跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 20:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志彥
研究生(外文):Chuh-Yean Chen
論文名稱:具側鏈亞胺乙二酸高分子與金屬離子之螯合性質的探討及其應用
論文名稱(外文):Chelating Properties of Polymer-Bound Iminodiacetate-Type Chelating Polymers with Some Transition-Metal Ions and Their Applications
指導教授:陳志勇陳志勇引用關係
指導教授(外文):Chuh-Yung Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:中文
論文頁數:139
中文關鍵詞:穩定度常數鄰近效應競爭吸附平衡螯合容量螯合性高分子協同作用
外文關鍵詞:equilibrium adsorption capacitycooperative effectneighboring effectchelating polymerstability constantcompetitive adsorption
相關次數:
  • 被引用被引用:25
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
  本文利用亞胺乙二酸(IDA)和縮水甘油甲基丙烯酸酯(GMA)反應而得到側鏈具螯合官能基的乙烯系單體,簡稱為GMA-IDA。經聚合反應後得到四種水溶性的螯合高分子,分別為Poly(GMA-IDA)均聚合物與不同組成的Poly(MA-co-GMA-IDA)、Poly(AAm-co-GMA-IDA)與Poly(SM-co-GMA-IDA)共聚合物。另外,GMA-IDA亦和苯乙烯進行無乳化劑乳化聚合而得三種組成的Poly(SM-co-GMA-IDA)乳液。由紫外光/可見光、FTIR、(CP/MAS) 13C-NMR分析比較這些高分子螯合金屬離子前後的光譜圖變化,確認除了Poly(AAm-co-GMA-IDA)之外,Poly(GMA-IDA)及其他共聚合物與Cu(II)、Ni(II)---等金屬離子螯合時,是由GMA-IDA上的兩個羧酸陰離子(-COO-)、胺基( )與醇基(-OH)提供電子對給金屬離子,此外,利用連續變數法(或莫耳比例法)可以肯定一個GMA-IDA單元與Cu(II)、Ni(II)---等金屬離子的平均配位比為1:1。但是,丙烯醯胺在Poly(AAm-co-GMA-IDA)共聚合物中,有增加螯合容量的效能,使一個GMA-IDA單元與金屬離子的配位比為1:1.13。
  由於高分子的”鄰近效應(Neighboring effect)”與立體、糾纏結構可困住氫離子或金屬離子,所以,Poly(GMA-IDA)及不同組成的水溶性共聚合物之第一與第二解離常數約為10-3.75與10-9.2,均小於GMA-IDA單體的10-3.06與10-8.5;而 Poly(GMA-IDA)螯合金屬離子之穩定度常數(Ks)則高於GMA-IDA約10倍左右。若以無螯合能力的親油性單體和GMA-IDA共聚合,則共聚合物的穩定度常數僅隨著單體的增加而出現些微的下降。然而,在Poly(AAm-co-GMA-IDA)共聚合物中,適當的丙烯醯胺含量可以使共聚物的穩定度常數較GMA-IDA高 30∼60倍。但是,隨著丙烯醯胺的莫耳比的增加,其穩定度常數的下降量卻高於其他共聚合物。另一方面,Poly(SM-co-GMA-IDA)乳液表面為局部高濃度的GMA-IDA,因此,有良好的”鄰近效應”與”協同作用(cooperative effect)”,所以,其乳液的SM含量雖高於水溶性共聚物甚多,但穩定度常數反而比GMA-IDA單體高出500至1000倍,且改變GMA-IDA在乳液中的含量並不會對穩定度常數產生明顯的改變。
  反應GMA-IDA、SM與DVB可得到Crosslinked Poly(SM-co- GMA-IDA)固態螯合樹脂,用於吸附水中的Cu(II)時,40分鐘可達到約1.46 mmol/g的平衡螯合容量;若用於Co(II) 及Cd(II) 的吸附,可在15分鐘達到 1.02及1.11 mmol/g的平衡吸附量,皆屬於高效率螯合吸附劑。而其吸附Cu(II)的行為則依循Langmuir恆溫吸附模式。此外,在0∼0.1 M的KCl溶液中、pH 2.0∼5.5之間或經過15次的脫附-重覆使用,均可維持其高吸附效率。若用於吸附Cu2+/Co2+、Cu2+/Cd2+ 或Cu2+/Co2+/Cd2+的混合液時,銅離子的吸附行為受同濃度之Co(II) 及Cd(II)的影響甚小。但Co(II) 及Cd(II) 的吸附量在第3分鐘達到最大值後便逐漸減少,最後降為零。所以,在Cu(II)、Co(II)、Cd(II)系統中,此螯合樹脂對銅離子具有相當良好的選擇率,極有利於銅離子自水溶液中的分離。
  BA亦可以和GMA-IDA進行無乳化劑乳化共聚合而得到Poly(BA-co-GMA-IDA)乳液,此乳液經成膜而得到具韌性的薄膜。將薄膜適當處理,再經過螯合銀離子、洗去自由銀離子的程序後,以紫外光照射此薄膜即可得到粒徑均勻,大小約30 nm的銀奈米粒子;將薄膜浸入Na2S水溶液中,可以得到大小約30 nm的硫化銀奈米粒子。
  A chelating vinyl monomer, GMA-IDA, was formed by the reaction between glycidyl methacrylate (GMA) and iminodiacetic acid (IDA). Four water-soluble polymeric chelating agents, Poly(GMA-IDA), Poly(methyl acrylate-co-GMA-IDA), Poly(acrylamide-co-GMA-IDA), and poly(styrene-co- GMA-IDA), were also synthesized. Latex types of poly(styrene-co- GMA-IDA) were also prepared by surfactant-free emulsion polymerization of styrene with GMA-IDA. The spectra of UV./Vis.、FTIR and (CP/MAS) 13C-NMR confirmed that the average complexation reaction ratios between the divalent transition-metal ions with the GMA-IDA units in Poly(acrylamide-co- GMA-IDA) were 1.13:1, but 1:1 for the other chelating polymers. Additionally, the carboxylate ions, tri-amine (R3-N:) and hydroxy groups in GMA-IDA could donate unshared electrons to the metal ions. Acid dissociation constants (Ka) and stability constants (KS) of these chelating agents with Cu(II), Ni(II), Zn(II),Co(II), and Cd(II) were determined by means of potentiometric titration. The values of Ka1 and Ka2 of all the polymeric chelating agents were ordered, GMA-IDA>solution types>latex types. The stability constants of Poly(GMA-IDA) were approximately 10-fold larger than the GMA-IDA solution was. Incorporating styrene (or methyl acrylate) into GMA-IDA to form a solution type of copolymer affected the stability constant only slightly. A proper molar ratio of acryamide in Poly(acrylamide- co-GMA-IDA), stability constant was 30-60 times greater than that of GMA-IDA. However, as the molar content of acrylamide increased, the stability constants of Poly(acrylamide-co-GMA-IDA) decreased. Interestingly, the stability constants of poly(styrene-co-GMA-IDA) latex with metal ions exceeded those of the corresponding GMA-IDA-metal complexes by a factor of 102-103, depending on the metal ions. These results are explained in terms of polymer’s stereo and entanglement structure, neighboring effect, cooperative effect and hydrophobic/ hydrophilic nature of monomers.

