跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 03:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:石明隴
研究生(外文):Ming-Lung Shih
論文名稱:高強度鋼管混凝土柱數值模擬之研究
論文名稱(外文):Study of Numerical Simulation of CFT Column with High Strength Concrete
指導教授:胡宣德
指導教授(外文):Hsuan-Teh Hu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系碩博士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:192
中文關鍵詞:圍壓寬厚比高強度鋼管混凝土軸壓與彎矩有限元素
外文關鍵詞:Finite ElementHigh-Strength Concrete-Filled Steel Tubethe ratio of width over thicknessconfinement pressureAxial Force and Bending Moment
相關次數:
  • 被引用被引用:5
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是利用ABAQUS分析探討高強度鋼管混凝土(CFT)受到固定軸力下施加純彎矩行為,其中採用高強度混凝土(HSC),並將分析結果與實驗數據比較,藉此了解鋼管混凝土在此行為下,鋼管能提供混凝土多少圍束效果,以及混凝土在受多大軸力下,混凝土軟化情形,更進一步希望能了解不同幾何斷面,對力學行為有何影響。本文中試體可分成六類,分別為圓形斷面(徑厚比40)、圓形斷面(徑厚比70)、方形未加勁斷面(寬厚比40)、方形未加勁斷面(寬厚比70)、方形加勁斷面(寬厚比40)及方形加勁斷面(寬厚比70),在吳逸民(2001)論文中,利用普通混凝土,對圓形及方形未加勁斷面已有初步的模擬,在陳致良(2002) 論文中,又增加22個普通混凝土試體加以模擬,,故本文採用吳逸民(2001)與陳致良(2002)的模擬方式,改以高強度混凝土取代普通混凝土進行分析。
由Moment-curvature圖知,結果可分為徑厚比或寬厚比40與70來比較,寬厚比40的強度優於寬厚比70的強度;相同構造的試體,軸力比愈大,韌性則愈差;圓形斷面試體的韌性最佳,其次為方形加勁試體,再其次為方形未加勁試體。圍束力方面,寬厚比40的強度優於寬厚比70的強度;相同構造的試體,軸力比愈大,在寬厚比70時圍束力愈佳,但在寬厚比40時有不佳的趨勢,其原因為高強度混凝土的脆性影響;圓形斷面試體的圍束力最佳,其次為方形加勁試體,再其次為方形未加勁試體。分析結果可知,當試體受到彎矩作用時,試體下側受到拉力作用,明顯影響鋼管圍束效果,方形未加勁斷面因為幾何不連續影響最大,並且有局部挫屈現象,為了改善方形未加勁斷面,採用八角形加勁方法。由分析結果整理比較,可以了解混凝土軟化狀況,隨著施加固定軸力增加,混凝土軟化越為明顯。
This thesis uses ABAQUS to analysis and study concrete filled steel tubes (CFT) .And see the behavior when it is loaded by bending moment under axial force. We use the high-strength concrete (HSC) and compare between the experiment data and analysis result. By this way we can understand the CFT behavior under the condition. Steel tube can provide confinement to the concrete, and concrete has softening phenomenon. Further, we wish to understand the influence of mechanics behavior between different geometry section. In the thesis we separate specimen to six types. They are circular section (the ratio of diameter over thickness 40 and 70), square untied section (the ratio of width over thickness 40 and 70) , square untied section (the ratio of width over thickness 40 and 70) .In the thesis of Wu IM(2001) ,he had the simulation for circular section and square untied section. In the thesis of Chen CL (2002), he added twenty-two specimens to simulate. So in the thesis, we use their approach of simulation, and use HSC instead of normal-strength concrete (NSC).
In the diagram of moment —curvature, we can compare the result with the ratio of diameter (width) over thickness 40 and 70. The strength of the ratio of diameter (width) over thickness 40 is better than The strength of the ratio of diameter (width) over thickness 70. If the structure is the same ,the more axial force, the worse toughness. The toughness of circular section is best, the next is the square tied section, the next is square untied section. The confinement of the ratio of diameter (width) over thickness 40 is better than the confinement of the ratio of diameter (width) over thickness 70. If the structure is the same ,the more axial force, the better confinement in the ratio of diameter (width) over thickness 70, but the worse confinement in the ratio of diameter (width) over thickness 40. The reason is the influence of concrete’s brittleness. The confinement of circular section is best, the next is the square tied section, the next is square untied section. From the result, we can know when specimens are loading by bending moment ,the lower part is acted by tension and influence the effect of the confinement obviously. Square untied section have geometry discontinuity and have the phenomenon of local buckling. In order to improve the problem, we use the approach of octagonal tied. From the result, we can know the phenomenon of softening . With the increment of the axial force, the concrete softens obviously.
