(100.26.179.251) 您好!臺灣時間:2021/04/15 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王凱申
研究生(外文):Kai-Shen Wang
論文名稱:具有扭曲(warping)效應之中空薄壁曲形樑之動態響應分析
論文名稱(外文):Dynamic Response of Thin-Walled Curved Beam Including the Effect of Warping
指導教授:王榮泰
指導教授(外文):Rong-Tyai Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:119
中文關鍵詞:扭曲薄壁樑薄板元素
外文關鍵詞:thin-platethin-walledout-of-planein-plane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
由於薄壁曲樑的幾何性質之特殊,因此考慮各方向之剪切變形效應,轉動慣量效應、軸向慣量效應與軸向扭轉效應,如此方能推導得完整之薄壁曲樑運動方程式,本文分成兩個部分做討論,前半段利用樑的特性作中空曲樑的探討,而後半段是利用薄板元素堆疊中空樑導入板元素的特性作探討。
前半段結構的模態頻率值之探討,將具有矩形截面的中空曲形樑結構分成in-plane及out-of-plane兩方面;後半段利用薄板結構組合形成直線型薄壁樑探討其模態頻率值及比較單純薄壁樑之情形。
研究方法分為模態分析法與有限元素法。在模態分析法中,利用分離變數法,再代入邊界條件,可求得模態頻率值;對於利用有限元素法,則推導出形狀函數組,並選取不同元素數來堆疊樑結構;最後比較模態分析法與有限元素法分別所求得模態頻率值之相對誤差非常小。
In this thesis, the vibration of either a curved thin-walled beam with a closed rectangular cross-section or a straight box beam is investigated. The displacement and rotation angles along three principle axes of both two structures are considered. The warping effect in the contour of both two beams also is considered. Further, the thickness warping effect in the box beam is included. An analytic method is presented to investigate the effects of geometric parameters on the modal frequencies for the in-plane motion and the out-of-plane motion of both two structures. Further, the finite element technique also is presented in computing the modal frequencies of the two structure. Modal frequencies obtained from both two approaches are compared.
第一章 緒論
§1-1 前言
§1-2 文獻回顧
§1-3 研究範圍
第二章 中空曲形樑之運動方程式
第三章 中空曲形樑結構在In-Plane方向之自由振動分析
§3-1 模態分析法
§3-2 有限元素分析法(Finite Element Method
§3-3 例題與討論
第四章 中空曲形樑結構在Out-of-Plane方向之自由振動分析
§4-1 模態分析法
§4-2 有限元素分析法(Finite Element Method)
§4-3 例題與討論
第五章 中空薄壁樑結構利用薄板元素做堆疊之振動分析
§5-1 運動方程式
§5-2 模態分析法
§5-3 有限元素分析法(Finite Element Method)
§5-4 例題與討論
第六章 總結與建議
§6-1 總結
§6-2 建議
附錄A
附錄B
附錄C
附錄D
附錄E
參考文獻
1.A.E.H.Love, A Treatise on the Mathematical Theory of Elasticity, 4th Ed. Dover, New York, 1944
2.I.U.Ojalvo, ”Couple twist-bending vibration of incomplete elastic rings”, International Journal of Mechanical Sciences, Vol.4, 53-72, 1962
3.J.P.Den Hartog, Mechanical Vibration, 4th Ed. McGraw-Hill, New York, 1956
4.E.Volterra and J.D.Morell, ”Lowest natural frequency of elastic hinged arcs”, Journal of the Acoustical Society of America, Vol.33, 1787-1790, 1961
5.E.Volterra and J.D.Morell, ”Lowest natural frequency of elastic arc for vibration outside the plane of initial curvature”, Journal of applied mechanics, Vol.28, 624-627, 1961
6.A. Cowley and S. Hinduja, ”the finite element method for machine tool structure analysis”, Annals of the C.I.R.P, Vol.18, 171-181, 1971
7.R.K.Sisodiya and Y.K.Cheng, ”A higher order in-plane parallelogram element and its application to skewed box-girder bridges”, Conference on development in bridge design and construction, Cardiff, 29, Mar-2 April, 1971
8.V.Z.Vlasov, Thin-Walled elastic beams, Washington, D.C. National science foundation, 2nd Ed., 1961