  In addition, a chelating resin, PSGI, was synthesized by the radical polymerization of GMA-IDA, DVB and styrene for the removal of Cu(II), Co(II), and Cd(II) from aqueous solution. The equilibrium adsorption capacities of PSGI from their single-metal ion solutions were 1.46 mmol/g for Cu(II), 1.02mmol/g for Co(II) and 1.10 mmol/g for Cd(II). The adsorption isothermal of Cu(II) by PSGI followed the Langmuir isotherm. Increasing the concentration (0-0.1M) of KCl in Cu(II) solution affected the adsorption behavior slightly. Within the pH range of 2-5.5, decreasing the pH of the Cu(II) solution did not produce remarkable changes in the equilibrium adsorption capacities. The adsorption capacities of PSGI for Cu(II) did not cause significantly change during the repeated adsorption-desorption operations. The competitive adsorption tests verified that this resin had good adsorption selectivity for Cu(II) with the coexistence of Co(II) and Cd(II).

  Poly(BA-co-GMA-IDA) latex was also formed by surfactant-free emulsion polymerization of BA with GMA-IDA. The latex was spread and dried on glassy plate. FTIR-ATR was used to identified the functional groups of the membrane-Ag(I) complex. After ultraviolet irradiation, SEM observations and EDS measurements confirmed that silver metal particles in a small size (30 nm) were distributed on the surface of membrane.
中文摘要---------------------------------------------------------------------------------------------I
英文摘要---------------------------------------------------------------------------------------------III
誌謝----------------------------------------------------------------------------------------------------V
目錄--------------------------------------------------------------------------------------------------VI
表目錄-----------------------------------------------------------------------------------------------IX
圖目錄-------------------------------------------------------------------------------------------------X

第一章 緒論-----------------------------------------------------------------------------------------1
  1-1 螯合型高分子之簡介-----------------------------------------------------------------1
  1-2 螯合型高分子之分類-----------------------------------------------------------------1
  1-3 螯合高分子的合成--------------------------------------------------------------------13
  1-4 螯合性高分子的應用-----------------------------------------------------------------16
  1-5 研究動機--------------------------------------------------------------------------------21

