(3.227.235.183) 您好!臺灣時間:2021/04/14 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾協廷
研究生(外文):Hsien-Ting Chung
論文名稱:以液-液-固相間轉移催化技術合成丙烯基苯基醚─高分子擔體與無機擔體之比較
論文名稱(外文):Synthesis of Allyl Phenyl Ether by Liquid-Liquid-Solid Phase Transfer Catalysis─Comparison of the Polymer and Inorganic Supports
指導教授:翁鴻山翁鴻山引用關係
指導教授(外文):Hung-Shan Weng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:138
中文關鍵詞:丙烯基溴超音波震盪液-液-固相間轉移催化技術無機擔體觸媒高分子擔體觸媒相間轉移觸媒丙烯基苯基醚
外文關鍵詞:allyl bromideallyl phenyl etherphase transfer catalystliquid-liquid-solid phase transfer catalysisultrasonic vibrationinorganic supported catalystpolymer supported catalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究以市售之氯甲基化聚苯乙烯高分子、矽膠和氧化鋁,當作固體擔體,用以固定幾種不同的三級胺,製成多種相間轉移觸媒。接著以這些觸媒催化丙烯基溴和酚化鈉的醚化反應產製丙烯基苯基醚,比較它們的性能。實驗中,以類似有機相產物的乙基苯基醚作為溶劑,來模擬以有機相產物為溶劑的反應系統。根據觸媒之活性、選擇性和穩定性來篩選最適合用於該醚化反應的觸媒。為避免因攪拌影響觸媒之穩定性,也嘗試附加超音波震盪,觀察其效果。最後以有機相產物為溶劑,分別進行批次和連續式操作,冀望獲得應用於使用有機相產物當溶劑的醚化反應中,最適合的擔體觸媒及攪拌方式。
本論文共分四個部份︰第一部分是以高分子擔體固定三級胺製成高分子擔體觸媒,比較固定不同三級胺的高分子擔體觸媒對催化反應的效益。由實驗結果發現,高分子擔體固定三級胺的反應,受到三級胺烷基長度的影響,三級胺的固定化量隨著烷基長度增長而減少。對於催化丙烯基溴和酚化鈉反應的效果而言,是固定三正丙基胺的觸媒最佳,三正丁基胺次之,再次之為三乙基胺,最差的則是三正戊基胺。當酚化鈉用量相對於丙烯基溴用量過量的情況下,丙烯基溴轉化率較高,而且反應可用擬一階不可逆反應模擬。
第二部份是以無機化合物(二氧化矽和氧化鋁)為擔體,將之官能基化後,固定三級胺成為擔體觸媒。無機擔體有機械強度高可耐高溫的特點,在高速攪拌下擔體結構不易被破壞,穩定性較高分子擔體觸媒高,經過實驗發現確是如此。但其缺點卻是催化效果不佳,而且在反應後段催化丙烯基溴緩慢下來,且主產物選擇率較高分子擔體觸媒低。經過改變一些操作變因仍無法改善此缺點,所以相較於高分子擔體觸媒,無機擔體觸媒為較不好的選擇。
為了改善高分子擔體觸媒活性衰退的問題和試圖增加擔體觸媒的催化效果,在第三部份嘗試了三種不同的攪拌方式,包括機械攪拌、加上超音波震盪的機械攪拌和磁石攪拌,來探討比較對於觸媒活性和穩定性的影響。加上超音波震盪時,也改變機械攪拌器的轉速。由實驗結果可知,加上超音波震盪且在低轉速下攪拌時,由於作用於觸媒顆粒的機械力減小,觸媒的活性衰退情況確實有所改善。而以磁石攪拌的反應器,其觸媒的催化活性與穩定性皆不如另兩種攪拌方式的反應器。
第四部份是根據前三部份的實驗結果,將之應用於以有機相產物為溶劑的系統,進行批次和續流式反應操作。選擇以高分子為擔體固定三正丙基胺之觸媒,和以SiO2為擔體固定三正丁基胺之觸媒,分別以低轉速加上超音波震盪和高轉速的攪拌方式,先進行批次反應,評估以續流式反應器(CFSVR)進行該反應之可行性。結果顯示,高分子擔體觸媒的催化活性較SiO2擔體觸媒佳。當高分子擔體觸媒用於續流式反應器並使用低轉速加上超音波震盪的攪拌方式時,經過長時間的操作,轉化率僅微幅下降。
In this study, several kinds of trialkylamines were immobilized on chloromethylated polystyrene polymer, silica gel and alumina to prepare triphase catalysts. These catalysts were then employed for catalyzing the etherification reaction of allyl bromide (the organic reactant) and sodium phenolate (the aqueous reactant). In the experiments, phenetole has a configuration similar to the organic product, allyl phenyl ether, was used as an organic solvent for the purpose of simulating a reaction system with the organic product as a solvent. An optimal catalyst was selected basing on the activity, selectivity and stability. Subsequently, for preventing the catalysts from the destruction by the stirrer, ultrasonic vibration was imposed on the reactor. The effect of ultrasonic vibration on the performance of catalyst was investigated. Finally, the etherification reaction was carried out in a batch reactor and a continuous-flow stirred vessel reactor in which the organic product was used as a solvent, and the ultrasonic vibration was imposed in addition to a slow mechanical stirring. By this study, an optiomal catalyst and a proper way of stirring were found.
