跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/04 08:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志憲
研究生(外文):Chih-Hsien Lin
論文名稱:應用解析方法評估瀝青混凝土之力學機制
論文名稱(外文):Analytical Method applied to evaluate mechanistic performance of asphalt concrete
指導教授:陳建旭陳建旭引用關係
指導教授(外文):Jian-Shiuh Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:206
中文關鍵詞:時間-溫度重疊原理彈-黏-塑材料模式重車超載車轍預測模式力學係數地工膜布
外文關鍵詞:time-temperature superposition principlegeosyntheticmechanistic coefficientrutting modeloverloading truckelasto-visco-plastic material model
相關次數:
  • 被引用被引用:12
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:1
近年來重車超載所衍生的嚴重車轍及龜裂等鋪面破壞問題,使得台灣公路單位約70%經費花在維修上,然而維修次數卻趕不上鋪面破壞速度。因此,實有必要針對鋪面破壞衍生的各種原因,將瀝青混凝土的材料特性及鋪面系統的力學分析,對其間的結合加以深入探討。
為更加瞭解瀝青混凝土之於永久變形的相關性,首先以時間-溫度重疊原理(Time and Temperature Superposition Principle, TTSP)與彈-黏-塑(Elasto-Visco-Plastic, E-V-P)材料模式的建立,考量瀝青混凝土複雜的材料特性,將其納入力學觀念,作為力學模擬之材料輸入參數。結合上述材料模式,以有限元素程式ABAQUS建立鋪面系統,進一步探討載重與鋪面間所產生之力學反應,分析重車超載與預測永久變形,並再將力學觀念納入AASHTO鋪面設計,建立力學-經驗鋪面厚度設計。以上,主要研究論述可歸納整理相關結論如下:
1.由時間-溫度重疊原理以乘冪模式建構主曲線,可將瀝青混凝土之主曲線劃分成三部份:彈性區、黏彈區及黏性區,瀝青混凝土黏彈區間越大表示進入黏性行為的時間越晚,與力學解析相互印證得知其抗車轍能力越佳,因此黏彈區間影響瀝青混凝土車轍之力學性質頗大,亦說明不可僅以線彈性理論考量瀝青混凝土的材料性質。
2.實驗室潛變試驗及車轍輪跡試驗之於永久變形評估,所建立的彈-黏-塑模式,可完整評估瀝青混凝土之時間相依-獨立、可回復-不可回復的變形特性。靜態潛變曲線,發現在高溫載重下,黏彈性變形與黏塑性變形率為潛變變形的主要元素,但於除載後黏彈性可回復大部份變形。此外,重複載重潛變試驗中發現,隨載重次數增加,瀝青混凝土材料黏彈特性逐漸消失,隨試驗溫度愈高,黏塑性應變速率會隨之增加,原本黏彈性將轉換為黏塑性行為,殘留變形迅速產生。由此推論,改質瀝青能有較高的抗變形能力係出自於有較好的黏彈可回復特性。
3.半聯結車T4車型佔軸次分佈37.88%,超載率約80%,破壞因子增加率約50%~70%,所造成的超載破壞最為嚴重。因此以T4為重車代表車種,作軸組一次移動載重模擬,結果發現,當車速達90km/hr時,瀝青面層頂部、底部同時產生跳動起伏的”垂直”、”水平”張應變。故在重車高速行駛時,隨軸次數增加,易因瀝青面層上下出現張應變而發生面層裂縫。
4.迥異於以往靜態載重與AI及Shell路基頂部垂直壓縮應變之設計考量,採特定點連續載重描述實際行車速率及次數情況,進一步計算各層(面、底、基及路基)累積變形量,建構現場模擬之車轍預測模式相當準確,
5.本研究所發展的力學校正係數加入原AASHTO柔性鋪面厚度設計,可控制鋪面績效於一合理範圍,且鋪面結構經調整修正後,重車超載所造成各層力學行為強度不均現象有明顯改善,且總厚度並沒有大量增加;鋪面厚度可以合理分配,且減少車轍及龜裂等鋪面破壞。此外,另設置地工膜布於鋪面面層及底層之介面,亦有助於改善車轍變形與增加疲勞壽命,並節省底、基層材料。
Recently, serious overloading problem has resulted in severe rutting and cracking distresses on the highways in Taiwan. Thus damage rate of flexible pavements is faster than annual rehabilitatoin, which costs about 70 percent of the maintenance budget. The combination between fundamental properties of asphalt concrete and mechanistic analyses of pavement system are going to be characterized to meet the demand.