第二章 實驗內容---------------------------------------------------------------------------------24
  2-1 藥 品 -------------------------------------------------------------------------------------24
  2-2 儀器設備--------------------------------------------------------------------------------26
  2-3 實驗步驟--------------------------------------------------------------------------------27
    2-3-1 GMA-IDA單體的合成------------------------------------------------------27
    2-3-2 螯合性高分子的合成-------------------------------------------------------29
    2-3-3 聚合物的成分分析與濃度調配------------------------------------------31
    2-3-4 金屬離子溶液之配置-------------------------------------------------------31
    2-3-5 GMA-IDA單體、螯合高分子溶液與
       Poly(SM-co-GMA-IDA)乳液之穩定度常數之探討-------------------32
    2-3-6 Poly(SM-co-GMA-IDA)乳液之特性分析-------------------------------36
    2-3-7 Crosslinked Poly(SM-co-GMA-IDA)固態高分子螯合劑
       及其吸附水溶液中之金屬離子的特性分析---------------------------37
    2-3-8 以Poly(BA-co-GMA-IDA)乳液製成表面含奈米銀粒子之薄膜--40

第三章 結果與討論 ---------------------------------------------------------------------------43
  3-1 GMA-IDA單體的合成---------------------------------------------------------------43
  3-2 螯合性高分子的合成----------------------------------------------------------------44
    3-2-1 均勻相Poly(GMA-IDA)及其共聚合物之合成與成分分析--------44
    3-2-2 Poly(SM-co-GMA-IDA)乳液之合成與成分分析---------------------45
  3-3 GMA-IDA、螯合高分子溶液與Poly(SM-co-GMA-IDA)乳液
    之穩定度常數的探討-----------------------------------------------------------------47
    3-3-1 光譜分析-----------------------------------------------------------------------47
    3-3-2 GMA-IDA、螯合高分子溶液、Poly(SM-co-GMA -IDA)乳液
       與金屬離子間的平均配位比----------------------------------------------50
    3-3-3 GMA-IDA、螯合高分子溶液、Poly(SM-co-GMA-IDA)乳液
       的酸解離常數-----------------------------------------------------------------56
    3-3-4 GMA-IDA、螯合高分子溶液、Poly(SM-co-GMA-IDA)乳液
       的穩定度常數(stability constant)------------------------------------------59
    3-3-5 Poly(SM-co-GMA-IDA)乳液的粒徑大小與特色----------------------63
  3-4 Crosslinked Poly(SM-co-GMA-IDA)固態高分子螯合劑
    及其吸附水溶液中之金屬離子的特性分析------------------------------------64
    3-4-1 固態高分子螯合劑的合成與基本分析---------------------------------64
    3-4-2 CPSGI對銅離子的恆溫動力吸附實驗
       (Dynamic and Isothermal Metal ion Adsorption)------------------------65
    3-4-3 溶液的離子強度與pH值對CPSGI吸附銅離子的影響--------------68
    3-4-4 脫附及重覆使用實驗(Desorption and Repeated use)----------------70
    3-4-5 競爭吸附實驗(Competitive Adsorption)---------------------------------70
  3-5 以Poly(BA-co-GMA-IDA) 乳液製成表面含奈米銀粒子之薄膜-----------72
    3-5-1 Poly(BA-co-GMA-IDA)薄膜的合成及前處理-------------------------72
    3-5-2 Poly(BA-co-GMA-IDA) 薄膜螯合銀離子------------------------------74
    3-5-3 以紫外光照射儀製備表面含奈米銀粒子之薄膜--------------------75

第四章 結論--------------------------------------------------------------------------------------77

參考文獻--------------------------------------------------------------------------------------------80
著 作-----------------------------------------------------------------------------------------------138
自 述-----------------------------------------------------------------------------------------------139
[1] R.G. Pearson, J. Am. Chem. Soc., 85, 3533-3539(1963).

[2] C.J. King, “Separation Processes” 2nd ed. New York: Mc Graw-Hill, 1980.

[3] B.S. Kim, S.T. Lim, Carbohyd. Polym., 39, 217-223(1999).

[4] C. Kantipuly, S. Katragadda, A. Chow, H.D.Gesser, Talanta, 37, 491-517(1990).

[5] R.A. Beauvias, S. D. Alexandratos, React. Funct. Polym., 36, 113-123(1998).

[6] F. Ciardelli, E. Tsuchida, D. Wohrle, “Macromolecule-Metal Complexes” Berlin: Springer, 1996.

[7] M. Chanda, G.L. Rempel, Reacct. Polym., 19, 213(1993).

[8] R. Say, A. Tuncel, A. Denizli, J. Appl. Polym. Sci., 83, 2467-2473(2001).

[9] Z. Matejka, Z. Zitkova, React. Funct. Polym., 35, 81-88(1997).

[10] B.N. Kolarz, D. Jermakowicz-Bartkowiak, J. Jezierska, W. Apostoluk, React. Funct. Polym., 48, 169-179(2001).

[11] B.L. Rivas, S.A. Pooley, H.A. Maturana, S. Villegas, J. Appl. Polym. Sci., 80, 2123-2127(2001).

[12] A.W. Trochimozuk, Eur. Polym. J., 34, 1657-1662(1998).

[13] G.V. Myasoedova, I.I. Antokol’skaya, S.B. Savvin, Talanta, 32, 1105-1112 (1985).

[14] R.S.S. Murthy, D.E. Ryan, Analy. Chimi. Acta, 140, 163-169(1982).

