(3.236.100.6) 您好!臺灣時間:2021/04/24 02:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇銘勝
研究生(外文):Ming-Sheng Su
論文名稱:電子構裝材料在注模後烘烤中熱機械性質與數學模式之研究
論文名稱(外文):Modeling the Thermo-Mechanical Properties of an EMC During Post-Mold Curing
指導教授:李輝煌李輝煌引用關係
指導教授(外文):Huei-Huang Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:68
中文關鍵詞:EMC封裝材料應力鬆弛鬆弛模數溫度時間疊合原理線性網狀無定形高分子材料IC塑膠構裝WLF方程式
外文關鍵詞:WLF equationThe network of linear amorphous polymerIC packagingEMC encapsulating materialsrelaxation modulusTime-temperature Superposition principlestress relaxation
相關次數:
  • 被引用被引用:8
  • 點閱點閱:324
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
IC塑膠構裝的注模膠封製程(Encapsulating Processes of IC Packaging)中,EMC在模具裡僅初凝固成形,其殘留應力相當大也造成EMC初成形後尺寸相當不穩定,更易於影響後續IC功能測試與可靠度測試,所以必須進行注模後烘烤製程,促使交連反應更趨近於穩定完整,發揮EMC被設計賦予的功能目的和適當的機械性質,而能夠保護IC晶片且構建電子構裝體(IC Packaging)達到穩定的結構。本論文主要針對EMC在注模後烘烤作業中,探討其熱機械性質的發展變化,利用DMA/ TMA和DSC儀器實驗所觀測的熱機械性質數據建構成Maxwell Model的數學模式化,亦即構建出EMC在注模後烘烤中熱機械性質的數學模式的構建方法(Methodology),以方便在IC電子構裝體製程設計之初的工程預估及最後佳烘烤製程的設計。
本實驗結果發現:以較低的烘烤溫度,最終卻能得到較完整較高的彈性模數,顯然欲達成較佳效益的後烘烤結果,必須先了解EMC的聚合反應溫度與材料交連擴散的速率的對應關係。
EMC(Epoxy Molding Compound) is used to encapsulate IC on electronic packaging fields. There are some problems in the thermal process of curing EMC, such as package warpage, poor coplanarity of solder balls or lead, crack damages resulted from residual stress, delamination result from thermal stress… and so on. It is necessary for quality to minimize the warpage and deformation and improve potential damages. By the experiments of curing EMC to get the variants of thermal mechanical properties, we can modeling them by the mathematics equation of viscoelasticity and build up the methodology of modeling EMC. This study is to develop a methodology to calculate the modulus profiles during post-mold cure process and predict the EMC warpage caused by residual stress of incomplete cure and viscous stress during molding.
摘 要3
Abstract4
誌 謝5
目 錄6
圖表目錄9
符號說明11
縮寫說明12
第一章 緒論13
1-1 前言:13
1-2 EMC在IC構裝製程的運用14
1-2-1 IC構裝之PBGA構裝製程簡介14
1-2-2 電子構裝材料EMC之簡介15
1-2-3 商業化的EMC配方之簡介16
1-2-4 EMC的化學交連反應的簡介17
1-3 EMC材料的聚合固化特性及其對機械性質的影響18
1-4 EMC殘留應力的形成之簡介19
1-4-1 製程加工高分子流變過程產生殘留應力19
1-4-2 高分子聚合固化反應過程產生殘留應力21
1-4-3 複合材料結構匹配著不同物性產生殘留應力22
1-5 EMC應力鬆弛問題之簡介23
1-6 研究目的24
1-7 文獻回顧24
1-7-1 聚合體材料機械行為受內外在因素之影響24
1-7-1-1 應變速率之影響25
1-7-1-2 溫度之影響25
1-7-1-3 轉化率之影響25
1-7-1-4 填充物之影響26
1-7-2 聚合體材料的黏彈性回應26
1-7-3 線性網狀無定形聚合體材料之時間─溫度疊合原理27
1-7-4 時間─轉化率疊合原理28
1-7-5 WLF公式29
1-7-6 網狀組織的橡膠彈性的應用30
1-8 本文架構32
第二章 理論分析35
2-1 聚合體黏彈模式35
2-1-1 EMC黏彈模式參數求取過程36
2-2 殘留應力鬆弛實驗概念37
2-3 研究方法及步驟38
第三章 實驗方法與步驟39
3-1 實驗目的39
3-2 實驗流程步驟與規劃39
3-3 實驗設備與裝置44
3-3-1 EMC材料45
3-3-2 EMC試片製作之相關機台設備45
3-3-3 烘烤箱設備45
3-3-4 EMC材料與試片的貯存設備46
3-3-5 DSC熱分析儀46
3-3-6 DMA熱動態機械分析儀46
3-4 實驗步驟與方法47
第四章 實驗結果與討論49
4-1 PMC製程中EMC的熱機械性質之發展49
4-2 EMC之熱機械性質之數學模式建立50
4-2-1溫度與轉化率之相關數學式50
4-2-2 時間與溫度之相關數學式51
4-2-3 EMC的彈性模數之數學模式化53
第五章 綜合討論與未來發展60
5-1 實驗規劃部份60
5-2 實驗系統部份60
5-3 彈性模數之相關數學模式部份61
參考文獻63
自 述68
[01] A. F. LEWIS, M. J. DOYLE, “Effect of Cure on Dynamic Mechanical Properties of an Epoxy Resin,” POLYMER ENGINEERING AND SCIENCE, Vol. 19, No. 10, pp683-686, (1979).
