跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/04 04:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳怡秀
研究生(外文):Yi-hsiu Chen
論文名稱:生物電阻抗系統中可調變多通道電流產生器之ASIC設計
論文名稱(外文):ASIC design of programmable multi-channel AC current generators for bio-impedance system
指導教授:鄭國順鄭國順引用關係
指導教授(外文):Kuo-sheng Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:56
中文關鍵詞:電流產生器
外文關鍵詞:R-2R ladderDACcurrent source
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對生物電阻抗系統設計多通道之電流產生器,生物電阻抗系統即是利用生物阻抗特性,由外部加入多通道的交流電流,並量測其電壓值,利用所得之多組阻抗值,經過影像重建的演算法,即可得到一截面影像。而生物電阻抗系統中,注入電流的電流產生器扮演了非常重要的角色,電流產生器有兩個重要的特性:(1)輸出的電流必須穩定不受負載效應的影響,(2)各通道的電流產生器必須有相同的特性。在過去的研究,電路是以電子電路的個別元件所組成,體積龐大,且需花費時間做微調來達到各個通道的電流產生器特性一致之要求。因此,本研究主要以VLSI的技術,實現多通道的電流產生器於單一晶片上,以期特性之一致。就單一電流產生器而言,電路架構包含了兩個部分,分別是電壓控制電流源和數位類比轉換器;其中電壓控制電流源由三個運算放大器構成一負回授穩流電路,使輸出電流不受到負載效應的影響;數位類比轉換器將由數位震盪器所提供的載波,轉換成電壓控制電流源所需要的交流電壓,且透過數位輸入得到不同大小振幅的電壓。在本研究中,多通道之電流源係共用一個數位類比轉換器,因此架構上每組電壓控制電流源必須加上類比儲能元件和類比乘法器,以達成實現多通道電流產生器於單一晶片的目標。本研究使用Hspice電路模擬軟體,並依據台積電(TSMC) 0.25μm CMOS 之製程參數來驗證每個電路。
In this study, the multi-channel current generators are designed and developed for bio-impedance system. According to the characteristics of tissue impedance, by injecting AC current into the creature tissue, measuring voltages and running the image reconstruction algorithm, the functional image of creature tissue can be obtained. There are two major properties of current generator: (1) the amplitude of the current generator must be stable and independent on loading effect. (2) the property of each current generator must be the same. In past study, the current generator is composed of discrete components. The disadvantage of the traditional analog device is the worst accuracy of the values of resistances and capacitors. It always needs to fine-tune to satisfy the same property of each current generator. It also needs large volume. Therefore, the aim of the study is to realize multi-channel current generators in signal IC to ensure the similarity of property. For single channel current generator, the system consists of voltage controlled current source (VCCS) and digital to analog converter (DAC). The VCCS with feedback network is used to realize the steady current source. The DAC converts the carrier provided from digital oscillator to AC voltage for VCCS. And various amplitude of voltage is gotten by giving digital input. For multi-channel current generators, the DAC must be shared for every channel VCCS. Therefore, it is needed to add an analog storage and analog multiplier for each VCCS to accomplish the purpose of multi-channel current generators in single chip. In this study, all of the functional blocks have been verified by using Hspice according to the parameters of TSMC 0.25μm CMOS process.
中文摘要 I
Abstract II
ACKNOWLEDGEMENT IV
Table of Contents V
List of Figures VII
List of Tables IX
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Electrical impedance tomography (EIT) 1
1.1.2 Current generator for EIT system 2
1.2 Literature review 3
1.2.1 EIT system in our laboratory 3
1.2.2 Digital-to-analog converter 4
1.2.3 Analog multiplier 6
1.3 Motivation and purposes 7
Chapter 2 Materials and methods 9
2.1 System overview 9
2.1.1 Original structure of single channel current generator 9
2.1.2 Multi-channel current generators 10
2.2 IC design flow 12
2.3 Circuit design 14
2.3.1 Voltage controlled current source 14
2.3.2 CMOS R-2R ladder digital-to-analog converter 16
2.3.3 Analog storage 20
2.3.4 Analog multiplier 22
Chapter 3 Results 28
3.1 Two stage operational amplifier 28
3.2 Voltage-controlled current source 33
3.3 Digital-to-analog converter 34
3.4 Analog storage 40
3.5 Analog multiplier 42
Chapter 4 Discussion and Conclusion 47
4.1 Discussion 47
4.2 Conclusion 49
4.3 Prospects 50
References 52
自述 56
[1] A. Wald, “Electrical safety in Medicine” in Handbook of bioengineering, New York: McGraw-Hill, pp34.1-34.20, 1987.
[2] A. Pellegrini, A.Gnudi, and G. Baccarani, “CMOS analog multipliers based on a class-B squaring circuit,” Proc. of The IEEE International Symposium on Circuits and Systems, Vol. 1 , pp. 245 -248, June 1998.
[3] Abdulkerim L. Coban and Phillip E. Allen, “A 1.5V four-quadrant analog multiplier,” Proc. of the 37th Midwest Symposium on Circuits and Systems, Vol. 1, pp. 117 -120 Aug. 1994.
