(3.227.208.0) 您好!臺灣時間:2021/04/21 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:粘駿楠
研究生(外文):Jun-Nan Nian
論文名稱:碳電極之氧官能基對電化學電容之影響
論文名稱(外文):Influence of Oxygen Functionalities on thePerformance of Carbon Electrodes ofElectrochemical Capacitors
指導教授:鄧熙聖
指導教授(外文):Hsishent Teng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:中文
論文頁數:97
中文關鍵詞:硝酸處理氧化雙層電容量活性碳電極孔洞電極交流阻抗活性碳電化學電容器
外文關鍵詞:oxidized carbon electrodedouble layer capacitancea.c. impedanceporous electrodeoxidationnitric acid treatmentactivated carbonelectrochemical capacitors
相關次數:
  • 被引用被引用:9
  • 點閱點閱:468
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
本文可分為兩部分:第一部分為探討碳電極上之氧官能基影響電化學電容的行為,標題為“硝酸氧化之活性碳電極對電化學電容之改善”。在第二個部分中探討不同氧含量的碳電極對電容器之交流阻抗之影響,標題為“以碳極為基材之電化學電容器其表面氧官能基對阻抗行為的影響”。
第一部分為硝酸氧化活性碳纖維布,並在氮氣下利用不同溫度鍛燒,並探討碳纖維布上之氧官能基對電化學電容器性能之影響,電容器性能測試是以1M硫酸為電解質,電位範圍為-0.6至0.6V,隨著氧化的處理發現碳的比電容上升,利用temperature programmed desorption (TPD)分析表面之複合物,顯示出雙層電容量隨著釋出-CO之吸附物的增加而增加,但隨著釋出-CO2之吸附物的增加而減少,此才因離子在微孔中移動的阻力上升所導致,由於氧化的影響使得纖維布和襯裡的金屬片之間的電阻上升,硝化後再經氮氣下450℃鍛燒,所得之電容量增加40%,且不增加其總電阻,其原因為在450℃鍛燒後移除了主要的釋出-CO2之脫附物,並保持原有之釋出-CO之吸附。
第二部分為用交流阻抗光譜來分析,由不同表面氧官能基之活性碳電極組成電化學電容器,藉由硝酸氧化處理後,再經150至900℃不同溫度下鍛燒可製成含不同氧官能基的碳電極。阻抗光譜顯示總電阻主要來自於纖維之間的接觸電阻,氧官能基會使得接觸電阻的上升,故總電容量主要是由於內部微孔介面所貢獻。氧化使得電極之比電容上升,但在熱處理溫度450℃時有最高的電容量。用常相元件來分析電容的行為時顯示出一偏離理想之電容行為,顯示在碳微孔中的低電阻和決定能量儲存的雙層機構一樣重要。同樣地電容量的上升主要來自於氧化所產生之雙層機構。在低溫處理過之碳電極其行為愈偏離理想電容,此指出含釋出CO2之氧官能基會加大聚集效應並阻礙充電過程,而含會釋出CO之氧官能基則為增進雙層電容量之原因。
This dissertation is divided into two parts. The first part is to study how the oxygen functional groups on carbon electrodes can affect the electrochemical capacitance. The titile is “Nitric Acid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance”. In the second part, we focus on the influence of the functional groups on the impedance behavior of electrochemical capacitors. The title is “Influence of Oxygen Functional Groups on the Impedance Behavior of Carobn-Based Electrochemical Capacitors”.
In the first part, nitric acid oxidation on activated carbon fabric in combination with calcination in N2 at different temperatures was conducted to explore the influence of surface carbon-oxygen complexes on the performance of electrochemical capacitors fabricated with the carbon fabric. The performance of the capacitors was tested in 1 M H2SO4 within a potential range of □0.6 and 0.6 V. The specific capacitance of the carbon was found to increase upon oxidation. Surface complex analysis using temperature programmed desorption showed that the double-layer capacitance was enhanced due to the presence of CO-desorbing complexes while CO2-desorbing complexes exhibited a negative effect. The micropore resistance for ion migration was low for these carbons. The electrical connection resistance between the fabric and the backing plate as well as that between the carbon fibers accounted for the major proportion of the overall resistance and was shown to increase due to the oxidation. A capacitance increase of more than 40% has been achieved, without increasing IR drop, by nitric acid oxidation followed by 450 □C calcination that was shown to remove the majority of the CO2- desorbing complexes while retain the CO-desorbing.
