# 臺灣博碩士論文加值系統

(44.201.92.114) 您好！臺灣時間：2023/03/31 08:46

:::

### 詳目顯示

:

• 被引用:1
• 點閱:214
• 評分:
• 下載:18
• 書目收藏:1
 本文針對63Sn/37Pb銲錫材料，以Lemaitre的損傷理論結合內涵時間塑性理論(Theory of Endochronic plasticity)，探討在單軸循環負載下含疲勞損傷循環應力-應變反應。 在Mesoscale尺度下，取一具代表性之體積元素(Representative volume element－RVE)，定義損傷為RVE中任一面上所包含的缺陷面積與整個面積之比例。損傷時RVE內材料之有效彈性係數因缺陷面積擴大而下降。本文藉由疲勞損傷實驗所得應力-應變遲滯曲線進行分析，在定應變振幅下得到塑性應變範圍隨循環過程變化極小而視為定值，而應力表達須以損傷有效應力為之，符合Lemaitre提出的等效應變原理，因此含損傷增量式內涵時間之計算以損傷有效應力進行。 根據Lemaitre損傷演化律及本文假設循環負載下拉應力在最大值附近對循環損傷的貢獻最大，文中應力對各循環之損傷而言假設應力為最大拉應力，將材料參數S以指數型式表示，歸納出疲勞損傷在循環負載過程中的變化為指數型經驗式，提供63Sn/37Pb材料在循環負載作用時損傷情況的預測，並引入含損傷增量式內涵時間之計算中，假設同一循環的損傷為定值，其計算結果與實驗數據吻合，說明內涵時間塑性理論亦適用於損傷環境下的計算。
 The paper is in accordance with 63Sn/37Pb material. The discussion of fatigue damage is under the condition of simple cyclic loading based on Lemaitre’s damage theory linking up with theory of Endochronic plasticity. In Mesoscale, the damage is the rate of the defect area and the whole area in any cross section of Representative volume element — RVE. While being in damage, the elastic modulus reduces because of the expansion of the defect area. The analysis comes by the stress-strain hysteresis loop from fatigue damage experiment. Under the constant strain amplitude, the plastic strain range is regarded as a constant with small change in the process of cycles and the stress must be expressed in effective stress which agrees with the equivalence strain principle. According to Lemaitre’s damage evolution law and the assumption of this paper that the cyclic loading maximum tensile stress has the most contribution to the cyclic damage and assume that the stress is the maximum stress .The material parameters S which are expressed in exponential form and generalize the variation in the process of cyclic loading is exponential experience equation which provide the expectation of cyclic damage of 63Sn/37Pb material and lead it into the calculation of damaged incremental form and assume that damage keeps constant during the same cycle. The results match the experimental data. It proves that the Endochronic plasticity theorem adopt the calculation of damage environment.
 考試合格證明 摘要Ⅰ 誌謝Ⅱ 目錄Ⅲ 表目錄Ⅵ 圖目錄Ⅶ 符號說明Ⅹ 第一章 緒論1 1-1 前言1 1-1-1連接技術2 1-1-2 銲錫凸塊2 1-2 研究動機與目的2 1-3 文獻回顧3 1-3-1 損傷分析理論之文獻回顧3 1-3-2 內涵時間塑性理論之文獻回顧5 第二章 損傷理論與內涵時間塑性理論基礎7 2-1損傷在力學上的表示法7 2-1-1損傷下的有效應力觀念9 2-1-2等效應變原理10 2-1-3損傷下的彈性定律10 2-2疲勞損傷理論在循環負載之應用12 2-2-1 Lemaitre損傷演化律12 2-2-2塑性應變範圍13 2-2-3累積循環塑性應變14 2-2-4定應變振幅下之損傷演化方程式15 2-3 內涵時間塑性理論16 2-3-1增量式內涵時間本構模式18 2-3-2含損傷之增量式本構模式及計算20 第三章 含損傷增量式內涵時間理論分析與實驗之討論22 3-1 實驗方法22 3-2 實驗之修正23 3-2-1 修正過程23 3-3 疲勞損傷演化律之決定26 3-3-1疲勞損傷下彈性係數之變化26 3-3-2循環疲勞塑性應變範圍Δεp 26 3-3-3累積塑性應變P 27 3-3-3-1累積塑性應變P的計算27 3-3-3-2累積塑性應變P與循環圈數N之關係27 3-3-3-3疲勞損傷D與累積塑性應變P之關係28 3-3-4 材料參數S的決定29 3-3-5 疲勞損傷與循環圈數之關係30 3-4 定應變振幅下含損傷內涵時間增量式計算31 3-4-1鬆弛模數中材料參數之決定31 3-4-2定應變振幅下含損傷內涵時間增量式之計算 法及結果34 第四章 結論及未來研究方向36 4-1結論36 4-2未來發展及研究方向37 參考文獻72 自述
 [1] 鍾文仁、陳佑任, “IC封裝製成與CAE應用”, 全華科技圖書股份有限公司，2002.[2] Rao R. Tummale, “Fundamental of Microsystems Packaging”, McGraw-Hill，2001.[3] J. Lemaitre, “A Course on Damage Mechanics”, Springer-Verlag, Germany, 1992.[4] Subrahmanyan R., Wilcox J.R. and Li Che-Yu, “A Damage Integral Approach to Thermal Fatigue of solder joints”, Electronic Components Conference, pp. 240-252, 1989.[5] Xiaowu Zhang and S-W. Ricky Lee, “Thermal Fatigue Life Prediction for Solder Joints with the Consideration of Damage Evolution”, IEEE/CPMT Electronics Packaging Technology Conference, pp. 279-285, 1998.[6] Stolkarts V., Keer L. M., Fine M. E., “Constitutive and Cyclic Damage Model of 63Sn-37Pb Solder”, Journal of Electronic Packaging, Vol.123, pp. 351-355, December, 2001.[7] Shengmin Wen, Leon Keer M., Semyon Vaynman, and Lawrence R. Lawson, “A Constitutive Model for a High Lead Solder”, IEEE Transactions on Components and Packaging Technologies, Vol. 25, No.1, 2002.[8] Valanis, K.C., “A Theory of Viscoplasticity Without a Yield Surface, Part I. General Theory”, Archives of Mechanics, pp. 517-533, 1971.[9] Valanis, K.C., “A Theory of Viscoplasticity Without a Yield Surface, Part II. Application to Mechanical Behavior of Metal”, Archives of Mechanics, pp. 535-551, 1971.[10] Valanis, K.C., “Fundamental Consequences of a New Intrinsic Time Measure : Plasticity as a Limit of The Endochronic Theory”, Archives of Mechanics, Vol. 32, pp. 171-191, 1980.[11] Valanis, K.C. and Fan, J., “A Numerical Algorithm for Endochronic Plasticity and Comparison With Experiment”, Computers and Structures, Vol. 19, pp. 717-729, 1984.[12] Chang, W.L. and Lee, C.F., “Applications of Endochronic FEM in Perforated Thin Plate”, Proceedings of The 5th Nat. Conf. On Mech. Eng. CSME, Taipei, pp. 959-971, 1988.[13] Lee, C.F. and Chen, C.Y., “The Endochronic Plastic Behavior of OFHC Thin Plate With Elliptic Hole”, The 14th. Nat. Conf. On Theory & Applications Mechanics, Taiwan, R.O.C., pp. 1-10, 1990.[14] Lee, C. F., "Numerical Method of The Incremental Endochronic Plasticity," The Chinese Journal of Mechanics, Vol.8 ,No.4 ,pp 377-396, 1992.[15] Valanis, K.C. and Lee, C.F., “Some Recent Development of the Endochronic Theory With Applications”, Nuclean Engineering and Design, Vol. 69, pp. 327-344, 1982.[16] Valanis, K.C. and Lee, C.F., “Endochronic Theory of Cyclic Plasticity With Applications”, ASME J. of Applied Mechanics, Vol. 51, pp. 367-374, 1984.[17] Lee, C. F., “A Systematic Method of Determining Material Functions in the Endochronic Plasticity”, J. the Chinese Society of Mechanical Engineers, Vol. 8, pp. 419-430, 1987.[18] 謝文逸, “電子構裝共熔合金銲錫之疲勞測試方法與分析”, 國立中正大學機械工程研究所碩士論文, 2002。[19] John H. Lau and Yi-Hsin Pao, “Solder Joint Reliability of BGA,CSP,Flip Chip,and Fine Pitch SMT Assemblies”, McGraw-Hill, 1997.[20] Lee C.F., “Seminar Notes in the Department of Engineer Science,Ncku,Tainan,Taiwan”, April, 2003.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 Sn/3.5Ag/0.75Cu銲錫受循環混合負載下含疲勞損傷之內涵時間黏塑性理論之研究 2 電子構裝共熔合金銲錫之疲勞測試方法與分析