[4] Akira Hyogo, Yoshio Fukutomi, and Keitaro Sekine, “Low voltage four-quadrant analog multiplier using square-root circuit based on CMOS pair,” Proc. The IEEE International Symposium on Circuits and Systems, Vol.2, pp. 274 -277, June 1999.
[5] Behzad Razavi, Principles of Data Conversion System Design, John Wiley & Sons Inc., 1995.
[6] Bogdan M. and Wilamowski, “VLSI analog multiplier/divider circuit,” Proc. IEEE International Symposium on Industrial Electronics, Vol. 2, pp. 493 -496, July 1998.
[7] C. M. Hammerschmied and Q. Huang, “Design and implementation of an untrimmed MOSFET-only 10-bit A/D converter with -79-dB THD,” IEEE J. Solid-State Circuits, vol.33, NO.8, pp. 1148-1157, Aug. 1998.
[8] D. J. Nowicki and J. G. Webster, “A one op-amp current source for electrical impedance tomography,” Proc. Annual Int. Conf. IEEE Eng. Med. & Biol. Soc., pp. 457-458, 1989.
[9] D. Patranabis and D. Ghosh, “A four quadrant multiplier with independent control of range and sensitivity,” IEEE Trans. Instrum. Meas., vol. 38, no.1, pp. 17-21, Feb. 1989.
[10] David A. Johns and Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons Inc., 1997.
[11] David C. Soo and Robert G. Meyer, “A four-quadrant NMOS analog multiplier,” IEEE J. Solid-State Circuits, vol. SC-17, no. 6, pp.1174-1178, Dec. 1982.
[12] Fu-Hsing Wu, Electrical Impedance Image Reconstruction Using DSP, Master Thesis, Institute of Biomedical Engineering, National Cheng Kung University, July 1998.
[13] G. A. Hadgis and P. R. Mukund, “A novel CMOS monolithic analog multiplier with wide input dynamic range,” IEEE VLSI Circuits Dig. Tech. Conf., pp. 310-314, Jan. 1995.
[14] Ganesh K. Blachandran and Phillip E. Allen, “Switched-current circuits in digital CMOS technology with low charge-injection errors,” IEEE J. Solid-State Circuits, vol. 37, no. 10, pp.1271-1281, Oct. 2002.
[15] G. Moon, M. E. Zaghloul, and R. W. Newcomb, “An enhancement-mode MOS voltage-controlled linear resistor with large dynamic range,” IEEE Trans. Circuits and Systems., vol.37, no. 10, pp.1284-1288, Oct. 1990.
[16] Hong-wei Wang, Cheong-fat Chan, and Chiu-sing Choy, “High speed CMOS digital-to-analog converter with linear interpolator,” IEEE Trans. Cons. Electron., vol. 46, no. 4, nov. 2000.
[17] J. G. Webster, Electrical Impedance Tomography, Adam Hilger, 1990.
[18] K. Bult and G. J. M. Gleen, “An inherently linear and compact MOST-only current division technique,” IEEE J. Solid-State Circuits, vol.27, pp. 1730-1735, Dec. 1992.
[19] K. R. Stafford, P. R. Gray, and R. A. Blanchard, “A complete monolithic sample/hold amplifier,” IEEE J. Solid-State Circuits, vol. SC-9, no.6, pp. 381-387, Dec. 1974.
[20] L. Wang, Y. Fukatsu, and K. Watnabe, “Characterization of current-mode CMOS R-2R ladder digital-to-analog converters,” IEEE Trans. Instrum. Meas., vol. 50, no.6, pp. 1781-1786, Dec. 2001.
[21] Liang Dai and Harjani R., “CMOS switched-opamp based sample-and-hold circuit,” IEEE J. Solid-State Circuits , Vol. 35, No. 1 , pp. 109 -113, Jan. 2000.
[22] M. Ehlert and H. Klar, “A 12-bit medium-time analog storage device in a CMOS standard process,” IEEE J. Solid-State Circuits, Vol. 33, No. 7, pp.1139-1143, July 1998.
[23] N. Saxena and J. J. Clark, “A four-quadrant CMOS analog multiplier for analog neural networks,” IEEE J. Solid-State Circuits, vol. 29, no. 6, June 1994.
[24] Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, edition, Oxford University Press, 2002.
[25] Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, and Robert G. Meyer, Analysis and Design of Analog Integrated Circuits, edition, John Wiley & Sons Inc., 2001.
[26] T.-L. Lin, The Application of The Electrical Impedance Tomography to Gastric Emptying, Master Thesis, Institute of Biomedical Engineering, National Cheng Kung University, June 2001.
[27] W. B. Wilson, H. Z. Massoud, E. J. Swanson, R. T. George, and R. B. Fair, “Measurement and modeling of charge feedthrough in n-channel MOS analog switches,” IEEE J. Solid-State Circuits, vol. SC-20, no. 6, pp. 1206-1213, Dec. 1985.
[28] Yi-Yu Lu, The Electrical Impedance Imaging System: A Digital Design Approach, Master Thesis, Institute of Biomedical Engineering, National Cheng Kung University, June 1995.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top