This thesis is composed of four parts. In the first part, several kinds of trialkylamines were immobilized on the polymeric support and used as the catalysts for catalyzing the etherification reaction. Experiment results show that the immobilization of trialkylamine is influenced by the length of the alkyl group in the trialkylamine molecules. The amount of trialkylamine immobilized is less when the length of alkyl group is longer. For catalyzing the reaction between allyl bromide and sodium phenolate, the catalyst immobilizing tri-n-propylamine is the best, tri-n-butylamine the second, triethylamine the next, and tri-n-pentylamine the worst. When the amount of sodium phenolate is larger than that of allyl bromide, the conversion of allyl bromide will be higher, and the reaction is of the pseudo-first order.
In the second part, the inorganic compounds (silica and alumina) were functionalized first and then used as the supports for immobilizing the trialkylamines. The inorganic supported catalyst has a high mechanical strength, can sustain even at high temperatures and can not be easily destroyed at a high stirring speed. Its stability is higher than the polymeric supported catalyst. The experimental result shows that it is true. The shortcoming of inorganic supported catalyst is its low activity and selectivity. In addition, the rate of catalyzing allyl bromide will be slow down in the later period of the reaction. These shortcomings can not be improved by changing the operation conditions. So comparing to the polymeric supported catalyst, the inorganic supported catalyst is a worse choice.
In order to mitigate the decay of catalyst due to the destruction by the mechanical stirrer and to improve the contacting pattern between the catalyst particles and the organic and aqueous phases for increasing the reaction rate, three mixing modes were compared in the third part of this study, namely, mechanical stirring, mechanical stirring with the imposition of ultrasonic vibration, and stirring with a magnetic bar. The experimental results show that the decay of the catalyst is indeed mitigated when the ultrasonic vibration is imposed on the reaction mixture which is agitated by a mechanical stirrer at a slow speed. The result also reveals the activity and the stability of the catalyst become the worst when the magnetic bar is employed for stirring.
In the last part, the etherification reaction was carried out in a batch reactor and in a continuous-flow stirred vessel reactor (CFSVR) with the organic product, allyl phenyl ether, as the solvent. The catalysts and the operation conditions were selected and determined by referring the results obtained in the preceding parts. The polymeric supported tri-n-propylamine was used as the catalyst while the SiO2-supported tri-n-butylamine catalyst was tested for comparison. The mechanical stirring at a low agitation speed with the imposition of ultrasonic vibration was adopted for agitating the reacting mixture. The results reveal that the activity of polymeric supported catalyst is higher than that of SiO2-supported catalyst, and the conversion of allyl bromide declines only slightly during a long-period operation.