中文摘要................................................... I
英文摘要..........................................................II
誌謝..........................................................Ⅳ
目錄..........................................................Ⅴ
圖表目錄..........................................................Ⅷ
符號對照表..........................................................V
第一章緒論............................................... 1
1.1 研究動機與目的⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2
1.2 本文內容.....................................................3
第二章高強度鋼管混凝土的材料行為.......................... 4
2.1 混凝土的材料特性.............................................4
2.1.1 混凝土單軸行為.........................................4
2.1.2 混凝土雙軸行為.........................................9
2.1.3 混凝土三軸行為.........................................10
2.2 鋼板的材料特性..............................................15
2.3 本文所分析之試體及其材料性質................................17
2.3.1 歐洲EuroCode4 規範....................................17
2.3.2 試體編號及材料性質....................................20
第三章材料組合率與降伏準則............................... 23
3.1 應力不變量..................................................23
3.1.1 應力向量..............................................23
3.1.2 主應力及其不變量......................................25
3.1.3 偏差應力張量與其不變量................................26
3.1.4 八面體應力............................................28
3.2 降伏判斷準則................................................30
3.2.1 Haigh-Westergaard Stress Space.......................30
3.2.2 降伏準則說明..........................................33
3.2.3 The Tresca 降伏準則..................................34
3.2.4 The Von Mises 降伏準則...............................35
3.2.5 The Mohr-Coulomb 降伏準則............................36
3.2.6 The Drucker-Prager 降伏準則..........................40
3.3 模擬混凝土之降伏準則........................................40
3.3.1 降伏方程式............................................41
3.3.2 材料參數之決定........................................44
第四章試體的模擬與分析方法............................... 47
4.1 元素介紹及接觸面模擬........................................47
4.1.1 C3D27R 元素...........................................47
4.1.2 B32 元素..............................................48
4.1.3 T3D2 元素.............................................49
4.1.4 接觸面模擬.............................................49
4.2 試體的模擬..................................................49
4.2.1 CFT 彎矩分析的模擬....................................49
4.3 收斂性分析..................................................54
4.3.1 圓形斷面...............................................55
4.3.2 方形斷面...............................................56
4.3.3 加勁方形斷面...........................................57
第五章CFT 數值分析結果與討論............................. 58
5.1 寬厚比70 斷面分析結果.......................................60
5.1.1 寬厚比70 方型未加勁斷面................................60
5.1.1.1 SU70-0.3-1072.....................................60
5.1.1.2 SU70-0.5-1786.7...................................62
5.1.2 寬厚比70 方型加勁斷面.................................64
5.1.2.1 SS70-0.2-714.7....................................64
5.1.2.2 SS70-0.3-1072.....................................66
5.1.2.3 SS70-0.4-1429.4...................................68
5.1.2.4 SS70-0.5-1786.7...................................70
5.1.3 寬厚比70 圓形斷面.....................................72
5.1.3.1 CU70-0.3-896.3....................................72
5.2 寬厚比40 斷面分析結果.......................................74
5.2.1 寬厚比40 方型未加勁斷面...............................74
5.2.1.1 SU40-0.3-844.5....................................74
5.2.1.2 SU40-0.5-1407.5...................................76
5.2.2 寬厚比40 方型加勁斷面.................................78
5.2.2.1 SS40-0.3-844.5....................................78
5.2.2.2 SS40-0.4-1126.....................................80
5.2.2.3 SS40-0.5-1407.5...................................82
5.2.3 寬厚比40 圓形斷面.....................................84
5.2.3.1 CU40-0.3-706.7....................................84
5.2.3.2 CU40-0.4-942.2....................................86
5.2.3.3 CU40-0.5-1177.8...................................88
5.4 fl和k3和k4及K 與軸應力比之關係........................93
5.4.1 寬厚比70 方形未加勁斷面...............................93
5.4.2 寬厚比70 方形加勁斷面.................................93
5.4.3 寬厚比70 圓形斷面.....................................94
5.4.4 寬厚比40 方形未加勁斷面...............................94
5.4.5 寬厚比40 方形加勁斷面.................................95
5.4.6 寬厚比40 圓形斷面.....................................96
5.4.7 寬厚比40 與70 之K 與k3 比較...........................106
5.5 中央斷面應力分佈情況........................................108
5.5.1 寬厚比70 方形未加勁斷面...............................109
5.5.2 寬厚比70 方形加勁斷面.................................109
5.5.3 寬厚比70 圓形斷面.....................................110
5.5.4 寬厚比40 方形未加勁斷面...............................110
5.5.5 寬厚比40 方形加勁斷面.................................111
5.5.6 寬厚比40 圓形斷面.....................................112
5.6 P-M 圖......................................................143
5.6.1 相同寬厚比............................................143
5.6.2 相同斷面形狀..........................................143
第六章結論與建議................................................146
參考文獻..........................................................151
附錄A(固定軸力四點彎矩SU70-0.3-1072) ............................154
附錄B(固定軸力四點彎矩SS70-0.2-714.7) ...........................155
附錄C(固定軸力四點彎矩CU70-0.3-896.3)............................173
附錄D(固定軸力四點彎矩SU40-0.3-844.5)............................181
附錄E(固定軸力四點彎矩SS40-0.3-844.5)............................191
附錄F(固定軸力四點彎矩CU40-0.3-706.7)............................202
附錄G 試體設計圖..................................................211
1、 Hibbitt, Karlsson, and Sorensen, Inc, ABAQUS User’s Manual ,version 6.3, Providence, Rohode Island, 2003.