[15] A. Denizli, G. Ozkan, M.Y. Arica, J. Appl. Polym. Sci., 78, 81-89(2000).

[16] S. Nakamura, M. Amano, Y. Saegusa, T. Sato, J. Appl. Polym. Sci., 45, 265-271 (1992.)

[17] S. Choi, Y.C. Nho, G. Kim, J. Appl. Polym. Sci., 71, 643-650(1999).

[18] Y. Lu, C. Wu, W. Lin, L. Tang, H. Zeng, J. Appl. Polym. Sci., 53, 1461-1468 (1994).

[19] S. Kobayashi, M. Tokunoh, T. Saegusa, F. Mashio, Macromolecules, 18, 2357-2361(1985).

[20] H. Tbal, M. Delporte, J. Morcellet, M. Morcellet, Eur. Polym. J., 28, 671-679 (1992).

[21] A. Burke, E. Yilmaz, N. Hasirci, O. Yilmaz, J. Appl. Polym. Sci., 84, 1185-1192 (2002).

[22] W.S. Wan Ngah, C.S. Endud, R. Mayanar, React. Funct. Polym., 50, 181-190 (2002).

[23] L. Russell Melby, J. Am. Chem. Soc., 97, 4044-4051(1975).

[24] Y.G. Ko, U.S. Choi, T.Y. Kim, D.J. Ahn, Y.J. Chun, Macromol. Rapid. Commun., 23, 535-539(2002).

[25] S.M. Mokhtar, M.Z. El-Sabee, S.S. Elkholy, M.W. Sabaa, Polym. J., 29, 964-969(1997).

[26] M.G. Mikhael, Polym. Degrad. Stabil., 36, 43-47(1992).

[27] N. Acar, T. Tulun, Eur. Polym. J., 37, 1599-1605(2001).

[28] D.H. Gold, H.P. Gregor, J. Am. Chem. Soc., 64, 1464-1467(1960).

[29] D.H. Gold, H.P. Gregor, J. Am. Chem. Soc., 64, 1460-1463(1960).

[30] T. Miyajima, H. Nishimura, H. Kodama, S. Ishiguro, React. Funct. Polym., 38, 183-195 (1998).

[31] N. Pekel, O. Guven, Colloid Polym. Sci., 577, 570-573(1999).

[32] N. Pekel, H. Savas, O. Guven, Colloid Polym. Sci., 280, 46-51(2002).

[33] B. Salih, N. Pekel, O. Guven, J. Appl. Polym. Sci., 82, 466-453(2001).

[34] P.M. van Berkel, M. Punt, G.J.A.A. Koolhaas, W.L. Driessen, J. Reedijk, D.C. Sherrington, React. Funct. Polym., 21, 139-151(1997).

[35] Y.E. Kirsh, V.Y. Kovner, K.I. Zamaraev, V.Y. Chernyak, V.A. Kabanov, Eur. Polym. J., 10,671-678(1974).

[36] Y.F. Liu, K.J. Zhane, X.L. He, J.D. Hua, J. Macromol. Sci.-Phys., B34(3), 311-324(1995).

[37] M.P. McCurdie, L.A. Belfiore, Polymer, 40, 2889-2902(1999).

[38] M. Chanda, G.L. Rempel, React. Polym., 21, 77(1993).

[39] B.L. Rivas, H.A. Maturana, E. Pereira, Die Angew. Makromol. Chem., 220, 61-74(1994).

[40] B.L. Rivas, S.A. Pooley, E. Aceiton, K.E. Geckeler, J. Appl. Polym. Sci., 85, 2559-2563(2002).

[41] A.L. Lewis, J.D. Miller, Polymer, 36, 331-339(1995).

[42] N. Acar, T. Tulun, Eur. Polym. J., 37, 1599-1605(2001).

[43] M.R. Kratz, D.G. Hendricker, Polymer, 27, 1941-1943(1986).

[44] Y.Y. Chen, X.Z. Yuan, React. Polym., 23, 165-172(1994).

[45] P.M. van Berkel, W.L. Driessen, J. Reedilk, D.C. Sherrington, A. Zitsmanis, React. Funct. Polym. , 27, 15-28(1995).

[46] P.M. van Berkel, D.J. Dijkstra, W.L. Driessen, J. Reedilk, D.C. Sherrington, React. Funct. Polym., 28, 39-54(1995).

[47] J. Jezierska, A.W. Trochimczuk, J. Kedzierska, Polymer, 40, 3611-3616(1999).

[48] T. Godjevargova, A. Simeonova, A. Dimov, J. Appl. Polym. Sci., 79, 283-288 (2001).

[49] T. Godjevargova, A. Simeonova, A. Dimov, J. Appl. Polym. Sci., 83, 3036-3044 (2002).

[50] W. Lin, Y. Lu, H. Zeng, J. Appl. Polym. Sci., 49, 1635-1638(1993).

[51] L. Weiping, F. Yun, Z. Hanmin, React. Polym. 22,1(1994).