中文摘要---------------------------------------------------I
英文摘要-------------------------------------------------III
誌謝------------------------------------------------------VI
目錄----------------------------------------------------VIII
表目錄--------------------------------------------------XIV
圖目錄---------------------------------------------------XV
符號---------------------------------------------------XVIII
第一章 緒論----------------------------------------------1
1-1兩液相反應系統------------------------------------1
1-2 相間轉移觸媒的種類-----------------------------------2
1-3 液-液-固三相催化反應---------------------------------5
1-3-1三相觸媒之擔體----------------------------------6
1-3-2三相觸媒的活性基--------------------------------8
1-4 三液相催化技術---------------------------------------10
1-4-1 三液相催化系統的原理---------------------------10
1-5 三相催化反應(Triphase Catalysis)-------------------11
1-6連續式反應系統----------------------------------------14
1-7丙烯基苯基醚(Allyl phenyl ether)之合成--------------15
1-7-1 丙烯基苯基醚之合成-------------------------15
1-7-2 丙烯基苯基醚之應用-------------------------16
1-8研究內容----------------------------------------------17
第二章 實驗----------------------------------------------20
2-1 實驗藥品-----------------------------------------20
2-2實驗方法------------------------------------------22
2-2-1 擔體觸媒之製備------------------------------22
2-2-2 批次液-液-固反應實驗------------------------24
2-2-3續流式液-液-固反應實驗-----------------------24
2-3 分析方法-----------------------------------------25
2-3-1 固體觸媒中氯離子含量(活性基)之分析--------25
2-3-2 無機擔體官能基固定量之分析------------------27
2-3-3 有機相反應物與產物之分析-氣相層析法(G.C.)27
2-4 校正曲線-----------------------------------------28
2-4-1 反應物丙烯基溴與內標定物之G.C.校正曲線------28
2-4-2 產物丙烯基苯基醚與內標定物之G.C.校正曲線----29
2-5 有機相反應物轉化率定義---------------------------29
第三章 擔體觸媒的製備------------------------------------35
3-1無機擔體官能基化與三級胺固定化反應----------------35
3-1-1不同懸浮劑對SiO2-CPM和Al2O3-CPM固定化量的影響--36
3-1-2不同製備條件對SiO2-CPM官能基固定化量的影響-----36
3-1-3不同官能基化試劑對官能基固定量的影響-----------38
3-1-4不同溶劑對SiO2-CPM固定三正丁基胺的影響---------38
3-1-5反應溫度對SiO2-CPM固定三正丁基胺的影響---------39
3-1-6不同的空氣或氣體對SiO2-CPM固定三正丁基胺的影響-39
3-1-7 SiO2擔體官能基固定量對三正丁基胺固定量的影響--39
3-2 高分子擔體上三級胺之固定化反應-------------------40
第四章 高分子擔體觸媒的批次反應--------------------------51
4-1有機相溶劑對高分子擔體觸媒催化反應的影響----------52
4-2 高分子擔體觸媒重複使用對於催化反應的影響-------------53
4-3 攪拌對高分子擔體觸媒活性基流失的影響-----------------54
4-4 粒徑對觸媒催化活性的影響-----------------------------54
4-5 不同活性基之高分子擔體觸媒對於催化活性和選擇性的影響-55
4-6 活性基密度對催化活性和選擇性的影響-------------------56
4-7 觸媒用量對催化活性和選擇性的影響---------------------56
4-8溫度對反應的影響--------------------------------------58
第五章 無機擔體觸媒的批次反應----------------------------72
5-1 有機相溶劑對無機擔體催化反應的影響---------------72
5-2 攪拌速率對無機擔體觸媒催化反應的影響-----------------73
5-3 油水加入順序對無機擔體催化反應的影響-----------------74
5-4 無機擔體觸媒重複使用對催化反應的影響-----------------74
5-5 無機擔體觸媒長期使用對於活性基含量的影響-------------75
5-6 孔徑與粒徑對SiO2擔體觸媒催化丙烯基溴轉化率的影響-----75
5-7 離去基種類對無機擔體催化反應的影響-------------------76
5-8 活性基種類對無機擔體催化反應的影響-------------------76