2、 BSI, Eurocode 4:Design of Composite Steel and Concrete Structures, 1994.
3、 Chen, W. F. and Saleeb, A. F., Constitutive Equations for Engineering Materials Volume 1: Elasticity and Modeling, Second, Revised Edition, Elsevier, 1994.
4、 Chen, W. F. and Han, D. J., Plasticity For Structural Engineers, 1995.
5、 Nawy, E. G., Reinforced Concrete a Fundamental Approach , 3rd Edition, 1996, pp.46.
6、 Ge, H. B. and Usami, T., “Strength of Concrete-Filled Thin-Walled Steel Box Columns: Experiment”, Journal of Structural Engineering, Vol. 118, No. 11, November 1992, pp.3036-3054.
7、 Ge, H. B. and Usami, T., “Strength Analysis of Concrete-Filled Thin-Walled Steel Box Columns”, Journal of Construct Steel Research, Vol. 30, 1994, pp. 259-281.
8、 Mander, J. B., Priestly, M. J. N. and Park, R., “Theoretical Stress-Strain Model For Confined Concrete”, Journal of Structural Engineering, Vol. 114, No. 8, August 1988, pp. 1804-1823.
9、 Menétrey, P., and Willam, K. J.,“Triaxial Failure Criterion for Concrete and Its Generalization”, ACI Structural Journal, Vol. 92, No. 3, May-June 1995, pp. 311-318.
10、Richart, F. E., Brandtzaeg, A. and Brown, R. L. “A Study of the Failure of Concrete under Combined Compressive Stresses”, Bulletin 185, Univ. of Illinois Engineering Experimental Station, Champaign, Ill, 1928.
11、Schneider, S. P., “Axially Loaded Concrete-Filled Steel Tubes”, Journal of Structural Engineering, Vol. 124, No. 10, October 1998, pp. 1125-1138.
12、 Saenz, L. P., Discussion of “Equation for the Stress-Strain Curve of Concrete” by Desayi, P. and Krishnan, S., ACI Journal, Vol. 61, No. 9, 1964, pp. 1229-1235.
13、Sheu, M. S., Figure and Tables For Behavior of Reinforced Concrete, Class Notes, Department of Architecture, National Cheng Kung University Tainan, Taiwan, R.O.C., 2001.
14、Uy, B., “Local and Post-local Buckling of Concrete Filled Steel Welded Box Columns”, Journal of Construct Steel Research, Vol. 47, 1998, pp. 47-72.
15、Shah, S.P. and Ahmad, S.H., High Performance Concrete : Properties and Applications, McGraw-Hill,Inc.,1994.
16、ACI Committee 363,”State-of-Art Report on High Strength Concrete ”ACI Journal, 1992, pp. 22-23.
17、Cusson D., and Patrick P., ”Stress-Strain Model for Confined High-Strength Concrete”, Journal of Structural Engineering, Vol. 121, No.3,Mar, 1995, pp. 468-477.
18、Perenchio, W.F., and Klieger, P.,”Some Physical Properties of High Strength
Concrete,” Research and Development Bulletin No.RD056.01T,Portland Cement Association, Skokie, 1978, pp. 7.
19、 吳明憲,“加勁鋼管混凝土構材受軸力行為之數值分析”,國立成功大學土木工程系,碩士論文,民國八十九年六月。
20、吳逸民, “鋼管混凝土柱數值模擬之研究”,國立成功大學土木工程系,碩士論文,民國九十年六月。
21、陳致良,”鋼管混凝土柱受軸壓與彎矩之行為分析”,國立成功大學土木工程學系,碩士論文,民國九十一年六月。
22、黃炯憲,鍾立來,葉勇凱,葉錦勳,盧煉元和劉季宇,“鋼管混凝土構材研究之回顧”,國家地震工程研究中心研究報告,NCREE-98-012,民國八十七年十一月。
23、劉季宇,葉勇凱,黃炯憲,蔡克銓和孫維隆,“方形加勁鋼管混凝土柱受軸壓與彎矩之行為研究”,國家地震工程研究中心研究報告,NCREE-00-008,民國八十九年八月。
24、羅益東,”高強度混凝土軸壓下之力學行為”,國立交通大學土木工程學系,碩士論文,民國八十四年七月。
25、劉柏村,”高強度鋼管混凝土柱樑柱行為探討”, 國立交通大學土木工程學系,碩士論文,民國九十一年七月。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top