[02] Douglas Adolf and James E. Martin, “Time-Cure Superposition during Cross-Linking,” Macromolecules, Vol. 23, No. 15, pp3700-3704, (1990).
[03] GUY WISANRAKKIT and JOHN K. GILLHAM, “Continuous Heating Transformation ( CHT ) Cure Diagram of an Aromatic Amine/ Epoxy System at Constant Heating Rates,”Journal of Applied Polymer Science, Vol. 42, pp2453-2463, (1991).
[04] S. L. SIMON and J. K. GILLHAM, “Thermosetting Cure Diagrams: Calculation and Application,”Journal of Applied Polymer Science, Vol. 53, pp709-727, (1994).
[05] Jakob Lange and Jan-Anders E. Manson, “Build-up of structure and viscoelastic properties in epoxy and acrylate resins cured below their ultimate glass transition temperature,”Polymer, Vol. 37, pp5859-5868, (1996).
[06] G. WISANRAKKIT and J. K. GILLHAM, “Effect of Physical Annealing on the Dynamic Mechanical Properties of a High-Tg Amine-Cured Epoxy System,” Journal of Applied Polymer Science, Vol. 42, pp2465-2481, (1991).
[07]CRAIG A. BERO and DONALD J. PLAZEK, “Volume-Dependent Rate Processes in an Epoxy Resin,” Journal of Applied Polymer Science: Part B: Polymer Physics, Vol. 29, pp39-47, (1991).

[08]D. J. MICHAUD, A. N. BERIS and P. S. DHURJATI, “CURING BEHAVIOR OF THICK-SECTIONED RTM COMPOSITES,” Journal of Composite Materials, Vol. 32, No. 14. pp1273-1296, (1998).
[09]S. GAN and J. K. GILLHAM, “A Methodology for Characterizing Reactive Coatings: Time-Temperature-Transformation (TTT) Analysis of then Competition between Cure, Evaporation, and Thermal Degradation for an Epoxy-Phenolic System,” Journal of Applied Polymer Science, Vol. 37, pp803-816, (1989).
[10]G. WISANRAKKIT, J. K. GILLHAM, and J. B. ENNS, “The Glass Transition Temperature (Tg) as a Parameter for Monitoring the Cure of an Amine/Epoxy System at Constant Heating Rates,” Journal of Applied Polymer Science, Vol. 41, pp1859-1912, (1990).
[11] Ferry, John D., “Viscoelastic properties of polymers,” New York, 1978.
[12] JOHN B. ENNS and JOHN K. GILLHAM, “Effect of the Extent of Cure on the Modulus, Glass Transition, Water Absorption, and Density of an Amine-Cured Epoxy, ” Journal of Applied Polymer Science, Vol. 28, pp2831-2846, (1983).
[13] H. HENNING WINTER and FRANCOIS CHAMBON, “Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point, ” Journal of Rheology, 30(2), pp367-382, (1986).
[14] N. NAKAJIMA and E. R. HARRELL, “Stress Relaxation as a Method of Analyzing Stress Growth, Stress Overshoot and Steady-State Flow of Elastomers ” Journal of Rheology, 30(2), pp383-408, (1986).
[15] K. P. PANG and J. K. GILLHAM, “Anomalous Behavior of Cured Epoxy Resins: Density at Room Temperature versus Time and Temperature of Cure, ” Journal of Applied Polymer Science, Vol. 37, pp1969-1991, (1989).
[16] S. R. WHITE and H. T. HAHN “Process Modeling of Composite Materials: Residual Stress Development during Cure. Part II. Experimental Validation, ”Journal of COMPOSITE MATERIALS, Vol. 26, pp2423-2453, (1992).
[17] K. P. PANG and J. K. GILLHAM “Competition between Cure and Thermal Degradation in a High Tg Epoxy System: Effect of Time and Temperature of Isothermal Cure on the Glass Transition Temperature, ”Journal of Applied Polymer Science, Vol. 39, pp909-933, (1990).
[18] K. P. PANG and J. K. GILLHAM “Annealing Studies on a Fully Cured Epoxy Resin: Effect of Thermal Prehistory, and Time and Temperature of Physical Annealing, ”Journal of Applied Polymer Science, Vol. 38, pp2115-2130, (1989).
[19] Price, D. M., “Modulated-Temperature Thermomechanical Measurements, ”Material Characterization by Dynamic and Modulated Thermal Analytical Techniques, ASTM STP 1402, A.T. Riga and L. H. Judovits, Eds., American Society for Testing and Materials, West Conshohocken, PA, pp103-114, (2001).