[52] R. Sliba, H. Gauthier, R. Gauthier, M. Petit-Ramel, J. Appl. Polym. Sci., 75,1624-1631(2000).

[53] Y. Zhanhai, R. Lei, X. Jun, J. Appl. Polym. Sci., 83, 1986-1992(2002).

[54] N. Kabay, A. Katakai, T. Sugo, H. Egawa, J. Appl. Polym. Sci., 49, 599-607 (1993).

[55] L.C. de Santa Maria, M.C.V. Amorim, M.R.R.P. Aguiar, P.I.C. Guimaraes, M. A.S. Costa, A.P. de Aguiar, P.R. Rezende, M.S. de Carvalho, F.G. Barbosa, J.M. Andrade, R.C.C. Ribeiro, React. Funct. Polym., 49, 133-143(2001).

[56] T.S. Lee, S.I. Hong, J. Appl. Polym. Sci., 33, 203-210(1995).

[57] H.C. Sevindir, R. Mirzaoglu, Macromol. Rep., 399-410(1994).

[58] R. Mendez, K. Usha, K.K. Mohammed Yussuf, V. N. S. Pillai, Eur. Polym. J., 32, 515-521(1996)

[59] R.S. Drago, J. Gaul, A. Zombeck, D.K. Straub, J. Am. Chem. Soc., 80, 1033–1038(1980).

[60] S. Thamizharasi, A.V.R. Reddy, S. Balasubramanian, React. Funct. Polym., 40, 143-153(1999).

[61] D. Jermakowics-Bartkowiak, B.N. Kolarz, Eur. Polym. J., 38, 2239-2246(2002).

[62] H. Lin, M. Kimura, K. Hanabusa, H. Shirai, N. Ueno, Y. Mori, J. Appl. Polym. Sci., 85, 1378-1386(2002).

[63] H.P. Gregor, L.B. Luttinger, E.M. Lobel, J. Phys. Chem., 59, 34-39(1955).

[64] E. Tsuchida, J. Macromol. Sci.-Pure Appl. Chem., 31(1), 1-15(1994).

[65] N. Sebastian, B. George, B. Mathew, Polym. Degrad. and Stabil., 60, 371-375 (1998).

[66] C. Morlay, M. Cromer, Y. Mouginot, O. Vittori, Talanta, 45, 1177-1188(1998).

[67] C. Morlay, M. Cromer, Y. Mouginot, O. Vittori, Talanta, 48, 1159-1166(1999).

[68] Y. Mouginot, C. Morlay, M. Cromer, O. Vittori, Analy. Chimi. Acta, 407, 337-345(2000).

[69] R. Coskun, M. Yigitoglu, M. Sacak, J. Appl. Polym. Sci., 75, 766-772(2000).

[70] A. Hebeish, Z.H. El-Hilw, J. Appl. Polym. Sci., 67, 739-745(1998).

[71] B.L. Rivas, S.A. Pooley, E. Aceiton, J. Appl. Polym. Sci., 84,1251-1256(2002).

[72] B.L. Rivas, S.A. Pooley, B. Ruf, P. Reyes, G. Cardenas, J. Appl. Polym. Sci., 83, 1501-1506(2002).

[73] W. Li, H. Zhao, P.R. Teasdale, R. John, S. Zhang, React. Funct. Polym., 52, 31-41(2002).

[74] D. Ruiz, M. Martinelli, H. Bertorello, Polym. Bull., 46, 334-338(2001).

[75] V. Montembault, V. Folliot, J.C. Soutif, J.C. Brosse, React. Polym., 22, 81(1994).

[76] I. Katime, E. Rodriguez, J. Macromol. Sci.-Pure Appl. Chem., 38, 543-558 (2001).

[77] C. Huang, L. Chen, C.Z. Yang, Polym. Bull., 41, 585-592(1998).

[78] E. Karadag, D. Saraydin, O. Guven, Sep. Sci. Technol., 30, 3747-3760 (1995).

[79] B.L. Rivas, G.V. Seguel, C. Ancatripai, Polym. Bull., 44, 445-452(2000).

[80] B.L. Rivas, G.V. Seguel, Polym. Bull., 46, 271-276(2001).

[81] B.L. Rivas, G.V. Seguel, K.E. Geckeler, J. Appl. Polym. Sci., 81, 1310-1315 (2001).

[82] B.L. Rivas, G.V. Seguel, K.E. Geckeler, J. Appl. Polym. Sci., 85, 2546-2551 (2002).

[83] T. Teranishi, M. Harada, K. Asakura, H. Asanuma, Y. Saito, N. Toshima, J. Phys. Chem., 98, 7967-7975(1994).

[84] T. Kaliyappan, P. Kannan, Prog. Polym. Sci., 25, 343-370(2000).

[85] S.H. Choi, Y.C. Nho, G. Kim, J. Appl. Polym. Sci., 71, 999-1006(1999).

[86] F. Svec, H. Hrudkova, D. Horak, J. Kalal, Die Angew. Makromol. Chem., 63, 23-36(1977).

