跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/04 08:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂元喬
研究生(外文):Yuan-Chiao Lu
論文名稱:逆行性骨髓內釘之生物力學分析
論文名稱(外文):Biomechanical Analysis of The Retrograde Intramedullary Nail
指導教授:張志涵張志涵引用關係
指導教授(外文):Chih-Han Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:醫學工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:100
中文關鍵詞:股骨逆行性骨髓內釘有限元素法
外文關鍵詞:femurretrograde intramedullary nailfinite element method
相關次數:
  • 被引用被引用:7
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
逆行性骨髓內釘(Retrograde Intramedullary Nails)為一個較新式固定遠端骨骨骨折的方式。在臨床上許多相關報告中,骨板及骨螺絲治療股骨關節內骨折有相當不錯的效果,但其對於骨質疏鬆症的病患較不易達到穩定的固定效果,並且手術過程較不易植入。因此逆行性骨髓內釘的發展漸漸取代骨板的使用。由於骨釘植入股骨的手術過程中,對於骨折處附近的軟組織傷害較低,故臨床上骨癒合率較高。在骨折的生物力學方面,骨釘的位置是延著股骨骨幹之軸向,可以抵抗軸向、彎矩、扭轉負載。
然而實際臨床上使用骨髓內釘固定遠端股骨骨折,仍有發生固定失敗的例子。其主要是骨髓內釘固定系統的斷裂、螺絲鬆脫破壞、復位不完全,及遠端股骨整體穩定性不夠,致使骨癒合不良…等,影響上述情形的因素雖有部份文獻提及,但其固定系統基礎生物力學及力學傳遞的情形,仍值得探討。
本研究利用有限元素模擬分析,並輔以實驗方法加以對照有限元素模型之合理性。由研究結果初步顯示,多孔洞骨髓內釘在孔洞處較易產生應力集中現象;最靠近骨折面的骨釘螺絲,在橫斷骨折時其影響不大,但對斜斷骨折時可有效增益股骨較大的勁度,主要是由於其通過骨折面;對於骨釘的排列方式,最遠端兩根螺絲比最近端兩根螺絲對穩定度的貢獻較高,而其中最遠端骨釘螺絲及最近端骨釘螺絲可提供較高的勁度值。經由分析的結果,歸納出逆行性骨髓內釘較佳置入型式及設計之參考,期望能提供給臨床醫師作為治療遠端股骨骨折之評估,對於臨床利用逆行性骨髓內釘治療骨折其生物力學有更進一步的瞭解!
Retrograde intramedullary nail extends the indications for interlocking nails to include supracondylar fractures of the distal femur. Excellent clinical results have been reported with the condyle compression screw and side plate;however, complications related to this device have included failure of fixation in osteopenic bone and difficulty of insertion. A new device, the supracondylar intramedullary nail, has recently been introduced for distal femoral fracture fixation. Good results have been reported for the treatment of acute distal femur fractures using the supracondylar intramedullary nail. The proposed inherent biomechanical advantage of this device is its increased stability based on the intramedullary position of the nail along the longitudinal axis of the femur. The purpose of this study was to compare the initial biomechanical stability of the femur with the various designs retrograde intramedullary nail by mechanical testing. 3-D finite element analysis was employed to simulate the femur-nail structure stiffness and the stress distribution of the nail and femur. The results showed that the 5-hole nail was stiffer than the 9-hole nail and the maximum von Mises stress was around the distal two screw holes. For the 9-hole nail, the stress concentrated around the nail screw hole especially without screw insertion. For IMSC 5-hole nail, the perifracture screw was more important for oblique fracture than transverse fracture. The distal two screws improved the strength of bone-implant compound more than the proximal screws and stress increased significantly at the 2nd screw hole count from the distal end when 1st screw was absent. The screw numbers & positions of IMSC nail revealed similar tendency in oblique and transverse fracture except for the effect of the 3rd screw in oblique fracture.