[20] SINDEE L. SIMON, GREGORY B. MCKENNA, OLIVIER SINDT “Modeling the Evolution of the Dynamic Mechanical Properties of a Commercial Epoxy During Cure after Gelation,” Journal of Applied Polymer Science, Vol. 76, pp495-508, (2000).
[21] Douglas R. Miller and Christopher W. Macosko, “A New Derivation of Post Gel Properties of Network Polymers,” Macromolecules, Vol. 9, No. 2. pp206-211, (1976).
[22] J. P. MERCIER, J. J. AKLONIS, M. LITT, and A. V. TOBOLSKY, “ Viscoelastic Behavior of the Polycarbonate of Bisphenol A,” Journal of Applied Polymer Science , Vol. 9, pp447-459, (1965).
[23] VERNAL H. KENNER, BRIAN D. HARPER, and VLADIMIR Y. ITKIN, “Stress Relaxation in Molding Compounds,” Journal of Electronic Materials, Vol. 26, No. 7, pp821-826, (1997).
[24] L. J. Ernst, C. van’t Hot, D. G. Yang, M. S. Kiasat, G. Q. Zhang, H. J. L. Bressers, J. F. J. Caers, A. W. J. den Boer, J. Janssen, “Mechanical Modeling and Characterization of the Curing Process of Underfill Materials, ” Journal of Electronic Packaging Vol. 124, pp97-105, (2002).
[25] H. E. BAIR, D. J, BOYLE, J. T. RYAN, C. R. TAYLOR, and S. C. TIGHE, and D. L. CROUTHAMEL, “ Thermomechanical Properties of IC Molding Compounds, ” POLYMER ENGINEERING AND SCIENCE, Vol. 30, pp609-617, (1990).
[26] H, E, BAIR, D. J. BOYLE, J. T. RYAN, C. R. TAYLOR, and S. C. TIGHE, and D. L. CROUTHAMEL, “ Thermomechanical Properties of IC Molding Compounds,” POLYMER ENGINEERING AND SCIENCE, Vol. 30, pp609-617, (1990).
[27] S. R. White, A. B. Hartman, “Effect of Cure State on Stress Relaxation in 3501-6 Epoxy Resin,” POLYMER ENGINEERING AND SCIENCE, MID-DECEMBER Vol. 36, No. 23, pp262-265, (1997).
[28] YEONG K. KIM and SCOTT R. WHITE, “Stress Relaxation Behavior of 3501-6 Epoxy Resin During Cure,” POLYMER ENGINEERING AND SCIENCE, MID-DECEMBER Vol. 36, No. 23, pp2852-2862, (1996).
[29] Tommy R. Guess and Steven N. Burchett, “AN EXPERIMENTAL/ANALYTICAL STUDY OF STRAINS IN ENCAPSULATED ASSEMBLIES,” Advances in Electronic Packaging, pp543-550, (1992).
[30] DANIEL J. O’BRIEN, PATRICK T. MATHER, SCOTT R. WHITE, “Viscoelastic Properties of an Epoxy Resin during Cure,” Journal of COMPOSITE MATERIALS, Vol. 35 No. 10, pp883-903, (2001).
[31] Hideo Miura, Makoto Kitano, Asao Nishimura, and Sueo Kawai, “THERMAL STRESS MEASUREMENT IN SILICON CHIPS ENCAPSULATED IN PLASTIC PACKAGES UNDER TEMPERATURE CYCLING,” Advances in Electronic Packaging, pp957-963, (1992).
[32] WILLEM F. VAN DEN BOGERT, DANIEL J. BELTON, MICHAEL J. MOLTER, DAVID S. SOANE, AND ROLF W. BIERNATH, “Thermal Stress in Semiconductor Encapsulating Materials,” IEEE TRANSACTIONS ON COMPONENTS, HYBRIDS, AND MANUFACTURING, Vol. 11, No. 3 pp245-251, (1988).
[33] KATSUHITO SUZUKI and YASUSHI MIYANO, “Change of Viscoelastic of Epoxy Resin in the Curing Process,” JOURNAL OF APPLIED POLYMER SCIENCE, Vol. 21, pp3367-3379, (1977).
[34] R. F. FEDORS, S, Y, CHUNG, and S. D. HONG, “Stress-Strain Behavior of Poly(ethylene-co-vinylacetate) at Varying Crosslink Density,” Journal of Applied Polymer Science, Vol. 30, pp2551-2563, (1985).
[35] Ferry, J. D., "Viscoelastic Properties of Polymers", Third Edition, John Wiley and Sons: New York, (1980).
[36] Vernal H. Kenner, Brian D. Harper and Vladimir Y. Itkin, "Stress Relaxation in Molding Compounds", Journal of Electronic Materials, Vol. 26, N0. 7, pp821~826, (1997).
[37] L. J. Ernst, C. van’t Hof, D. G. Yang, M. S. Kiasat, G. Q. Zhang, H. J. L. Bressers, J. F. J. Caers, A.W. J. den Boer and J. Janssen, " Mechanical Modeling and Characterization of the Curing Process of Underfill Materials”, Journal of Electronic Packaging: Transaction of ASME, Vol. 124, pp821~826, (1997).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