In order to get more understanding of asphalt-concrete (AC) material property related to permanent deformation, parameter characterization methods of time-temperature superposition principle (TTSP) and elasto -visco-plastic (E-V-P) model are evaluated at first. The results of TTSP and E-V-P model could be input in further mechanic simulation. The pavement system based on above material models could be simulated by three-dimensional finite-element program ABAQUS and set into the analytical processes for calculating mechanical responses and predicting permanent deformation. Involving mechanistic concept into AASHTO pavement design, the mechanistic-empirical pavement design could be developed. Based on the analysis presented in this study, the following conclusions can be made:
1.According to results using TTSP, the master cure could be spearated in three regions, such as elastic, viscoelastic and viscous, evaluated by power-law model. It was found that the larger the viscoelatic interval, the better rutting resistance the AC. The established model demonstrated its application to evaluate the viscoelastic property and pavement performance made of different materials. On the other hand, the simple linear elastic-law could not be used to evaluate AC without concept of viscoelastic interval.
2.A series of creep and wheel-tracking tests are effective in evaluating the viscoelastic property of asphalt concrete mixtures to permanent deformation. The formulaic E-V-P model could determine deformations of time dependent-independent and recoverable-unrecoverable components occur simultaneously. Resulting the static creep tests, the contribution of the recoverable viscoelastic and viscoplastic components to the residual deformation is reduced at high temperature. Under cyclic loading, the accumulated residual deformations increase because of contributions of plastic components at high temperature. Hence, pavements modified with polymers possessed less permanent deformation induced by the better recoverable viscoelastic property.
3.Data collected from toll stations indicated that the semi-tractor trailer named T4, whose axle-number distribution reaches about 37.88%, overloading-rate reaches about 80%, and damage factor over the maximum allowable mass is about in 50%~70%, could be the major overloading truck. Results of moving loading at high speed of 90km/hr, the “vertial” and “horizontal” strain on the top and bottom of surface layer varied up and down from compression to tension alternately in the meanwhile. Thus it can be seen that surface cracking might occur when heavy truck traveled at high speed with increasing numbers of passing.
4.The dynamic analytical results of using three-demention finite element on pavement system incorporated with the mechanistic-empirical approach in the prediction of rutting are different from former subgrade-strain-based rutting models developed by the Asphalt Institute and Shell, and provided value information on the contribution of each layer, surface, base, subbase and subgrade, to permanent deformation in flexible pavements. The rutting parameters in the model were calibrated using rut depths obtained from the field test, and the validation outcome showed that their predictions were in good agreement with measured ones.
5.Mechanistic coefficients (MC) were involved in AASHTO pavement design to make correlation between performance and mechanistic analyses. The mechanistic-empirical pavement design is shown to reduce rutting and cracking in reasonable distribution surrounded pavement without increasing the pavement total thickness. After introducing the MCs, the adjusted pavement structure is improved better to evenly distribute distress even under overloading. In addition, it was found that geosynthetic could better prevent pavement cracking and rutting when placed at the bottom of surface course. The use of geosynthetic was shown to prolong pavement life and had savings in materials of base or subbase.