第一章 序論………………………………………………………1
1-1 前言………………………………………………………………2
1-2 股骨解剖構造簡介………………………………………………2
1-3 遠端股骨骨折簡介………………………………………………4
1-4 逆行性骨髓內釘及其手術方法…………………………………9
1-4.1 逆行性骨髓內釘簡介…………………………………………9
1-4.2 逆行性骨髓內釘手術方法……………………………………11
1-5 相關文獻回顧……………………………………………………13
1-6 研究動機與目的…………………………………………………20
第二章 材料與方法………………………………………………21
2-1 研究流程概述……………………………………………………21
2-2 人造股骨資料……………………………………………………24
2-3 逆行性髁上骨髓內釘資料………………………………………26
2-4 人造股骨實驗……………………………………………………30
2-4.1 股骨頭包埋、夾具設計………………………………………30
2-4.2 負荷及邊界條件與擷取的資料型態…………………………32
2-4.3 製造骨折面……………………………………………………33
2-4.4 實驗的參數分析………………………………………………35
2-5 有限元素模擬……………………………………………………38
2-5.1 三維有限元素模型建構………………………………………38
2-5.2 模型的材料性質………………………………………………43
2-5.3 模型的負荷及邊界條件………………………………………44
2-5.4 模型的參數分析………………………………………………45
第三章 結果………………………………………………………48
3-1 數據分析方法……………………………………………………48
3-1.1 實驗數據分析方法………………………………………48
3-1.2 模擬數據分析方法………………………………………49
3-2 完整股骨測試分析………………………………………………50
3-3 不同骨釘孔洞數之比較…………………………………………51
3-3.1 實驗與模擬比對…………………………………………51
3-3.2 壓力負載測試……………………………………………53
3-3.3 扭轉力矩負載測試………………………………………55
3-4 有無第三根螺絲之比較…………………………………………57
3-4.1 壓力負載測試……………………………………………57
3-4.2 扭轉力矩負載測試………………………………………60
3-5 不同螺絲數目與位置之比較……………………………………62
3-5.1 單純橫斷骨折……………………………………………62
3-5.2 單純斜骨折………………………………………………69
3-6 應變值的量測……………………………………………………76
第四章 討論與結論………………………………………………78
4-1 實驗及模擬之準確性……………………………………………78
4-2 螺絲孔洞數目的探討……………………………………………84
4-4 骨螺絲最佳位置分析……………………………………………86
4-5 實驗設置與變異性………………………………………………88
4-6 有限元素模擬與相關條件設定…………………………………90
第五章 結論與未來展望…………………………………………94
參考文獻………………………………………………………………96
[1] Koval KJ, Kummer FJ, Bharam S, Chen D, Halder S, “Distal femoral fixation: a laboratory comparison of the 95 degrees plate, antegrade and retrograde inserted reamed intramedullary nails” Journal of Orthopaedic Trauma. 1996;10(6):378-82
[2] David SM, Harrow ME, Peindl RD, Frick SL, Kellam JF, “Comparative biomechanical analysis of supracondylar femur fracture fixation: locked intramedullary nail versus 95-degree angled plate” Journal of Orthopaedic Trauma. 1997;11(5):344-50
[3] Robert W. Meyer, Nicholas A. Plaxton, Paul D. Postak, Allison Gilmore, Mark I. Froimson, “A biomechanical comparison of
an intramedullary nail and a fixed angle screw side plate for distal femur fractures” AAOS. 1997
[4] Voor MJ, Verst DA, Mladsi SW, Khalily C, Seligson D, “Fatigue properties of a twelve-hole versus a five-hole intramedullary supracondylar nail” Journal of Orthopaedic Trauma. 1997;11(2):98-102
[5] Bucholz RW, Ross SE, Lawrence KL, “Fatigue fracture of the interlocking nail in the treatment of fractures of the distal part of the femoral shaft” Journal of Bone & Joint Surgery - American Volume. 1987;69(9):1391-9
[6] Hora N, Markel DC, Haynes A, Grimm MJ, “Biomechanical analysis of supracondylar femoral fractures fixed with modern retrograde intramedullary nails” Journal of Orthopaedic Trauma. 1999;13(8):539-44
[7] Lin J, Lin SJ, Chen PQ, Yang SH, “Stress analysis of the distal locking screws for femoral interlocking nailing” Journal of Orthopaedic Research. 2001;19(1):57-63
[8] Widjaja W, Hartung C, “Biomechanical comparison of different fixations of femur-interlocking-nails” Clinical Biomechanics. 2001;16(8):702-5
[9] McLaren AC, Dupont JA, Schroeber DC, “Open reduction internal fixation of supracondylar fractures above total knee arthroplasties using the intramedullary supracondylar rod” Clinical Orthopaedics & Related Research. 1994;302:194-8
