhance precision and discrimination," Osteoporos Int., vol. 11, pp. 425-433, 2000.
[22] J. Damilakis, K. Perisinakis, E. Vagios, D. Tsinikas, and N. Gourtsoyiannis, "Effect of region of interest location on ultrasound measurements of the calcaneus," Calcif Tissue Int., vol. 63, pp. 300-305, 1998.
[23] J. P. W. v. d. Bergh, C. Noordam, J. M. Thijssen, B. J. Otten, A. G. H. Smals, and A. R. M. M. Hermus, "Measuring skeletal changes with calcaneus ultrasound imaging in healthy children and adults: The influence of size and location of the region of interest," Osteoporos Int., vol. 12, pp. 970-979, 2001.
[24] B. Fournier, C. Chappard, C. Roux, G. Berger, and P. Laugier, "Quantitative ultrasound imaing at the calcaneus using an automatic region of interest," Osteoporos Int., vol. 7, pp. 363-369, 1997.
[25] F. Lefebvre, G. Berger, and P. Laugier, "Automatic detection of the calcaneus boundary from ultrasound parametric images using active contour model: Clinical assessment," IEEE. Trans. Med. Imaging, vol. 17, pp. 45-52, 1998.
[26] P. Laugier, F. Lefebvre, C. Roux, and G. Berger, "Segmentation of QUS images of the calcaneus using elastic deformation of flexible fourier contour," IEEE Ultrasonic Symposium, pp. 1225-1228, 2000.
[27] UBIS 5000 Technical Manual, 1999.
[28] G. Brandenburger, L. Avioii, C. C. III, R. Heaney, R. Poss, G. Pratt and R. Recker, “In-vivo Measurement of Osteoporostic Bone Fragility with Apparent velocity of Ultrasound,” IEEE Ultrasonic Symposium, pp.1023-1027, 1989.
[29] C. Brandenburger, K. Waud, and D. Baran, "The importance of coupling-path correction for velocity measurements of the heel," IEEE Ultrasonic Symposium, pp. 1087-1091, 1992.
[30] K. Wear, “ Measurements of phase velocity and group velocity in human calcaneus,” Ultrasound in Med. & Biol., vol. 26, no. 4, pp641-646, 2000.
[31] P. Laugier, B. Fournier, and G. Berger, "Ultrasound parametric imaging og calcaneus: In vivo results with a new device," Calcif Tissue Int., vol. 58, pp. 326-331, 1996.
[32] M. Defontaine, D. Certon, L. Colin, C. Yvon, P. Vince, and E. Lacaze, "A prototype of a 500kHz ultrasonic material device: Beam scanner," IEEE Ultrasonic Symposium, pp. 1585-1588, 1999.
[33] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models," Int. J. Comput. Vision, pp. 321-331, 1988.
[34] S. Lobregt and M. A. Viergever, "A discrete dynamic contour model," IEEE. Trans. Med. Imaging, vol. 14, pp. 12-24, 1995.
[35] L. H. Staib and J. S. Duncan, "Parametrically deformable contour models," Proc. Comp. Vision Pattern Recog., pp. 98-103, 1989.
[36] L. H. Staib and J. S. Duncan, "Boundary finding with parametrically deformable models," IEEE. Trans. Pattern Anal. Machine Intell., vol. 14, pp. 1061-1075, 1992.
[37] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "The use of active shape models for locating structures in medical images," Image Vision Comput., vol. 12, pp. 355-366, 1994.
[38] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, "Active shape models- their training and application," CVGIP: Image Understanding, vol. 61, pp. 38-59, 1995.
[39] Instructions- 3D heel phantom for DXA scanners.
[40] J. F. Cootes, "A computational approach to edge detection," IEEE Trans. Pattern Anal. Machine Intell., vol. 8, pp. 679-698, 1989.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top