摘 要I
AbstractIII
誌 謝VII
目 錄IX
表 目 錄XIII
圖 目 錄XV
附 錄 表 圖XIX
符 號 說 明XXI
第一章 緒 論1
1-1 前言1
1-2 研究動機及目的3
1-3 研究範圍及方法5
第二章 文獻回顧7
2-1 瀝青混凝土之黏彈力學性質及理論7
2-1-1時間─溫度疊加原理(Time-Temperature Superposition)7
2-1-2 瀝青混凝土之材料模式10
2-2 美國州公路及運輸官員協會(AASHTO)柔性路面設計15
2-3台灣柔性路面之使用情形19
2-3-1 雨量及路基土壤分佈情況19
2-3-2 交通荷重狀況22
2-3-3 路面應用與管理狀況22
2-3-4 公路局試驗道路23
2-4 鋪面力學解析準則25
2-5 鋪面解析概念與數值分析方法26
2-6 鋪面績效預測模式30
2-6-1 永久變形(車轍)預測模式30
2-6-2 疲勞龜裂破壞模式32
第三章 研究方法35
3-1 研究流程35
3-2 試驗材料39
3-2-1 瀝青材料39
3-2-2 骨材級配39
3-3 實驗室試驗40
3-3-1 基本物性試驗40
3-3-2 配合設計與試體製作41
3-3-3 潛變試驗(creep test)42
3-3-4 車轍輪跡試驗(wheel-tracking test)45
3-4 分析資料庫之建立46
3-4-1 交通量現場觀測46
3-4-2 收費站重車靜態地磅觀測48
3-4-3 收費站超載率分析50
3-4-4 橫斷面試驗-車轍深度55
3-4-5 現場鋪面車轍深度觀測57
3-4-6 鋪面溫度調查58
3-5 鋪面結構分析程式60
3-6 數值運算分析程式65
第四章 瀝青混凝土之時間-溫度重疊原理67
4-1 時間-溫度疊加原理(TTSP)架構黏彈性主曲線67
4-2 利用乘冪模式模擬主曲線70
4-3 乘冪模式對瀝青混凝土黏彈性之解釋72
4-4 主曲線參數分析與鋪面模擬力學驗證78
4-4-1 黏彈區間(t v~ te)與勁度變化率m值之影響效應79
4-4-2 各種瀝青混凝土之力學分析81
4-5 小結82
第五章 瀝青混凝土彈-黏-塑材料模式85
5-1 彈-黏-塑模式測定變形分量86
5-2 不同溫度下變形分量(deformation component)之變化94
5-3 靜態潛變變形分量之於永久變形的相關性96
5-4 變形參數應用於輪跡試驗模擬永久變形之預測與驗證100
5-4-1 有限元素網格之切割與參數設定100
5-4-2 輪跡試驗之永久變形預測105
5-5 小結108
第六章 移動載重模擬及車轍預測109
6-1 重車超載軸組效應之力學分析110
6-2 載重型式之建立115
6-2-1 載重延滯之設定115
6-2-2 模型之切割與設定116
6-3 FHWA/DIVINE現場試驗與模擬驗證118
6-4 一次移動軸組載重分析121
6-5 連續載重之車轍預測125
6-5-1 累積永久變形預測模式之推演125
6-5-2 累積永久變形預測130
6-6 小結134
第七章 解析方法應用於鋪面厚度設計135
7-1 本省AASHTO厚度設計136
7-2 解析方法應用於鋪面厚度設計概念140
7-3 不同鋪面結構之力學分析142
7-3-1 車轍之分析144
7-3-2 龜裂之分析146
7-4 發展力學係數於鋪面厚度設計148
7-4-1 力學係數之定義149
7-4-2 力學校正模式之比較與驗證152
7-5 地工膜布改善方案159
7-5-1 地工膜布放置位置之選擇159
7-5-2 地工膜布應用於不同鋪面結構設計之比較162
7-6 小結165
第八章 結論與建議167
8-1 結論167
8-2 建議169
參考文獻171
附錄A 瀝青鋪面ABAQUS模擬指令183
附錄B 潛變變形參數測定MATLAB指令187
附錄C 一次移動軸組載重ABAQUS模擬193
附錄D 連續載重ABAQUS模擬197
附錄E 相同路基強度案例之力學反應199
作者簡述203