[87] F. Svec, H. Hrudkova, D. Horak, J. Kalal, Die Angew. Makromol. Chem., 63, 37-45(1977).

[88] E. Ka’kakov’a, V. Beiglova, J. Ka’lal, F. Svec, Die Angew. Makromol. Chem., 72, 143-169(1978).

[89] K. Takeda, M. Akiyama, T. Yamamizu, React. Polym., 4, 11-20(1985).

[90] E. Oikawa, K. Ohtomo, React. Polym., 8, 17-26(1988).

[91] W. Bashir, B. Paull, J. of Chromatogr. A, 942, 73-82(2002).

[92] B. Filiz Senkal, N. Bicak, React. Funct. Polym., 49, 151-157(2001).

[93] B. George, V. N. Rajasekharan, B. Mathew, J. Appl. Polym. Sci., 74, 3432-3444 (1999).

[94] A. Disbudak, S. Bektas, S. Patir, O. Genc, A. Denizli, Sep. Puri. Technol., 26,273-281(2002).

[95] B.L. Rivas, S.A. Pooley, M. Luna, J. Appl. Polym. Sci., 83, 2556-2651(2002).

[96] M. Liu, Y. Deng, H. Zhan, X. Zhang, J. Appl. Polym. Sci., 84, 478-485(2002).

[97] B.C. Mondal, A.K. Das, React. Funct. Polym., 53, 45-52(2002).

[98] A.Z. El-Sonbati, Ashraf A, E. A. Diab, Polym. Degrad. and Stabil., 42, 1-11 (1993).

[99] A. Denizli, R. Say, S. Patir, Y. Arica, React. Funct. Polym., 46, 157-164(2000).

[100] Z.S. Liu, Z. Erhan, J. Appl. Polym. Sci., 84, 2386-2396(2002).

[101] M. Liu, X. Yan, H. Liu, W. Yu, React. Funct. Polym., 44, 55-64(2000).

[102] L. Janus, J. Morcellet, M. Delporte, M. Morcellet, Eur. Polym. J., 28, 1185-1189 (1992).

[103] S. Marmor, G. Kidane, Polym. Bull., 1, 239-242(1978).

[104] D.K. Patel, C.G. Patel, J.S. Parmar, Macromol. Rep., A31, 297-307 (1994).

[105] U.D.N. Bajpai, S. Rai, Polym. Int., 32, 215-220(1993).

[106] T. Kaliyappan, S. Nanjundan, J. Polym. Mater., 10, 169-174(1993).

[107] T. Kaliyappan, C. S. Swamination, P. Kannan, Polymer, 37,2865-2869(1996).

[108] C. Peng, Y. Wang, Y. Tang, J. Appl. Polym. Sci., 70, 501-506(1998).

[109] L. Wan, Y. Wang, S. Qian, J. Appl. Polym. Sci., 84, 29-34(2002).

[110] Z. Yang, Y. Wang, Y. Tang, J. Appl. Polym. Sci., 75, 1255-1260(2000).

[111] K. Yamashita, K. Kurita, K. Ohara, K. Tamura, M. Nango, K. Tsuda, React. Funct. Polym., 31, 47-55(1996).

[112] N. Angelova, N. Manolova, I. Rashkov, Eur. Polym. J., 31, 741-748(1995).

[113] A. Lezi, S. Cobianco, A. Roggero, J. Polym. Sci., Part A. Polym. Chem., 32, 1877-1883(1994).

[114] L. Jose, V.N.R. Pillai, Polymer, 39, 229-233(1998).

[115] V.D. Noto, V. Munchow, M. Vittadello, J.C. Collet, S. Lavina, Macromol. Chem. Phys., 203, 1211-1227(2002).

[116] C.A. Furtado, G. G. Silva, J. C. Machado, M. A. Pimenta, R.A. Silva, J. Phys.Chem. B., 103, 7102-7110(1999).

[117] J.D. van Heumen, W. Wieczorek, M. Siekierski, J.R. Stevens, J. Phys. Chem.,99, 15142-15152(1995).

[118] J.D. van Heumen, J.R. Stevens, Macromolecules, 28, 4268-4277(1995).

[119] L. Qi, Y. Lin, X. Jing, F. Wang, Solid State Ionics, 139, 293-301(2001).

[120] M. Watanabe, A. Nishimoto, Solid State Ionics, 9, 306-312(1995).

[121] J. S. Gnanaraj, R. N. Karekar, Polymer, 38, 3709-3712(1997).

[122] A. Nishimoto, K. Agehara, N. Furuya, T. Watanade, M. Watanade, Macromolecules, 32, 1541-1548(1999).

[123] J.S. Gnanaraj, R.N. Karekar, S. Skaria, S. Ponrathnam, Bull. Electrochemistry, 12, 738-742(1996).

[124] A. Nishimoto, M. Watanade, Y. Ikeda, S. Kohjiya, Electrochem. Acta, 43,1177-1184(1998).

[125] C.Y. Liu, H.T. Chang, C.C. Hu, Inorg. Chemi. Acta, 172,151-158(1990).