[10] Heiner AD, Brown TD, “Structural properties of a new design of composite replicate femurs and tibias” Journal of Biomechanics. 2001;34(6):773-81
[11] Robert T. Trousdale, George J. Haidukewych, “Fractures of the Femoral Diaphysis in Adults” Orthopaedic Surgery. 2000;Volume 6:Part 4
[12] J.C. Alvarez, William G. Delong, Philip A. Caracciolo, Charistopher T. Born, “Retrograde Femoral Rodding” The university of Pennsylvania Orthopaedic Journal. 1999;12:57-65
[13] Raunest J, Kynast W, Lesch V, Kukulies U, Hacklander T, Schwarting KH, Arnold G, “Geometric properties of the fractured tibia stabilized by unreamed interlocking nail: development of a three-dimensional finite element model” Computers & Biomedical Research. 1996;29(4):259-70
[14] Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP, “Femoral strength is better predicted by finite element models than QCT and DXA” Journal of Biomechanics. 1999;32(10):1013-20
[15] Duda GN, Mandruzzato F, Heller M, Kassi JP, Khodadadyan C, Haas NP, “Mechanical conditions in the internal stabilization of proximal tibial defects” Clinical Biomechanics. 2002;17(1):64-72
[16] Eveleigh RJ, “A review of biomechanical studies of intramedullary nails” Medical Engineering & Physics. 1995;17(5):323-31
[17] Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L, “Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration” Journal of Biomechanics. 2000;33(12):1611-8
[18] Viceconti M, “A comparative study on different methods of automatic mesh generation of human femurs” Medical Engineering and Physics. 1998;20: 1-10
[19] Ricci WM, Bellabarba C, Evanoff B, Herscovici D, DiPasquale T, Sanders R, “Retrograde versus antegrade nailing of femoral shaft fractures” Journal of Orthopaedic Trauma. 2001;15(3):161-9
[20] Ricci WM, Bellabarba C, Lewis R, Evanoff B, Herscovici D, Dipasquale T, Sanders R, “Angular malalignment after intramedullary nailing of femoral shaft fractures” Journal of Orthopaedic Trauma. 2001;15(2):90-5
[21] Ostrum RF, Agarwal A, Lakatos R, Poka A, “Prospective comparison of retrograde and antegrade femoral intramedullary nailing” Journal of Orthopaedic Trauma. 2000;14(7):496-501
[22] Ostrum RF, DiCicco J, Lakatos R, Poka A, “Retrograde intramedullary nailing of femoral diaphyseal fractures” Journal of Orthopaedic Trauma. 1998;12(7):464-8
[23] ElMaraghy AW, Schemitsch EH, Richards RR, “Femoral and cruciate blood flow after retrograde femoral reaming: a canine study using laser Doppler flowmetry” Journal of Orthopaedic Trauma. 1998;12(4):253-8
[24] Margareta Nordin, Vicyot H. Frankel, “Basic Biomechanics of The Musculoskeletal system, 3rd edition” Lippincott Williams & Wilkins. 2001
[25] Elaine N. Marieb, Jon Mallatt, “Human Anatomy, 3rd edition” Addison Wesley Longman. 2001
[26] 彭兆偉,“新型調節式-模組化脛骨髓內釘的電腦輔助設計” 國立陽明大學醫學工程研究所,碩士論文,1999
[27] 楊榮森等譯,“臨床骨折學” 合記圖書出版社,1998
[28] David Seligson, Stephen L. Henry, Stuart A. Green, “Intramedullary Supracondylar Nail Surgical Technique” Smith & Nephew, Inc., 2000
[29] James M. Gere, Stephen P. Timoshenko, “Mechanics of Materials, 4th edition” An International Thomson Publishing Company, 1997
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top