中央氣象局,台灣地區各氣象站,大陸地區及世界各重要都市月平均統計表(1999) (網路資料:http://www.cwb.gov.tw)。
交通部台灣區國道高速公路局,「高速公路86年報」,台北(1997)。
交通部交通技術規範,「柔性路面設計手冊」,期末報告,台北(1999)。
交通部統計處,「交通部統計要覽」,台北(1998)。
交通部統計處,「中華民國統計月報」,第357∼375期,台北(1998)。
交通部運研所研究報告,「運輸資料分析」,台北(1998)。
李秀山,「利用再生處理工作法作鋪面維修之展望」,第一屆鋪面再生學術研討會論文集,台南,第289~306頁 (1993)。
林欽仁,胡光復,「柔性鋪面動態試驗分析模式之探討」,台灣公路工程月刊,第23卷,第11期,第16~25頁(1997)。
林正芳,「地工材料於廢棄掩埋的應用」,環境工程會刊,第3卷,第2期,第29~35頁(1992)。
林志憲,「解析方法應用於柔性鋪面設計」,碩士論文,國立成功大學研究所,臺南(1999)。
林樹豪,「瀝青混凝土永久變形之評估與預測」,博士論文,國立成功大學研究所,臺南(1999)。
吳學禮,「大型車輛超載對於路面損害之探討(一)(二)」,台灣公路工程月刊,第19卷,第2期,第2~23頁;第3期,第19~35頁(1992)。
吳鳳儀,「由美國、日本之瀝青路面設計方法探討本局路面設計法(一)、(二)、(三)」,台灣公路工程月刊,第16卷,第9期,第31~47頁;第16卷,第10期,第31~48頁;第16卷,第9期,第16~31頁(1990)。
周芳如,「柔性鋪面三維有限元素分析模型之建立及其應用」, 碩士論文,國立成功大學研究所,臺南(1998)。
周家蓓,「應用動態地磅於高速公路交通資料之調查研究」,交通部台灣區國道高速公路研究報告(1997)。
周家蓓,「以行進間測重(WIN)逕行取締超載規範與提昇商車營運績效之研究」,交通部運輸研究所,臺北(1999)。
周家蓓,張德文,胡光復,「穩態非破壞性檢測法於鋪面工程之應用」,第七屆鋪面工程研討會論文集,第361~370頁(1993)。
周權英,「台灣公路次要路面工程厚度設計標準化之研究」,台灣公路工程月刊,第20卷,第8期,第2~14頁(1994)。
陳式毅,「公路局採用AASHTO柔性路面設計法之試驗路面報告」,台灣公路工程月刊,第21卷,第5期,第17~39頁(1994)。
陳式毅,李秀山,劉志高,蔡煌雄,黃文魁,「公路局R值設計法各因子之研究」,省公路局材料試驗所(1984)。
張嘉麟,「動態反於衝擊性撓度法之應用研究」,碩士論文,私立淡江大學土木工程研究所,臺北(1996)。
張智星,「MATLAB程式設計與應用」,清蔚科技股份有限公司,新竹(2000)。
歐晉德、黃裔炎,「台灣鋪面工程之前瞻」,第九屆鋪面工程學術研討會專題演講,第1-12頁(1997)。
潘國樑,「有害廢棄物安全掩埋場之設計需求」,地工技術雜誌,第31期,第22~28頁(1990)。
盧俊愷,蔡攀鰲,彭俊翔,陳國琛,「南台灣柔性鋪面溫度分佈探討-以高速公路新市收費站為例」,土木水利季刊,第23卷,第三期,第39~50頁(1996)。
簡育琳,「台灣重車效用對應鋪面績效之影響」,碩士論文,國立成功大學土木工程研究所,臺南(2000)。
鍾美娟,「衝擊式撓度指標評估路面強度之研究」,碩士論文,國立台灣大學研究所,台北(1997)。
Ali, H. A. and Tayabji, S. D., “Mechanistic evaluation of test data from LTPP flexible pavement test section,” FHWA-RD-98-012, U.S. (1997).
American Association of State Highway and Transportation Office (AASHTO), AASHTO Interim Guide for the Design of Flexible Pavement Structure, Washington , D. C.(1972).