5-9 無機擔體觸媒用量對轉化率與生成分率的影響-------------77
5-10 增加超音波震盪對反應之轉化率與主產物選擇率的影響----78
第六章 超音波震盪的效應----------------------------------92
6-1 另加超音波震盪對反應之轉化率的影響-------------------92
6-2 磁石攪拌對反應之轉化率的影響-------------------------93
6-3 攪拌方式以及攪拌速率對於高分子擔體觸媒催化活性的影響-94
第七章 以有機相產物為溶劑之批次與連續式反應--------------103
7-1 以有機相產物丙烯基苯基醚為有機相溶劑的批次反應-------103
7-1-1不同觸媒及攪拌方式對催化反應的影響-------------103
7-1-2 油水體積比對催化反應的影響--------------------103
7-1-3酚化鈉用量對催化反應的影響---------------------104
7-1-4反應溫度對催化反應的影響-----------------------105
7-1-5反應速率式的推導-------------------------------106
7-2 以有機相產物丙烯基苯基醚為有機相溶劑的連續式反應-----109
7-2-1不同流率下反應器所需穩定時間-------------------110
7-2-2反應溫度的效應---------------------------------110
7-2-3酚化鈉濃度效應---------------------------------110
7-2-4三相觸媒的穩定性-------------------------------111
第八章 結論與建議未來研究方向----------------------------123
8-1 高分子擔體觸媒與無機擔體觸媒之綜合比較-----------123
8-1-1觸媒的製備方法與成本---------------------------123
8-1-2觸媒的活性-------------------------------------124
8-1-3觸媒的選擇性-----------------------------------125
8-1-4觸媒的穩定性-----------------------------------125
8-1-5以有機相產物為溶劑之批次與連續式反應器之催化效益--125
8-2 結論---------------------------------------------126
8-3 對未來研究方向建議-------------------------------129
參考文獻-------------------------------------------------133
自述-----------------------------------------------------138
[1] Starks, C. M.; Liotta, C.; Halpern, M.; “Phase-Transfer Catalysis, Fundamentals, Applications and Industrial Perspectives ”, Chapman & Hall: New York, 1994.
[2] Menger, F. M.; J. Am. Chem. Soc., 1970, 92, 5965.
[3] Tomita, A.; Ebina. N.; Tamai, Y.; J. Am. Chem. Soc., 1977, 99, p5725.
[4] Makosza, M.; Bialecka, E.; Tetrahedron Letters, 1977, 183.
[5] Solodar, J.; Tetrahedron Letters, 1971, 287.
[6] Dehmlow, E. V.; Dehmlow, S. S., “ Phase transfer catalysis ”, Weinheim ; Deerfield Bemch, Florida; Basel, Verlag Chemin, 1983.
[7] Reuben, B.; Sjoberg, K.; Chemtech., 1981, 315.
[8] Janakiraman, B.; Sharma, M. M.; Chem. Eng. Sci., 1982, 37, 1497.
[9] Freeman, H. H.; Pure Appl. Chem., 1986, 58, 857.
[10] Kobayashi, H.; Sonada, T.; Chem. Lett., 1982, 1185.
[11] Iwamoto, H.; Tetrahedron Letters, 1983, 24(32), 4703.
[12] Starks, C. M.; J. Am. Chem. Soc., 1971, 93, 195.
[13] Starks, C. M.; Chemtech., 1980, 110.
[14] Herriott, A. W.; Picker, D., “ Phase transfer catalysis. An evaluation of catalysis ”, J. Am. Chem. Soc., 1975, 97(9), 2345.
[15] Zerda, J. D. L.; Neumann, R.; Sasson,Y.; J. Chem. Soc.:Perkin Trans.Ⅱ, 1986, 823.
[16] Frensdorff, H. K.; J. Am. Chem. Soc., 1971, 93(3), 600.
[17] Totten, G. E.; Clinton, N. A.; JMS-Rev. Macromolecules Chem. Phys., 1988, C28 (2), 293.
[18] Hennis, H. E.; Thompson L. R., Long J. P.; I & EC Prod. Res. And Dev., 1968, 7, 2, 96.
[19] Hennis, H. E.; Easterly J. P.; Collins, L. R.; Thompsom, L. R.; I & EC Prod. Res. And Dev., 1967, 6, 193.
[20] Merker, R. L.; Scott M. J.; J. Org. Chem., 1961, 26, 5180.