In the second part, electrochemical capacitors made of activated carbon fabrics containing different compositions of surface oxides are analyzed using a.c. impedance spectroscopy. The oxides are introduced and controlled via HNO3 treatment followed by thermal treatment at different temperatures within 150□900 □C. The impedance spectra showed that the overall resistance mainly came from the fiber contact resistance, which was an increasing function of oxide number, while the overall capacitance was contributed by the interface inside micropores. Oxidation enhanced the specific capacitance of the electrodes, but it was found that a thermal treatment temperature of 450 □C gave a highest capacitance. Constant phase element analysis of the capacitive behavior showed insignificant deviation from ideality, indicating the low resistance in carbon micropores as well as the domination of double layer mechanism in energy storage. Thus, the capacitance increase from oxidation resulted mainly from the double layer mechanism as well. The deviation from ideality was more obvious for lower temperature treated electrodes, indicating that the CO2-desorbing complexes may enhance formation of aggregates to retard the charge process while the CO-desorbing complexes are responsible for the promotion of double layer capacitance.
中文摘要要……………………………………………………………I
英文摘要……………………………………………………………III□
誌謝……………………………………………………………………...V
總目錄…………………………………………………………………..VI
表目錄……………………………………………………………….….IX
圖目錄…………………………………………………………………...X
符號表………………………………………………………………...XIV
第一章 緒論1
1-1 超高電容器簡介1
1-2 電容器碳極的應用2
1-3 多孔性碳材料2
1-3-1 碳纖維布3
1-3-2 碳之氧官能基3
1-4 研究動機與本文大綱4
第二章 理論說明與文獻整理6
2-1 電容器簡介6
2-2 電容測試原理6
2-2-1 電容7
2-2-2 電容器8
2-2-3 電容測定方法10
2-3 電雙層的觀念與結構12
2-3-1 電雙層原理13
2-3-2 Helmholtz電雙層模型13
2-4吸附基本理論15
2-4-1 吸附曲線15
2-4-2 氣體吸附模式16
2-5 阻抗光譜分析原理21
第三章 硝酸氧化之活性碳電極對電容量之改善41
3-1 簡介41
3-2 實驗設備與方法42
3-2-1實驗用藥品與儀器42
3-2-2實驗方法43
3-3 結果與討論45
3-3-1 碳極表面特性45
3-3-2 電容器之電化學行為46
3-4 結論51
第四章 以碳極為基材之電化學電容器其表面氧官能基對阻抗行為的影響68
4-1 簡介68
4-2 實驗設備與方法70
4-2-1實驗用藥品與儀器70
4-2-2實驗方法71
4-3 結果與討論73
4-4 結論79
參考文獻92

表目錄
表3-1不同溫度熱處理程序之碳電極其物理結構分析。54
表3-2碳極經TPD分析之CO與CO2釋放量正釋放比例,和總含氧量。54
表3-3碳極經CV測試所決定的電容器總阻抗和總電容量。55
表3-4由等效電路套適實驗阻抗數據所得之參數值。55
表4-1不同溫度熱處理程序之碳電極其物理結構分析。82
表4-2碳極經TPD分析之CO與CO2釋放量正釋放比例,和總含氧量。.............................................................................................83
表4-3所交流阻抗數據所算得在不同電位下各碳電極的比電容值,和各碳電極之開環電壓。84
表4-4由圖7中之等效電路套適阻抗之實驗數據所得之參數。85

圖目錄
圖1-1碳上常見的氧官能基[3]。5
圖2-1電容器在電子回路中作用示意圖[Rizzoni, 1993]。26
圖2-2(a)兩電容器串聯,(b)相當電容器[4]。26
圖2-3(a)兩電容器並聯,(b)相當電容器[4]。27
圖2-4平板電容器示意圖[Rizzoni, 1993]。27
圖2-5三極(a)和二極(b)的電雙層電容器及相當電路[5]。28
圖2-6Potential step 實驗[5]。28
圖2-7Potential step實驗中所得電流(i)對時間(t)作圖。施加電壓(E)對時間(t)作圖[5]。29
圖2-8Current Step實驗[5]。30
圖2-9Current step實驗中所得電壓(E)對時間(t)作圖。施加電流(i)對時間(t)作圖[5]。30
圖2-10以掃瞄電壓v (V s-1)進行線性電壓增加實驗。(a)電壓(E)對時間(t)作圖。(b)電流(i)對時間(t)作圖[5]。31
圖2-11從一循環線性電壓掃瞄,電流(i)對時間(t)和電流(i)對電壓(V)作圖[5]。32
圖2-12一系統具有法拉第電流及電雙層充電電流情形下,在不同電位掃瞄速度所得E-I圖。圖中使用Δ I而不用個別Ia和Ic可消除在計算Cdl時,由於法拉第反應所造成的誤差。33
圖2-13Helmholtz電雙層結構模型與電位分佈圖[Hamann, 1998]。……...…………………………………………………………34