American Association of State Highway and Transportation Office (AASHTO), AASHTO Guide for Design of Pavement Structures, Washington , D. C.(1986).
American Association of State Highway and Transportation Office, A Policy on Geometric Design of Highway and Streets, Washington , D. C. (1990).
American Association of State Highway and Transportation Office (AASHTO), AASHTO Guide for Design of Pavement Structures, Washington , D. C.(1993).
Anderson, D.A., Christensen, D.W. and Bahia, H., “Physical properties of asphalt cement and the development of performance-related specifications,” Journal of the Association of Asphalt Paving Technologists, Vol. 60, pp.437-475 (1991).
Anderson, R. M. and McGennis, R. B., “SUPERPAVE Asphalt Mixture Design Illustrated Level 1 Lab Methods,” FHWA-SA-94-004(1995).
Asphalt Institute (AI), Thickness Design-Asphalt Pavements for Highways and Streets, MS-1, 10th edition, Kentucky (1991).
Ayres, M. and Witczak, M., ”Mechanistic probabilistic system to evaluate flexible pavement performance,” Transportation Research. Record, Vol. 1629, pp. 137-148(1998).
Behzadi, G., and Yandell, W. O., ‘‘Determination of elastic and plastic subgrade soil parameters for asphalt cracking and rutting prediction,’’ Transportation Research Record, Vol. 1540, Transportation Research Board, Washington, D.C., pp. 97—104(1996).
Bhairampally, R.K., Lytton, R.L. and Little, D.N., “Numerical and graphical method to assess permanent deformation potential for repeated compressive loading of asphalt mixtures,” Transportation Research Record, Vol. 1723, pp. 150-158 (2000).
Blankenship, P. B., Mahboub, K. C. and Huber, G. A., “Rational method for laboratory compaction of hot-mix asphalt,” Transportation Research Record, Vol. 1454, TRB, Washington, D.C., pp. 144-153(1995).
Bouldin, M. G., and Collins, J. H., “Influence of binder rheology on rut resistance of polymer modified and unmodified hot mix asphalt,” ASTM STP 1108, pp. 50-60 (1992).
Castell, M. A., Ingraffea, A.R., and Irwin, L., “Fatigue crack growth in pavement,” Journal of Transportation Engineering, ASCE, Vol.126, No.4, pp. 283-290(2000).
Chan, F., Barksdale, R.D. and Brown, S.F., ”Aggregate base reinforcement of surfaced pavements,” Geosynthetics and Geomembranes, Vol. 8, pp.165-189 (1989).
Chen, D. H. , Zaman M. , Laguros, J. and Soltani, A.,“Assessment of computer programs for analysis of flexible pavement structure,” Transportation Research Record, Vol. 1482, pp.123-133(1995).
Cho, Y., McCulloguh, B. F., and Weissmann, J.,“Considerations on finite-element method application in pavement structural analysis,” Transportation Research Record, Vol. 1539, TRB, Washington, D.C., pp. 96-101(1996).
Choi, Y. K., “Facture and Fatigue of Bituminous Materials”, Internal report no PGR99029, University of Nottingham, School of Civil Engineering(1999).
Chou, C. P. and Ching, C. P. "Truck load distribution and its impact on vehicle weight regulations in Taiwan," Transportation Research Record, Vol. 1501, pp.87-94 (1996).
Chou, C. P. "Effect of overloaded heavy vehicles on pavement and bridge design, " Transportation Research Record, Vol. 1539, pp.58-65 (1996).
Claussen, A. I. M., Edwards, J. M., Sommer, P., and Uge, P., “Asphalt pavement design-Shell method,” Proceedings, 4th International Conference on the structural Design of Asphalt Pavements, Vol. 1, Ann Arbor, pp. 39-74(1977).
Collop, A. C., Cebon, D., and Hardy, M. S. A., “Viscoelastic approach to rutting in flexible pavements,” Journal of Transportation Engineering, ASCE, Vol. 121, No, 1, pp. 82-93(1995).
Cominsky, R. J., et al., “Level one mix design: materials selection, compaction and conditioning,” SHRP-A-40, Washington, D.C., pp. 29-91(1994).