 無相關期刊

 1 無鉛與含鉛銲錫材料變形動力學穩態潛變行為之比較 2 Sn/3.5Ag/0.75Cu銲錫受循環混合負載下含疲勞損傷之內涵時間黏塑性理論之研究 3 無鉛錫球含多層金屬薄膜之晶圓級封裝結構應力分析 4 Sn/3.5Ag銲錫含頻率效應之疲勞初始壽命預估-含損傷內涵時間黏塑性理論之應用 5 以離子束濺鍍法製備氧化銦錫薄膜之光學、電學及可靠性質之研究 6 以電鍍製作銲錫隆點之電性與材料反應行為研究 7 鈦-碳-錫三元系燃燒合成之引燃現象及反應機構 8 利用三維電熱耦合之有限元素法探討覆晶封裝之錫球接點受電遷移影響 9 電鍍法製備覆晶封裝用銅-錫銀凸塊之研究 10 濺鍍法製備硒化銅錫鋅薄膜太陽能電池及其分析 11 以陳錫煌藝師個案為例探討台灣布袋戲藝術之傳承 12 劉禹錫、白居易交往詩研究 13 錫基建築粉末在玻璃材料之電磁波遮蔽特性研究 14 無鉛銲錫球接點在高速衝擊測試下的破壞行為 15 電遷移效應對高鉛銲錫合金微觀組織的影響

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室