圖2-14Stern電雙層結構模型與電位分佈圖[7]。35
圖2-15電雙層結構示意圖[8]。36
圖2-16等溫吸附曲線的六種型態[11]。37
圖2-17典型的t-plot示意圖。38
圖2-18阻抗之複數平面中代表電阻和電容兩部分。39
圖2-19電阻和電容串聯 (A)電路圖 (B)複數平面阻抗圖。39
圖2-20電阻和電容並聯(A)電路圖; (B)並聯RC電路中,電容和電阻電流向量之總和; (C)複數平面之阻抗圖。40
圖3-1鋼管與高溫爐設備圖。55
圖3-2自動化物理吸附分析儀。56
圖3-3TPD溫控脫附系統裝置設備圖。57
圖3-4電容器性能測試組裝圖。58
圖3-5碳電極TPD的CO和CO2的釋放圖。59
圖3-6各碳極之放電電容量隨電流變化情形。60
圖3-7由放電電流所得之不同的放電電容和TPD實驗中所得之CO —CO2釋放量作圖。61
圖3-8各碳極之IR drop隨放電電流之變化情形。62
圖3-9各碳電極在1 M的H2SO4、不同掃瞄速度下之CV圖。63
圖3-10各碳電極在1 M的H2SO4、不同掃瞄速度下之CV圖。64
圖3-11由交流阻抗分析得到的Nyquist圖形。65
圖3-12碳極可能之等效電路圖。66
圖3-13碳極在1 M的H2SO4以3 mA定電流充/放電之放電電容量與庫侖效率隨循環次數之變化情形。67
圖4-1不同碳電極TPD的CO和CO2的釋放圖。85
圖4-2各碳電極在1 M的H2SO4、掃瞄速率為3 mV/s下之電位對電容量的圖。86
圖4-3由交流阻抗分析得到在不同電位下各電容器之Nyquist圖形。……………………………………………………………87
圖4-4不同的碳極由式4-2所算得的電容對頻率的圖形。88
圖4-5不同的碳極其交流阻抗分析而得之Bode的總阻抗圖形。89
圖4-6碳纖維布電極之等效電路圖。90
圖4-7不同電容器之□d/□d0對電位的圖形。91
1.M. Suzuki, Adsorption Engineering, Elsevier: Tokyo, (1990).
2.J. S. Mattson, and Jr. H. B. Mark, Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch: New York, (1998).
3.K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons: New York, (1988).
4.H. D. Young, Physics, Addison-Wesley Publishing Co.: New York, (1992).
5.A. J. Bard, and L. R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, (1996).
6.D. Qu, and H. Shi, “Studies of Activated Carbons in Double-Layer Capacitors”, J. Power Sources 74, 99 (1998).
7.C. H. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry, Wiley-Vch: New York, (1998).
8.J. S. Mattson, and Jr. H. B. Mark, Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch: New York, (1998).
9.M. J. Muñoz-Guillena, M. J. Illàn-Gómez, J. M. Martín-Martínez, A. Linares-Solano, C. Salinas-Martínez, and de Lecea, “Activated Carbons from Spanish Coal. 1. Two-Stage CO2 Activation”, Energy Fuels 9, 6 (1992).
10.S. Lowell, and J. E. Shields, Powder Surface Area and Porosity, 3rd ed.; Chapman & Hall: London, (1991).
11.D. M. Ruthven, Principles of Adsorption and Adsorption Process John Wiley & Sons: New York (1984).
12.D. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press: London, (1998).
13.R. Kötz and M. Carlen, Electrochim. Acta, 45, 2483 (2000).
14.M. Ishikawa, M. Ihara, M. Morita, and Y. Matsuda, Electrochim. Acta, 40, 2217 (1995).
15.Y. Matsuda, K. Inoue, H. Takeuchi, and Y. Okuhama, Solid State Ionics, 113-115, 103 (1998).
16.L. Bonnefoi, P. Simon, J. F. Fauvarque, C. Sarrazin, and A. Dugast, J. Power Sources, 79, 37 (1999).
17.T.-C. Weng and H. Teng, J. Electrochem. Soc., 148, A368 (2001).
18.H. Shi, Electrochim. Acta, 41, 1633 (1996).
19.I. Tanahashi, A. Yoshida, and A. Nishino, J. Electrochem. Soc., 137, 3052 (1990).
20.T. Nagaoka and T. Yoshino, Anal. Chem., 58, 1037 (1986).
21.T. Nagaoka, T. Fukunaga, T. Yoshino, I. Watanabe, T. Nakayama, and S. Okazaki, Anal. Chem., 60, 2766 (1988).
22.J. M. Miller, B. Dunn, T. D. Tran, and R. W. Pekala, J. Electrochem. Soc., 144, L309 (1997).
23.A. Nakamura, T. Inui, N. Kinomura, and T. Suzuki, Carbon, 38, 1361 (2000).
24.F. Adib, A. Bagreev, and T. Bandosz, Langmuir, 16, 1980 (2000).