Diylajee, V. A., and Raymond, G. P., ‘‘Repetitive load deformation of cohesionless soil,’’ Journal of Geotechnical Engineering, ASCE, Vol. 108, No. 10, pp. 1215—1229 (1982).
Edorgan, F., and Sih, G. C., “On the crack extension in plates under plane loading and transverse shear,” Journal of the Basic Engineering, pp. 519-527(1963).
Federal Highway Administration (FHWA), Mechanistic Evaluation of Test Data from LTPP Flexible Pavement Test Sections, Final Report, Vol. 1, FHWA-RD-98-020, Virginia (1998).
Federal Highway Administration (FHWA), MICHPAVE User’s Manual, Michigan State University, U. S. A. (1989)
Federal Highway Administration (FHWA), Pavement Primary Response to Dynamic Loading, U.S. Department of Transportation Research and development Turner-Fairbank Highway Research Center, Virginia (1997).
Finn, F. N., Monismith, C. L., and Markevich, N. J., “Pavement performance and asphalt concrete mix design,” Proceeding of Association of Asphalt Paving Technologist, Vol. 52, pp. 121-150(1983).
Gillesple, T. D., Karamihas, S. M., Sayers, M. W., Nasim, M. A., Hansen, W., Ensan, N. and Cebon, D., "Effects of heavy-vehicle characteristics on pavement response and performance," NCHRP Rep.353, pp. 29-38(1993).
Hass, R. and Hudson, W. R., Pavement Management Systems, McGraw-Hill, New York(1994).
Haas, R., Walls, J. and Carroll, R.G., “Geogrid reinforcement of granular bases in flexible pavements”, Transportation Research Record 1188, pp.19-27(1988).
Hibbit, Karlsson and Sorensen, ABAQUS User’s Manual, Version 6.1, U.S.A.(2000).
Highway Research Board (HRB), AASHTO Road Test Special Report 61 E, Report 5, Washington, D. C.(1962).
Hopman, P. C., Pronk, A. C., Kunst, P. A. J. C., Molenaar, A. A. A., and Molenaar, J. M. M., "Application of the viscoelastic properties of asphalt concrete," Proceedings of 7th Int. Conf. on Asphalt Pavements, Notthingham, Vol. 1, pp. 73-88 (1992).
Huang, Y. H., Pavement Analysis and Design, Prentice Hall, New Jersey, pp. 1-167, 318-370, 460-472(1993).
Irwin, L. H., “Use of fracture energy as a fatigue failure criterion,” Proceeding of Association of Asphalt Paving Technologist, pp. 41-63(1977).
Kandhal, P. S. and Brown, E. R., "Comparative Evaluation of 4-inch and 6-inch Diameter Specimens for Testing Large Stone Asphalt Mixes," Proceedings of the First Materials Engineering Congress (Part 1) (1990).
Kandhal, P. S., Cross, S. A., and Brown, E. R., ”Heavy duty asphalt pavements in Pennsylvania: evaluation for rutting,” Transportation Research Record, Vol. 1384, pp. 49-58(1993).
Kennedy, T. W., Adedimila, A. S. and Haas, R., “Materials characterization for asphalt pavements structural design systems,” Proceedings of 4th International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, pp. 346-353(1977).
Kenndy, T. W., Huber, G. A., Harrigan, E. T., Cominsky, R. J., Hughes, C.S.,Quintus, H.V., and Moulthrop, J. S., “Superior performing asphalt pavements (Superpave): the product of the SHRP asphalt research program,” Rep. No. SHRP-A-410, Strategic Highway Research Program, Washington, D.C., pp. 13-40(1994).
Khedr, S. A., ‘‘Deformation mechanism in asphaltic concrete,’’ Journal of Transportation Engineering, ASCE, Vol. 112, No. 1, pp. 29—45 (1986).
Kingham, R.I., “Failure Criteria Developed from AASHO Road Test Data,” Proceedings of 3rd International Conference on the Structural Design of Asphalt Pavement, Vol. 1, pp. 656-669 (1972).