[21] Kimura, Y.; Regen, S. L.; J. Org. Chem., 1983, 48, 195.
[22] Gokel, G. W.; J. Org. Chem., 1983, 48, 2837.
[23] Neumann, R.; Sasson, Y.; J. Org. Chem., 1984, 49, 3448.
[24] Takaki, U.; Smid, J.; J. Am. Chem. Soc., 1974.
[25] Ford, W. T.; Tomoi, M.; Advances in Polym. Sci., 1984, 55.
[26] Hodge, P.; Sherrington, D. C.; “ Polymer-Supported reactions in organic synthesis ”, John Wiley & Sons press, 1920.
[27] Manecke, G.; Storck, W. A.; Chem. Int. Ed. Engl., 1978, 17, 657.
[28] Pepper, K. W.; Paisley, H. M.; Young, M. A.; J. Chem. Soc., 1953, 4097.
[29] Tundo, P.; J. Chem. Soc.: Chem. Comm., 1977, 641.
[30] Tundo, P.; J. Am. Chem. Soc., 1979, 102, 6606.
[31] Tundo, P.; Venturello, P.; J. Am. Chem. Soc., 1981, 103, 856.
[32] Tundo, P.; Venturello, P.; Angeletti, E.; J. Am. Chem. Soc. 1982, 104, 6551.
[33] Tundo, P.; Venturello, P.; Angeletti, E.; Israel J. of Chem., 1985, 26, 283.
[34] Arrad, O.; Sasson, Y.; J. Org. Chem., 1989, 54, 4993.
[35] Regen, S. L.; J. Am. Chem. Soc., 1976, 98, 6270.
[36] Cinouini, M.; Colonna, S.; Molinari, H.; Montanari, F.; J. Chem.Soc.:Chem. 1976, 394
[37] Regen, S. L.; Lee D. P.; Macromolecules, 1977, 1418
[38] Tomoi, M.; Abe, O.; Ikeda, M.; Kihara, K.; Kakiuchi, H.; Tetrahedron Lett., 1978, 3031
[39] Tomoi, M.; Yanai, N.; Shiiki, S.; Kakiuchi, H.; J. Polym. Sci.: Polym. Chem. Ed., 1984, 22, 911
[40] Montanari, F.; Tundo, P.; Tetrahedron Lett., 1979, 52, 5055
[41] Bradshaw, J. S.; Stott, P. E.; Tetrahedron Lett., 1980, 36, 461
[42] Regen, S. L.; Dulak, L.; J. Am. Chem. Soc., 1976, 99, 623
[43] Mckenzie, W. M.; Sherrington, D. C.; J. Chem. Soc.:Chem. Comm., 1978, 541
[44] Heffernan, J.G.; Mackenzie, W. M.; Sherrington, D. C.; J. Chem. Soc.:Perkin Trans. II, 1981, 541
[45] Heffernan, J.G.; Sherrington, D. C.; Tetrahedron Lett.; 1983, 24, 15,1661
[46] Jacobson, S. E.; Mares, F.; Zambri, P. M.; J. Am. Chem. Soc., 1979, 101, 6938
[47] Jacobson, S. E.; Mares, F.; Zambri, P. M.; J. Am. Chem. Soc., 1979, 101, 6946
[48] Fukunishi, K.; Czech, B.; Regen. S. L.; J. Org. Chem., 1981, 46, 1218
[49] Hofge, P.; Khoshdel, E; Waterhouse, J.; J. Chem. Soc.:Perkin Trans. I, 1984, 2451
[50] Pugia, M. J.; Czech, A.; Czech, B. P.; Bartsch, A.; J. Org. Chem., 1986, 51,2945
[51] Kondo, S.; Hasegawa, T.; Tsuda, K.; J. Polym. Sci.: Part A: Polym. Chem., 1990, 28, 2877
[52] Ford, W. T.; Lee, J.; Tomoi, M.; Macromolecules, 1982, 15, 1246
[53] Weng, H. S.; Huang, W. C.; J. Chin. Inst. Chem. Eng., 1987, 18, 109.
[54] Wang, D. H.; Weng, H. S.; Chem. Eng. Sci., 1988, 43, 2019.