25.R. L. McCreery, K. K. Cline, C. A. McDermott, and M. T. McDermott, Colloids Surfaces A, 93, 211 (1994).
26.T. Momma, X. Liu, T. Osaka, Y. Ushio, and Y. Sawada, J. Power Sources, 60, 249 (1996).
27.B. E. Conway, Electrochemical Supercapacitors, p. 259, Kluwer Academic / Plenum Publishers, New York (1999).
28.J. Koresh and A. Soffer, J. Electrochem. Soc., 124, 1379 (1990).
29.J. S. Noh and J. A. Schwarz, Carbon, 28, 675 (1990).
30.S. S. Barton, M. J. B. Evans, E. Halliop, and J. A. F. MacDonald, Carbon, 35, 1361 (1997).
31.Y. Otake and R. G. Jenkins, Carbon, 31, 109 (1993).
32.L. R. Radovic and C. Sudhakar, in Introduction to Carbon Technologies, H. Marsh, E. A. Heintz, F. Rodríguez-Reinoso, Editors, p. 103, University of Alicante, Alicante, Spain (1997).
33.F. Rodríguez-Reinoso, M. Molina-Sabio, and M. T. González, Carbon, 33, 15 (1995).
34.C. Moreno-Castilla, J. Rivera-Utrilla , J. P. Joly, M. V. López-Ramón, M. A. Ferro-García, and F. Carrasco-Marín, Carbon, 33, 1417 (1995).
35.X. Liu and T. Osaka, J. Electrochem. Soc., 144, 3066 (1997).
36.S. Yoon, J. Lee, T. Hyeon, and S. M. Oh, J. Electrochem. Soc., 147, 2507 (2000).
37.R. W. Couglin and F. S. Ezra, Environ. Sci. Technol., 2, 291 (1968).
38.T. Asakawa and K. Ogino, J. Colloid Interface Sci., 102, 348 (1984).
39.R. de Levie, Electrochim. Acta, 8, 751 (1963).
40.L. G. Austin and E. G. Gagnon, J. Electrochem. Soc., 120, 251 (1973).
41.J. R. Miller, in Electrochemical Capacitors, F. M. Delnick and M. Tomkiewicz, Editors, PV 95-29, p. 246, The Electrochemical Society Series, Pennington, NJ (1996).
42.E. Gileadi, Electrode Kinetics, p. 222, VCH Publishers, New York (1993).
43.T. Osaka, X. Liu, M. Nojima, and T. Momma, J. Electrochem. Soc., 146, 1724 (1999).
44.A. Nishino, J Power Source 60 (1996) 137.
45.J. R. Macdonald, D. R. Franceschetti, in: J. R. Macdonald (Ed.), Impedance Spectroscopy, John Wiley & Sons, New York, (1987) 84.
46.E. Warburg, Ann. Phys. Chem. 67 (1899) 493.
47.T. Pajkossy, T. Wandlowski, D.M. Kolb, J. Electroanal. Chem. 414 (1996) 209.
48.T. Pajkossy, Solid State Ionics 94 (1997) 123.
49.I. D. Raistrick, in: J. McHardy, F. Ludwig (Eds.), Electrochemistry of semiconductors and electronics: processes and devices, Noyes Publications, Park Ridge, NJ, (1992).
50.R. de Levie, in: P. Delahay (Ed.), Advances in Electrochemistry and Electrochemical Engineering, vol. VI, Interscience, New York, (1967) 329.
51.H. Keiser, K.D. Beccu, M.A. Gutjahr, Electrochim. Acta 21 (1976) 539.
52.K. Eloot, F. Debuyck, M. Moors, A.P. van Peteghem, J. Appl. Electrochem. 25 (1995) 326.
53.R. de Levie, Electrochim. Acta 10 (1965) 113.
54.A. Hmelin, S. Morin, J Richer and J. Lipkowski, J. Electroanal. Chem., 285 (1990) 249 (Appedix).
55.P. Zoltowski, Journal of Electroanalytical Chemistry 443 (1998) 149.
56.F. Rodríguez-Reinoso, M. Molina-Sabio, and M. T. González, Carbon, 33 (1995) 15.
57.X. Liu, T. Osaka, J. Electrochem. Soc., Vol. 143, No. 12, Decemeber 1996.
58. T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, Journal of Sources 60 (1996) 249.
59.E. G. Gagnon, J. Electrochem. Soc., 122 (1975) 521.
60.E. G. Gagnon, J. Electrochem. Soc., 120, 1052 (1973); J. Electrochem. Soc., 121 (1974) 512.
61.O. B. Yang, J. C. kim, J. S. Lee, Y. G. Kim, Ind. Eng. Chem. Res. 32 (1992) 1692.
62.Christopher M. A. Brett, Ana M.O. Brett, Electrochemistry: Principles, Methods, and Applications, Oxford New York (1993).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