9.C.G.Culver, ”,Natural frequencies of horizontally curved beam”, Journal of the structural division, American society of civil engineers, Vol.93,P189-203, 1967
10.P.P.Christiano, ”The dynamic response of horizontally curved bridges subject to moving loads”, Ph.D.dissertation, Carnegie-Mellon university, 1967
11.L.F.Boswell and S.H.Zhang, ”An experimental investigation of the behavior of thin-walled box beams”, Thin-walled structure, Vol.3, 36-65, 1985
12.S.Timoshenko, Theory of Elastic Stability, New York:McGraw-Hill;1st Ed. 1936
13.D.-B.Li and Y.H.Chui and I.Smith, ”Effect of warping on torsional vibration of members with open cross-section”, Journal of sound and vibration, Vol.170(2), P270-275, 1994
14.P. S. Theocaris,”The Warping Function of Regular Prismatic Bars Under Torsion Evaluated by Caustics”, Experimental Mechanics, Vol.29, n3 Sep, P285-290, 1989
15.J.M.Snyder & J.F.Wilson, ”Free vibration of Continuous Horizontally Curved Beams”, Journal of sound and vibration, Vol.157(2), 345-355, 1992
16.N. W. Murray, Introduction to the theory of Thin-walled structure, Ch3, 1st Ed., 1986
17.錢偉長,彈性力學,中華民國八十八年一版
18.許志嘉,具有扭曲(warping)效應之曲形樑承受移動負載的動態響應分析,國立成功大學工程科學所,八十八年六月
19.桑友樂,曲形樑/構架承受移動負載的動態分析,國立成功大學工程科學所,八十六年六月
20.王海臨,應用有限元素-轉換矩陣法於中空樑結構之振動分析,國立成功大學工程科學所,八十六年六月
21.張丙國,多跨距圓截面曲形中空樑承受移動負載之動態響應分析,國立成功大學工程科學所,八十八年六月
22. Gere & Timoshenko, Mechanics of Materials, 2nd Ed, 1984
23. W. Weaver Jr. & P. R. Johnston, Structural Dynamics by Finite Elements, 1st Ed. 1987
24. S. Heo & J. H. Kim & Y. Y. Kim, ”Significance of distortion in thin-walled closed beam section design”, International of Journal Solids and Structures, vol.40,633-648, 2003
25. P.Bird, ”Thin-Plate and Thin-Shell Finite Element Programs for forward dynamic modeling of plate deformation and faulting”, computers and Geosciences, vol.25, 383-394, 1999
26. L. F. Boswell & Q. Li, ”Consideration of Relationship Between Torsion Distortion and Warping of Thin-walled Beams”, Thin-walled
Structures, Vol.21, P147-161, 1995
27. W. D. Pilkey, ”Computer Analysis of Elastic Thin-Walled Beams”, Department of Mechanical Aerospace, and Nuclear Engineering, University of Virginia, May 1998
28. R. M. Grice & R. J. Pinnington, ”Vibration Analysis of a Thin-plate box using a finite element model which accommodates only in-plane motion”, Journal of sound and vibration Vol.232(2), 449-474, 2000
29. M. T. Piovan & V. H. Cortinez, ”Out-of-Plane Vibration of Shear Deformable Continuous Horizontally Curved Thin-Walled Beams”, Journal of sound and vibration, vol237(1), p101-118, 2000
30. J. Lee, ”Center of gravity and shear center of thin-walled open-section composite beams”, Composite Structures, vol.52, P255-260, 2001
31. M.Kawakami, T.Sakiyama, H.Matsuda and C.Morita, ”In-plane and out-of-plane free vibration of curved beams with variable section”, Journal of sound and vibration, vol.187(3), P381-401, 1995
32. Y. Y. Kim & Y. Kim, ”A one-dimensional theory of thin-walled curved rectangular box beam under torsion and out-of-plane bending”, International Journal for Numerical Method In Engineering, Vol.53, p1675-1693, 2002
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