[55] Hsiao, H. C.; Weng, H. S.; chem. Eng. Commun., 2002
[56] Weng, H. S.; Wang, C. M.; Wang, D. H.; Ind. Eng. Chem. Res., 1997, 36, 3613.
[57] Wang, D. H.; Weng, H. S.; J. Chin. Inst. Chem. Eng., 1995a, 26, 147.
[58] Wang, D. H.; Weng, H. S.; Chem. Eng. Sci., 1995b, 50, 3477.
[59] Wang, D. H.; Weng, H. S.; J. Chin. Inst. Chem. Eng., 1996, 27, 129.
[60] Weng, H. S.; Wang, D. H.; J. Chin. Inst. Chem. Eng., 1996, 27, 419.
[61] Yadav, G. D.; Reddy, C. A.; Ind. Eng. Chem. Res., 1999, 38, 2245.
[62] Chiles, M. S.; Reeves, P. C.; Tetrahedron Letters, 1979, 36, 3367.
[63] Tomoi, M.; Ford, W. T.; J. Am. Chem. Soc., 1981, 103, 3821.
[64] Ohtani, N.; Regen, S. L.; Macromolecules, 1981, 14, 1594.
[65] Regen, S. L.; Besse, J. J.; J. Am. Chem. Soc., 1979, 101, 4059.
[66] Tomoi, M.; Hosokama, Y.; Kakuchi, H.; J. Polym. Sci.:Polym. Chem. Ed., 1984, 22, 1243.
[67] Regen, S. L.; J. Am. Chem. Soc., 1976, 98, 6270.
[68] Lloyd, W. G.; Durocher, T. E.; J. Appl. Polym. Sci., 1963, 7, 2025.
[69] Tomoi, M.; Ogawa, E.; Hosokama, Y.; Kakiuchi, H.; J. Polym. Sci.: Polym. Chem. Ed., 1982, 20, 3421.
[70] Krishnakumar, V. K.; Sharma, M. M.; Ind. Eng. Chem. Process Des. Dev., 1984, 23, 2, 410
[71] Tundo, P.; J. Org. Chem., 1979, 44, 12, 2048
[72] Weng, H. S.; Wang, C. M.; Wang, D. H.; Ind. Eng. Chem. Res., 1997,36, 3613
[73] Ragaini, V.; Verzella, G.; Ghlgnone, A.; Colombo, G.; Ind. Eng. Chem. Process Des. Dev., 1986, 25, 878
[74] Dehmlow, E. V.; Ang. Chem. Int. Ed. Eng., 1977, 16, 493.
[75] Kornblum, N.; Seltzer R.; Haberfield, P.; J. Am. Chem. Soc., 1962, 85, 1148.
[76] Incan, E. D.; Viout, P.; Tetrahedron Letters, 1975, 31, 159.
[77] Hui, K. M.; Yip, L. C.; J. Polym. Sci., Polym. Chem. Ed., 1976, 14, 2689-2694.
[78] Lokr, D. F., Jr.; Wakefield, L. B.; U. S. Pat., 1977, 4, 060, 563.
[79] Eckroth, D.; Grayson, M.; John Wiley & Sons, Inc., 1983, New York, Vol. 2, 101.
[80] 榎宮卓次; 白石泰士; Jpn. Kokai Tokkyo Koho, Jp. 60, 123, 431 (1986).
[81] 榎宮卓次; 白石泰士; Jpn. Kokai Tokkyo Koho, Jp. 60, 64, 941 (1985).
[82] 田口敏; 井上良夫; 平林一桂; Jpn. Kokai Tokkyo Koho, Jp. 60, 56, 975 (1985).
[83] 鬼頭追造; 田村雅樹; 池呎晴三; Jpn. Kokai Tokkyo Koho, Jp. 60, 100, 566 (1985).
[84] 李偉齊,“以批式與續流式反應器利用液-液-固相間轉移催化技術合成正丁基苯基醚之最適條件”, 國立成功大學化工研究所碩士論文, 2000
[85] 王凱弘,“以有機產物為溶劑之相間轉移催化技術-合成丙烯基苯基醚”,國立成功大學化工研究所碩士論文,2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