Koerner, R.M., Designing with Geosynthetics, Prentice Hall Press, New Jersey (1994).
Leahy, R. B., and Witczak, M. W., “The influence of test conditions and asphalt concrete mix parameters on permanent deformation coefficients Alpha and Mu,” Journal of the Association Asphalt Paving Technologists, AAPT, Vol. 60, pp. 333-363(1991).
Liddle , W. J. “ Application of AASHO road test results to the design of flexible pavement structures ,” Proceedings of 1st International Conference on the Structural Design of Asphalt Pavements , University of Michigan, Ann Arbor, pp.42~51(1962).
Little, D. N., Button, J. W. and Youssef, H., ”Development of criteria to evaluate uniaxial creep data and asphalt concrete permanent deformation potential,” Transportation Research Record, Vol. 1471, pp. 49-57 (1993).
Little, D.N., Letton, A., Prapnnachari, S. and Kim, Y.R., "Rheological and rheooptical characterization of asphalt cement and evaluation of relaxation properties," Transportation Research Record, Vol. 1436, pp. 71-82 (1994).
Mahboub, K, “Asphalt concrete creep as related to rutting,” Journal of Materials in Civil Engineering, ASCE, Vol. 2, pp.147-163 (1990).
Majidzadeh, K., Kauffman, E. M., and Saraf, C. L., ”Analysis of Fatigue of Paving Mixtures from Fracture
Mechanics Viewpoint,” Fatigue of Compacted Bituminous Aggregate Mixtures, ASTM STP 508, ASTM, West Conshohocken, Pa., pp. 67-83(1972).
Miura, N., Sakai, A., Taesiri, Y., Yamanouchi, and Yasuhara, K., ”Polymer Grid Reinforced pavements on soft clay grounds”, Geosynthetics and Geomembranes, Vol. 9, pp.99-123 (1990).
Moavenzadeh, F. and Soussou, J., ”Viscoelastic constitutive equation for asphalt mixtures,” Highway Research Report, No. 256, pp. 38-52(1968).
Moghaddas-Nejad, F. and Small, J.C., ”Effect of geogrid reinforcement in model track tests on pavements”, Journal of Transportation Engineering, ASCE, Vol.122, pp.468-474 (1996).
Monismith, C. L., ‘‘Rutting prediction in asphalt concrete pavements,’’ Transportation Research Record, Vol. 616, Transportation Research Board, Washington, D.C., pp. 2-8 (1976).
Monismith, C. L., “Analytically based asphalt pavement design and rehabilitation: Theory to practice, 1962-1992,” Transportation Research Record, Vol. 1354, pp. 5-26(1992).
Monismith, C. L., and Tayebali, A. A., “Permanent deformation (rutting) considerations in asphalt concrete pavement sections,” Proceeding of Association of Asphalt Paving Technologist, Vol. 57, pp. 414-446(1988).
Pagen, C. A., “A study of the temperature-dependent rheological characteristics of asphaltic concrete, “ Highway Research Report, No. 158, pp. 116-143(1967).
Papagiannakis, Amoah, N. and Taha, R., “Formulation for viscoelastic response of pavements under moving dynamic loads,” Journal of Transportation Engineering, ASCE, Vol.122, No.2, pp. 140-145(1996).
Peattie, K. R., “A fundamental approach to the design of flexible pavements,” Proceedings of 1st International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, pp. 403-411(1962).
Perl, M., Uzan, J., and Sides, A.,“A visco-elastic-plastic constitutive law for a bitumionous mixture under repeated loading,.”Transportation Research Record, Vol. 911, pp. 20-27(1983).
Schapery, R. A., “Viscoelastic behaviour and analysis of composite materials,” Compos. Mat, Chap. 4, Vol. 2, G. P. Sendeckyj, ed., Academic, San Diego, pp. 85-168(1974).
Shell Pavement Design Manual-Asphalt Pavements and Overlays for Road Traffic, Shell International Petroleum Company, London(1978).