[126] R. Liu, Y. Li, H. Tang, J. Appl. Polym. Sci., 83, 1608-1616(2002).

[127] A. Lezzi, S. Cobianco, J. Appl. Polym. Sci., 54, 889-897(1994).

[128] A. Saglam, S. Bektas, S. Patir, O. Genc, A. Denizli, React. Funct. Polym., 47, 185-192(2001).

[129] N.L. Dias Filho, Y. Gusikem, D.W. Franco, M.S. Schultz, L.C.G. Vasconcellos, Colloids and Surfaces, 141, 181-187(1998).

[130] T. Saegusa, S. Kobayashi, K. Hayashi, A. Yamada, Polym. J., 10, 403-408 (1978).

[131] U. Diefenbach, A.M. Cannon, B.E. Stromburg, D.L. Olmeijer, H.R. Allcock, J. Appl. Polym. Sci., 78, 650-661(2000).

[132] S. Cobianco, A. Lezzi, R. Scotti, React. Funct. Polym., 43, 7-16(2000).

[133] M.A. Khalid, A.G. El-Shekeil, F.A. Al-Yusufy, Eur. Polym. J., 37, 1423-1431 (2001).

[134] R.M. Issa, A.Z. El-Sonbati, A.A. El-Bindary, H.M. Kera, Eur. Polym. J., 38,561-566(2002).

[135] A. Jyo, A. Yamade, K. Egawa, H. Sep. Sci. Technol., 31, 513(1996).

[136] M.A. Congost, D. Salvatierra, G. Marques, J.L. Bourdelande, J. Font, M. Valiente, React. Funct. Polym., 28, 191-200(1996).

[137] Z.X. Su, Y.B. Zhou, X.J. Chang, Y. Jin, S.K. Qi, J. Appl. Polym. Sci., 84, 962-968(2002).

[138] S.D. Alexandratos, L.A. Hussian, Ind. Eng. Chem. Res., 34, 251(1995).

[139] S.D. Alexandratos, A.W. Trochimczuk, D.W. Crick, E. P. Horwitz, R.C.Gatrone, R. Chiarizia, Macromolecules, 29, 1021-1026(1996).

[140] S.D. Alexandratos, A.W. Trochimczuk, E.P. Horwitz, R.C. Gatrone, J. Appl. Polym. Sci., 61, 273-278(1996).

[141] H. Maeda, H. Egawa, J. Appl. Polym. Sci., 33, 1275-1281(1987).

[142] W.C. Chan, J.Y. Wu, J. Appl. Polym. Sci., 81, 2849-2855(2001).

[143] A. Jyo, S. Matsufune, H. Ono, H. Egawa, J. Appl. Polym. Sci., 63, 1327-1334 (1997).

[144] S.D. Alexandratos, M.E. Bates, Macromolecules, 21, 2905(1998).

[145] S.D. Alexandratos, D.L. Wilson, Macromolecules, 19, 280(1986).

[146] C.C. Wang, C.C. Chang, C.Y. Chen, Macromol. Chem. Phys., 202, 882-890 (2001).

[147] H. Egawa, M. Nakayama, T. Nonaka , E. Sugihara, J. Appl. Polym. Sci., 33, 1993(1987).

[148] B.J. Liu, L.H. Lu, B.C. Wang, T.X. Cai, K. Iwatani, Appl. Catal. A-General, 171, 117-122(1998).

[149] M. Ohtaki, M. Komayama, H. Hirai, N. Toshima, Macromolecules, 24, 5567-5572(1991).

[150] R.H. Grubbs, C. Gibbons, L.C. Wesley, D. Bonds, C.H. Brubaker, J. Am. Chem. Soc., 95, 2373(1973).

[151] R.H. Grubbs, L.C. Kroll, J. Am. Chem. Soc., 93, 3062(1971).

[152] A. Patchornik, M.A. J. Am. Chem. Soc., 92, 7587(1970).

[153] J.S. Butler, B. Gordon, I.R. Harrison, J. Appl. Polym. Sci., 35, 1183(2001).

[154] J.M. Garnet, R. Levot, M.A. Long, J. Polym. Sci. Polym. Lett. Ed., 19, 23 (1981).

[155] H.C. Shen, H.S. Weng, Ind. Eng. Chem. Res., 27, 2246-2254(1988).

[156] A.A. Efenfieve, T.N. Shakhtakhtinsky, L.F. Mustafasva, H.L. Shick, Ind. Eng.Chem. Prod. Res. Dev., 19, 75-77(1980).

[157] C.C. Wang, W.S. Li, S.K. Cheng, C.Y. Chen, C.Y. Chen, J.F. Kuo, J. of Appl. Polym. Sci., 82, 3248-3257(2001).

[158] C.C. Wang, W.S. Li, S.K. Cheng, C.Y. Chen, C.Y. Chen, J.F. Kuo, React. Funct. Polym., 51, 69-78(2002).