Shields, D.H., Zeng, M. and Kwok, R., “Nonlinear viscoelastic behavior of asphalt concrete in stress relaxation”, Journal of the Association of Asphalt Paving Technologists, AAPT, Vol. 67, pp. 358-400 (1998).
Siddharthan, R. V., Yao, J. and Sebaaly, P. E. "Pavement strain from moving dynamic 3D load distribution," Journal of Transportation Engineering, ASCE, Vol.124, No.6, pp.557-566 (1998).
Shook, J. F., Finn, F. N., Witczak, M. W., and Monismith, C. L.,” Thickness design of asphalt pavements-the Asphalt Institute method,” Proceedings, 5th International Conference on the Structural Design of Asphalt Pavements, Vol. 1, The Netherlands, pp. 17-44(1982).
Sides, A., Uzan, J., and Perl, M., “A comprehensive visco-elastic-plastic characterization of sand-asphalt under compression and tension cycle loading,” Journal of Testing and Evaluation, ASTM, Vol. 13, No. 1, pp. 49-59(1985).
Sousa, J. B., Weissman, S. L., Sackman, J. L., and Monismith, C. L., "Nonlinear elastic viscous with damage model to predict permanent deformation of asphalt concrete mixes," Transportation Research Record, Vol. 1384, pp. 80-99(1993).
Sousa, J.B. and Weissman, S.L., "Modeling Pavement Deformation of Asphalt- Aggregate Mixes," Journal of the Association of Asphalt Paving Technologists, St. Louis, Missouri, Vol. 63, pp. 224-257 (1994).
Sweere, G. T. H., ‘‘Unbound granular bases for roads,’’ PhD thesis, University of Delft, Delft, The Netherlands (1990).
Uddin, W., Zhang, D. and Fernandez, F., “Finite element simulation of pavement discontinuities and dynamic load response,” Transportation Research Record, Vol. 1448, pp. 100-106(1995).
Ullidtz, P., Pavement analysis, Developments in Civil Engineering Series 19, Elsevier(1987).
Uzan, J., "Asphalt concrete characterization for pavement performance prediction,” Proceedings of Association of Asphalt Paving Technologist, Vol. 65, pp. 573-656 (1996).
Uzan, J., Sides, A., and Perl, M., "Viscoelastoplastic model for predicting performance of asphaltic mixtures," Transportation Research Record, Vol. 1043, pp. 78-89(1985).
Uzan, J., Witczak, M. W., Scullion, T. and Lytton, R. L., "Development and Validation of Realistic Pavement Response Models", 7th international Conference on Asphalt Pavements, Notthingham, Great-Britain, Vol.2, pp. 334-350 (1992).
Van De Loo, P. J., “The creep test: a key tool in asphalt mix design and in the prediction of pavement rutting,” Proceedings of Association of Asphalt Paving Technologist, Vol. 47, pp. 522-554(1978).
Veverka, V,. ‘‘Raming van de spoordiepte bij wegen met een bitumineuze Verharding,’’ De Wegentechniek, Vol. 24, No. 3, pp. 25-45 (1979) (in Dutch).
Von Quintus, H. L., Scherocman, J. A., Hughes, C. S., and Kennedy, T. W., “Asphalt-aggregate mixture analysis system,” NCHRP Report 338, National Cooperative Highway Research Program, TRB, Washington, D.C., pp. 35-53, 135-179(1991).
Vuong, B., and Amstrong, P., Repeated load triaxial testing on the subgrades from Mulgrace ALF site, Australian Road Research Board (1991).
William, J. K., “Predictive design procedures, a design method for flexible pavements using the VESYS structural subsystem,” Proceedings of 4th International Conference on the Structural Design of Asphalt Pavements, Ann Arbor, MI.(1977).
Zafir, Z., Siddharthan, R., and Sebaaly, P. E. "Dynamic pavement-strain history from moving traffic load," Journal of Transportation Engineering, ASCE, Vol.120, No.5, pp.821-842(1994).
Zaghloul, S. M. and White, T. D., "Use of a three-dimensional, dynamic finite element program for analysis of flexible pavement," Transportation Research Record, Vol. 1388, pp. 60-69(1993).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top