[159] R.C. Ruaan, S.H. Chen, J.Y. Lai, J. Membr. Sci., 135(1), 9-18(1997).

[160] S.H. Chen, R.C. Ruaan, J.Y. Lai, Sep. Sci. Technol., 32(5), 925-937(1997).

[161] S.H. Chen, J.Y. Lai, R.C. Ruaan, A.A. Wang, J. Membr. Sci., 123(2), 197-205(1997).

[162] S.H. Chen, J.Y. Lai, J. Appl. Polym. Sci., 59, 1129-1135(1996).

[163] C.C. Wang, C.Y. Chen, C.C. Huang, C.Y. Chen, J.F. Kuo, J. Membr. Sci., 177,189-199(2000).

[164] C.C. Wang, M.H. Cheng, C.Y. Chen, C.Y. Chen, J. Membr. Sci., 208,133-145 (2002).

[165] S. Bai, S. Sridhar, A.A. Khan, J. Membr. Sci., 147, 131-139 (1998).

[166] H. Asanuma, N. Toshima, J. Chem. Soc., Chem. Commun., 15, 1075-1076 (1988).

[167] D.W. Xia, J. Smid, J. Polym. Sci: Polym. Lett. Ed., 22, 617-621(1984).

[168] G. Carrot, J.C.Valmalette, C.J.G. Plummer, S.M. Scholz, J. Dutta, H. Hofmann, J.G. Hilborn, Colloid Polym. Sci., 276, 853-859(1998).

[169] P.H. Wang, C.Y. Pan, Colloid Polym. Sci., 278, 245-249(2000).

[170] P.H. Wang, C.Y. Pan, Colloid Polym. Sci., 278, 581-586(2000).

[171] P.H. Wang, C.Y. Pan, J. Appl. Polym. Sci., 75, 1693-1698(2000).

[172] P.H. Wang, C.Y. Pan, Colloid Polym. Sci., 279, 171-177(2001).

[173] L.T. Chang, C.C. Yen, J. Appl. Polym. Sci., 55, 371-374(1995).

[174] W. Fritzsche, H. Porwol, A. Wiegand, S. Bornmann, J.M. Kohler, Nanostruc. Mater., 10, 89-97(1998).

[175] Y. Zhu, Y. Qian, X. Li, M. Zhang, Nanostruc. Mater., 10, 673-678(1998).

[176] C. Wu, J. Fu, Y. Zhao, Macromolecules, 33, 9040-9043(2000).

[177] S. Mossmer, J.P. Spatz, M. Moller, T. Aberle, J. Schmiddt, W. Burchard, 33, 4791-4798(2000).

[178] Y. Liu, L. Chen, B. Su, A. Huang, J. Hua, W. Sang, J. Min, Z. Meng, J. Appl.Polym. Sci., 84, 1263-1268(2002).

[179] Y. Gotoh, Y. Ohkoshi, M. Nagura, Polym. J., 33, 303-305(2001).

[180] W.C. Hsu, J.F. Kuo, C.Y. Chen, J. Polym. Sci., Part A. Polym. Chem., 31,267-274(1993).

[181] W.C. Hsu, J.F. Kuo, C.Y. Chen, Polymer, 33, 849-856(1994).

[182] C.C. Wang, H.G. Chen, H.B. Hsieh, C.Y. Chen, Polym. Adv. Technol.,acceped(2002).

[183] E.M. Arthur, C. Melvin, “Chemistry of the Metal Chelate Compounds”, Prentice-Hall, Inc., 1952, Chapter 3.

[184] Y. Kurimura, K. Takato, J. Chem. Soc.: Faraday trans., 84, 841-850(1988).

[185] V.S. Soldatov, Ind. Eng. Chem. Res., 34, 2605-2611(1995).

[186] R.M. Silverstein, F.X. Webster, “Spectrometric Identification of Organic Compounds”, 6th, New York: John Wiely & Sons, Inc., 1997, Chaper 3.

[187] 謝如嘉,成功大學化學工程系碩士論文,民國89 年。

[188] D. Banerjea, “Coordination Chemistry”, Tata McGraw-Hill Publishing Company limited, 1993, Chapter 4.

[189] D.T. Sawyer, P.J. Paulsen, J. Am. Chem. Soc., 80, 1597-1600(1958).

[190] D.T. Sawyer, P.J. Paulsen, J. Am. Chem. Soc., 81, 816-820(1959).

[191] D.T. Sawyer, J. McKinnie, J. Am. Chem. Soc., 82, 4191-4196(1960).

[192] H. Morawetz, “Macromolecules in Solution”, New York: John Wiley & Sons Inc., 1975, Chapter 7.

[193] V.S. Soldatov, React. Funct. Polym., 46, 55-58(2000).

[194] G. Borge, G. Arana, L.A. Fernandez, J.M. Madariaga, Talanta, 48, 91-102 (1999).

[195] D. J. Shaw, ” Introduction to Colloid & Surface Chemistry”, 4th Ed., Oxford: Butterworth-Heinemann, 1992, Chapter 5.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top